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Abstract

We describe the domino Schensted algorithm of Barbasch, Vogan, Garfinkle and
van Leeuwen. We place this algorithm in the context of Haiman’s mixed and left-
right insertion algorithms and extend it to colored words. It follows easily from this
description that total color of a colored word maps to the sum of the spins of a
pair of 2-ribbon tableaux. Various other properties of this algorithm are described,
including an alternative version of the Littlewood-Richardson bijection which yields
the q-Littlewood-Richardson coefficients of Carré and Leclerc. The case where the
ribbon tableau decomposes into a pair of rectangles is worked out in detail. This
case is central in recent work [29] on the number of even and odd linear extensions
of a product of two chains.

1 Introduction

In a 1982 paper Barbasch and Vogan [1] describe an insertion algorithm which identifies
hyperoctahedral permutations (or “colored permutations”) with domino tableaux. They
define this insertion using left-right insertion of a word and its negative, followed by a jeu
de taquin that pairs up i and −i.

Subsequently Garfinkle [7] defined this insertion directly, both through a bumping
algorithm (similar to Schensted [20] insertion) and recursively in a manner similar to that
used by Fomin [4].

Van Leeuwen [27] also describes this algorithm by translating Garfinkle’s recursive
definition into Fomin’s language of shapes. He provides the first proof that the Garfinkle
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algorithm is the same as the Barbasch-Vogan algorithm. He also defines insertion in the
presence of a nonempty 2-core.

In this paper we give a self-contained treatment of this algorithm. Our interest in the
algorithm is based on its color-to-spin property, which, to our knowledge, was not observed
by these previous authors. That is, this algorithm identifies a hyperoctahedral permu-
tation with a pair of domino tableaux so that the number of “bars” in the permutation
(which we will call its total color) equals the sum of the spins of the tableaux.

We also place this algorithm in the context of Haiman’s mixed insertion [8]. We
generalize Haiman’s insertions from colored permutations to biwords with colors on both
the top and bottom lines. We describe a number of properties of this algorithm, including
the fact that it can be used to give an alternative description of the domino Littlewood-
Richardson bijection given by Carré and Leclerc [3].

Another domino insertion, described in [26], does not have this key color-to-spin prop-
erty. Our investigations also led us to another color-to-spin algorithm, one which extends
to k-ribbon tableaux, for any k. This algorithm is described in [22].

A consequence of this Schensted algorithm and its connection to q-Littlewood-Richardson
coefficients is a correspondence between domino tableaux of rectangular shape, where one
dimension is even, and standard Young tableaux of self-complementary shape. More gen-
erally, if the 2-quotient of the domino shape is a pair of rectangles, then the domino
tableaux are in one-to-one correspondence with what we call semi-self-complementary
standard tableaux.

The connection between domino tableaux of rectangular shape and semi-self-com-
plementary standard tableaux follows easily from a result of Stanley [25] about the
Littlewood-Richardson coefficients of pairs of (almost) equal rectangles. It also follows
from recent work of Berenstein and Kirillov [2] on the connection between domino tableaux
and self-evacuating tableaux under the Schützenberger involution. However, we proceed
through the Barbasch-Vogan-Garfinkle algorithm so that the spin statistic is turned into a
natural statistic on the standard tableau. We will call this statistic on standard tableaux
of semi-self-complementary shape “twist.” This spin-to-twist property is central to the
proof that products of chains have their linear extensions sign-balanced if and only if the
chain lengths are equal mod 2 [29].

Section 2 outlines the basic facts about partitions, words and tableaux which will
be used throughout the paper. Haiman’s insertion algorithms and their generalization to
doubly colored biwords are described in Section 3. Domino tableaux, ribbon tableaux and
the domino Schensted insertion are described in Section 4. The relationship to Haiman’s
insertion algorithms is also given here. The generalization to biwords and the connection
to the q-analogues of the Littlewood-Richardson coefficients of Carré and Leclerc are
given in Section 5. Finally, the special case of when the 2-quotient is a pair of rectangles
is completely worked out in Section 6.
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2 Words and Tableaux

In this section we will give the basic definitions and theorems for the combinatorial struc-
tures that arise in subsequent sections. The body of literature on this material is extensive.
Our treatment follows Fulton [6], to which we refer the reader for the full statement and
proof of many of the results below. Other sources are Sagan [19] (whose treatment is
restricted to permutations), Macdonald [14] (whose emphasis is on symmetric functions)
or Stanley [24] (which again emphasizes symmetric functions). Since many of these results
have appeared in many places, and have been rediscovered many times, we have not been
especially careful about attributions to original sources.

2.1 Partitions, Words and Tableaux

The sequence of integers λ = (λ1 ≥ λ2 ≥ · · · ≥ λt ≥ 0) is called a partition. The number
of parts is the number of non-zero values. If N =

∑
i λi then we say λ partitions N and

we write |λ| = N and λ ` N . Another notation for partitions is an exponential form to
denote the parts and their multiplicities. For example, the partition (4, 4, 3, 1, 1, 1, 1, 1) is
written 15342.

Yet another way of describing a partition is with a Ferrers diagram. A Ferrers diagram
is an array of squares, left-justified, with λj squares (or cells) in row j. For example, the
Ferrers diagram for the partition (4, 4, 3, 1) is

.

This pictorial description leads us to call partitions shapes.
If λ is a shape and µ is a shape whose Ferrers diagram is contained in the Ferrers

diagram of λ, then the skew shape λ/µ is the set of cells obtained by deleting the cells of
µ from λ. For example, here is the skew shape (6, 6, 4, 2)/(5, 2, 1):

.

A word is a sequence of objects, not necessarily distinct, called letters. The letters
have an order, so we usually use numbers for the letters. For example, 2 1 1 3 3 4 is a word.

If the cells of a Ferrers diagram λ are replaced by letters, the result is called a tableau
of shape λ. A semistandard tableau is a tableau where the letters weakly increase across
each row and strictly increase down each column. If T is a tableau, then sh(T ) is the
shape of T . We let SSλ denote all the semistandard tableaux of shape λ ` N . Since we
usually want this set to be finite, we restrict the set of letters to {1, 2, . . . , M}, where
M > |λ|.
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The content of a word or tableau is a specification of the multiplicities of each letter.
Thus, the word 2 1 1 3 3 4 has content (2, 1, 2, 1), because there are two 1’s, one 2, two 3’s
and one 4. The content of the tableau

T =
1 1 2 2
2 2 3
3

is (2, 4, 2), because T has two 1’s, four 2’s, and two 3’s.
A word or tableau is standard or uses a standard alphabet if no letter is used more

than once. Standard words are also called permutations.
There are several ways to “read” the letters of a (skew) tableau which are compatible

with the plactic monoid of the next subsection. We choose “column reading”: read the
letters from bottom to top, left to right. That is, first write down the letters in the
leftmost column from bottom to top, then write down the letters in the next-to-leftmost
column from bottom to top, etc. Let w(T ) denote this word.

(Although this is not the usual definition of the word of a tableau, it is compatible
with the definition of the word of a ribbon tableau in Section 4. The usual definition is
the “column reading” word, which is also compatible with the plactic monoid.)

For example, if

T =
1 1 2 3
2 3 3
4 4

,

then w(T ) = 4 2 1 4 3 1 3 2 3.

2.2 The Plactic Monoid

We now describe an equivalence relation on words. The word w is type 1 equivalent to
the word v if w contains the subsequence b a c, with a < b ≤ c, and v is the same as w,
except that it contains the subsequence b c a. The word w is type 2 equivalent to the word
v if w contains the subsequence a c b, with a ≤ b < c, and v is the same as w, except
that it contains the subsequence c a b. Then w and v are Knuth equivalent, or simply
equivalent, written w

s∼ v, if w can be obtained from v by a sequence of type 1 and type
2 equivalences. Knuth equivalence was introduced by Knuth [10] to describe when two
words had the same insertion tableau under the Schensted correspondence, a fact we shall
arrive at shortly.

Under the operation juxtaposition, denoted by ·, the set of words form a free associative
monoid. The quotient of this monoid under Knuth equivalence is called the plactic monoid.

The elements of the plactic monoid may be regarded as semistandard tableaux. This
description is due to Lascoux and Schützenberger [12].

Theorem 1. For any word w there is a unique semistandard tableau T , with the same
content, such that w(T )

s∼ w.
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Theorem 1 motivates defining an associative multiplication on semistandard tableaux,
R = S · T , so that w(R)

s∼ w(S) · w(T ). This multiplication may be described directly
using Schensted row or column insertion.

2.3 Row and Column Insertion

Schensted row insertion can be defined as follows If x is a letter and T a semistandard
tableau, we construct the semistandard tableau (T

s← x) through a series of “bumps.”
That is, x is placed into the first row, replacing, or “bumping,” the smallest letter y
strictly greater than x. Then y is placed in the second row, bumping the smallest letter
strictly greater than y into the third row, and so on. The process stops when the letter
entering a given row is ≥ all the letters in the row, in which case it is placed at the end
of the row. A precise description of this algorithm may be found in [6], [19], and many
other places.

A column dual of this algorithm, called Schensted column insertion, replaces rows with
columns, and switches strict and non-strict inequalities. We write (x

s→ T ) to denote the
resulting semistandard tableau.

Proposition 2. Let x represent both the letter x and the tableau consisting of a single
cell containing x and let T be a semistandard tableau. Then (T

s← x) = T · x and
(x

s→ T ) = x · T .

Corollary 3. Row and column insertion commute, that is, for letters x and y and semi-
standard tableau T , (x

s→ (T
s← y)) = ((x

s→ T )
s← y).

Proof. Both tableaux are x · T · y and · is associative.

If T is semistandard and x and y are two letters, let T ′ = (T
s← x) and T ′′ = (T ′ s← y).

The shape of T ′ will differ from the shape of T by a single cell c, while the shape of T ′′

will differ from the shape of T ′ by a single cell c′.

Proposition 4. If x ≤ y, then c′ lies in a column strictly to the right of c and in a row
weakly above c. If x > y, then c′ lies in a column weakly to the left of c and in a row
strictly below c.

Now define the insertion tableau for a word w = w1 w2 . . . wn,

Ps(w) = ((. . . ((∅ s← w1)
s← w2) . . . )

s← wn) .

Corollary 5. The insertion tableau Ps(w) is the unique semistandard tableau T for w
given by Theorem 1. Also,

Ps(w) = (w1
s→ (. . . (wn−1

s→ (wn
s→ ∅)) . . . )) .
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We say the word w is a reverse lattice word if, at every point in the word when reading
the word from right to left, the number of 1’s is greater than or equal to the number of
2’s, the number of 2’s is greater than or equal to the number of 3’s, etc. Also, we say a
semistandard (skew) tableau T is Yamanouchi if w(T ) is a reverse lattice word. It is easy
to see that non-skew semistandard T is Yamanouchi if and only if T consists of 1’s in the
first row, 2’s in the second row, etc.

Proposition 6. The word w is a reverse lattice word if and only if Ps(w) is Yamanouchi.

A second construction, called jeu de taquin, and defined by Schützenberger [23], can
also be used to describe plactic multiplication. Since it is not necessary for our exposition,
we omit its description.

2.4 Biwords and the Schensted Correspondence

A biletter
i
j

is a 2×1 array of letters. The two letters are referred to as the top letter and the

bottom letter. A biword is a sequence of biletters, with biletters sorted lexicographically.

That is, the biletter
i
j

precedes the biletter
k
l

if one of the following two conditions holds:

i. i < k

ii. i = k and j < l.

For example,

w =

(
1 1 1 1 2 3 3 3
1 1 2 3 3 2 2 3

)
is a biword. The upper word is the top row, the lower word the bottom row. We may
speak of the content of the upper word and the content of the lower word.

If we turn all the biletters of a biword w upside down and sort according to the
biword rules, we have described a new biword, which we call the inverse, winv. In the
above example,

winv =

(
1 1 2 2 2 3 3 3
1 1 1 3 3 1 2 3

)
.

The operator inv is an involution. If the lower word of w is a permutation of {1, 2, . . . , n}
and the upper word is 1, 2, . . . , n, then the lower word of winv is the usual algebraic
inverse of the lower word of w.

If w is a biword, define Ps(w) to be Ps applied to the lower word of w. Suppose
i
j

is

a biletter in w. When j is inserted in the construction of Ps(w), a new shape is created,
one cell larger than the previous shape. This shape difference is recorded in another
tableau by placing i in the new cell. This second tableau is called the recording tableau.
The recording tableau is denoted by Qs(w). The content of Qs(w) will be the content
of the upper word, while the content of Ps(w) will be the content of the lower word. A
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consequence of Proposition 4 and the definition of biwords is that Qs(w) is semistandard.
We have therefore identified a biword w with a pair of semistandard tableaux of the same
shape.

An early version of this correspondence for words appeared in the work of Robin-
son [17]. It was rediscovered by Schensted [20], who described it on permutations.
Knuth [10] then extended it to general biwords. We will call it the RSK-correspondence.

Theorem 7. The RSK-correspondence is a bijection between biwords w and pairs of
semistandard tableaux, Ps(w) and Qs(w). The content of the upper word of w is the
same as the content of Qs(w) and the content of the lower word of w is the same as the
content of Ps(w). The shape of Ps(w) equals the shape of Qs(w).

One of the most important properties of the RSK-correspondence is a symmetry prop-
erty.

Theorem 8. We have
Ps(w

inv) = Qs(w)

and
Qs(w

inv) = Ps(w) .

2.5 Standardization

Let w be a word. Write wst to denote the standardization of w. That is, convert the
letters of w to a standard alphabet, first converting all the smallest letters, from left to
right, then the next smallest, etc.

If w is a biword, standardization is computed by converting both the upper word and
the lower word to standard alphabets. Again, we use the notation wst.

If T is a semistandard (skew) tableau, then T st is the tableau obtained by converting
the letters to a standard alphabet, where all the smallest letters are converted first, from
left to right.

Standardization is compatible with all the constructions described above.

Proposition 9.

If w
s∼ v then wst s∼ wst

w(T st)
s∼ w(T )st

J(T st) = J(T )st

Ps(w
st) = Ps(w)st

Qs(w
st) = Qs(w)st
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2.6 Schur Functions

If T is a semistandard tableau with content (c1, . . . , cN), and x = {x1, x2, . . . } is a set of
indeterminates, then define

xT = xc1
1 xc2

2 . . . xcN
N .

The monomial xT is called the weight of T . For instance, for

T =
1 1 2 2
2 2 3
3

,

we have xT = x2
1x

4
2x

2
3.

If we sum these weights over all the semistandard tableaux of shape λ ` N , we obtain
the Schur function. That is,

sλ(x) =
∑

T∈SSλ

xT .

The Schur functions are symmetric functions and, in fact, the set {sλ}λ`N forms a basis
for the symmetric functions homogeneous of degree N (see [14]). In a similar fashion, we
can define skew Schur functions.

When two Schur functions are multiplied, the resulting symmetric function can be
expanded in the Schur function basis. The coefficients are called the Littlewood-Richardson
coefficients. That is,

sµ(x)sν(x) =
∑

λ

cλ
µ,νsλ(x) .

The mapping T −→ xT defines a ring homomorphism from the group ring of the
plactic monoid to the polynomial ring.

Corollary 10. If T is semistandard of shape λ,

cλ
µ,ν = #{(U, V ) : U ∈ SSµ, V ∈ SSν and U · V = T} .

3 Haiman’s Insertion Algorithms

In this section we describe Haiman’s insertion algorithms. We first define colored words,
biwords and tableaux. We also introduce doubly colored biwords. Then we define
Haiman’s mixed and left-right insertions, and give some of their properties. We con-
clude this section with a generalization of Haiman’s insertion algorithms, which we call
doubly mixed insertion, and we prove some if its properties.

3.1 Colored Words

A fundamental object considered in this paper is a colored word. A colored word is a
word with bars over some of the letters. A letter in such a word is called a colored letter.
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A colored letter may be barred or unbarred. We adopt the following convention for the
order of letters in a colored word:

1 < 1 < 2 < 2 < · · · < n < n .

An example of a colored word is

w = 4 2 2 1 4 3 2 .

A special case of a colored word is a colored permutation. A colored permutation is a
colored word in which each letter (either barred or unbarred) is used no more than once.

If w is a colored word, we write tc(w) to denote the total color of the word, that is,
the number of barred letters in the word. In the above example, tc(w) = 4.

If w is a colored word (resp. letter), we write wneg to denote the word (resp. letter)
obtain by converting the bars to negative signs.

More generally, a colored biword is a two row array with some of the letters on the
lower word barred and such that if the bars are replaced by negative signs, the result is a
biword.

For example,

w =

(
1 1 1 2 2 2 2
2 1 2 3 3 1 2

)
is a colored biword.

We extend the definition of neg to colored biwords in the obvious way. For example,
if w is as given above, then

wneg =

(
1 1 1 2 2 2 2
−2 −1 2 −3 −3 −1 2

)
.

The definition of colored biword guarantees that wneg will be a biword.
Even more generally, a doubly colored biword w is a two row array with some of the

letters in each row barred, and with the biletters sorted according to the following rule.

The biletter
i
j

precedes the biletter
k
l

if one of the following three conditions holds:

i. i < k

ii. i = k, both are unbarred, and jneg < lneg

iii. i = k, both are barred, and lneg < jneg

An example of a doubly colored biword is

w =

(
1 1 1 1 1 2 2 2 2
2 1 1 3 2 2 1 1 2

)
Now extend the definition of neg to doubly colored biwords by converting the bars in

the lower word to negatives. The resulting word is a doubly colored biword, with the bars
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only appearing on the upper word. Also note that neg is invertible: simply replace the
negatives with bars.

In the example above,

wneg =

(
1 1 1 1 1 2 2 2 2
2 1 −1 −3 −2 2 −1 1 2

)
.

We also define the “inverse” of a doubly colored biword. Let winv be the doubly
colored biword obtained by writing the lower word of w as the upper word, the upper
word of w as the lower word, and sorting the biletters according to the rules for doubly
colored biwords. Continuing the previous example,

winv =

(
1 1 1 1 2 2 2 2 3
1 2 1 2 1 2 1 2 1

)
.

The operator inv is an involution on doubly colored biwords. Also the operator
inv neg inv effectively negates the barred letters on the upper word, then sorts accord-
ing to the colored biword rules, thus producing a colored biword. In the above example,

winv neg inv =

(−2 −2 −1 −1 −1 −1 1 2 2
1 2 3 1 1 2 2 1 2

)
.

Another operation defined on doubly colored biwords is “evacuation.” Define wev to
be the doubly colored biword obtained by removing all the biletters whose lower letter is
barred. In the above example,

wev =

(
1 1 2 2 2
2 1 2 1 2

)
.

An easy fact is the following remark.

Proposition 11. The operations ev and neg both commute with inv neg inv.

It is sometimes necessary to standardize a doubly colored biword. This is accomplished
by describing a partial standardization, of the upper word only. Let wst describe replacing
the upper word of w with a standard alphabet, with the positions of the bars remaining.
In the above example,

wst =

(
1 2 3 4 5 6 7 8 9
2 1 1 3 2 2 1 1 2

)
.

Now we can standardize the lower word by switching the lower and upper words using
inv, doing a partial standardization, st, then switching back. Therefore, define

wst = wst inv st inv .

In the above example,

wst =

(
1 2 3 4 5 6 7 8 9
7 3 1 9 5 6 2 4 8

)
.
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Proposition 12. The operator st commutes with inv. It also commutes with neg and ev
on doubly colored biwords with proper choice of standardizing alphabet. Finally, st has the
alternative definition:

wst = winv st inv st .

3.2 Colored Tableaux

A colored tableau is a tableau with colored letters. We define the operators neg, ev and
st on semistandard colored tableaux in terms of Haiman’s conversion operators.

Haiman [8] describes a conversion process in which one letter in a semistandard tableau
is “replaced” by another. This process proceeds as follows. Let x be the letter in cell c
in a semistandard tableau T and let y be another letter. Replace x with y in the cell c.
The resulting tableau may not be semistandard. Therefore, swap the y in cell c with one
of its neighbors (above or to the left, if y is smaller than x; below or to the right, if y is
larger than x). Now y is in a new cell, c′. Again, the tableau may not be semistandard.
Therefore, repeat this swapping until the tableau is restored to semistandard. We will
say that the value x was converted to y. (Conversion may also be described in terms of
jeu de taquin slides.)

We define neg on semistandard colored tableau as a sequence of conversions. Suppose
T is a semistandard colored tableau. Let T neg be the semistandard tableau obtained by
successively converting the barred letters x in T to their corresponding negatives, xneg.
The barred letters are converted from smallest to largest. Repeated letters are converted
from left to right in the tableau. For example, if

T =

1 1 1 1 1 2

1 2 2 3

2 2 3

3 3 3

then

T neg =

−3 −3 −3 −2 1 2
−2 −1 −1 1
−1 2 2
1 3 3

.

Note that neg is invertible.
The operator ev is defined in a similar fashion. Let T ev be the semistandard tableau

obtained by successively converting the barred letters to +∞ (larger than any letter in the
tableau), then erasing the +∞. The barred letters are converted from largest to smallest.
Repeated letters are converted from right to left. In the above example,

T ev =
1 1 1 2
2 2
3 3

.
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Finally, let T st be the usual standardization of T , where a letter will retain its “color”
after being replaced by the standardizing alphabet. In the above example,

T st =

1 2 3 5 6 11

4 8 10 14

7 9 13

12 15 16

.

Proposition 13. With appropriate choice of standardizing alphabet, ev and neg commute
with st on colored tableaux.

3.3 Mixed and Left-Right Insertion

Most of the material in this subsection is due to Haiman [8]. Haiman described his
insertion algorithms for colored permutations with no repeated letters, but noted that
extensions to words were straightforward. We will use these extensions to words in this
subsection.

Also, Haiman described two kinds of insertion, mixed and left-right, but noted that
a more general combination of the two was possible. We will describe this more general
insertion, which we will call “doubly mixed insertion,” in the next subsection.

First, however, we describe Haiman’s mixed and left-right insertions. Suppose T is a
semistandard colored tableau and suppose x is a colored letter. If x is barred, it is inserted
into the first column. If it is unbarred, it is inserted into the first row. Subsequent letters
are bumped into the next column or row according to whether they are barred or unbarred.

The resulting semistandard colored tableau (T
m← x) will include the same colored

letters as T , with the addition of the colored letter x. For example, if

T =

1 2 2

2 3

2

,

and we wish to construct (T
m← 1), then

1 bumps 1 in location (1, 1)

1 bumps 2 in location (2, 1)

2 bumps 2 in location (1, 2)

2 bumps 2 in location (1, 3)

2 bumps 3 in location (2, 2) and

3 is placed in location (2, 3) .
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Therefore,

(T
m← 1) =

1 2 2

1 2 3

2

.

Now for colored word w = w1 w2 . . . wn, define

Pm(w) = ((. . . ((∅ m← w1)
m← w2) . . . )

m← wn).

For example, if w = 2 2 1 3 2 2 1, then

Pm(w) =

1 2 2

1 2 3

2

This insertion process is called mixed insertion. We clearly have that Pm(w) is a
semistandard colored tableau. We write Qm(w) to denote the corresponding recording
tableau, using a standard alphabet. If w is a colored biword, then Pm(w) is the mixed
insertion tableau of the lower word, while Qm(w) is the recording tableau for this mixed
insertion, using the upper word as the recording alphabet.

For example, if

w =

(
1 1 1 2 2 3 3
3 1 2 2 1 2 2

)
,

then

Pm(w) =

1 1 2 3

2 2

2

and Qm(w) =

1 1 1 3

2 2

3

.

An easy consequence of Haiman’s Theorem 3.12 connects mixed insertion with ordi-
nary RSK-insertion.

Proposition 14. If w is a colored biword, then

Pm(w)neg = Ps(w
neg)

and
Qm(w) = Qs(w

neg) .

Note that Qm(w) is semistandard, from the definition of colored biwords, Proposi-
tion 4, and Proposition 14. Also, mixed insertion commutes with standardization of
colored biwords.

Proposition 15. The operator st commutes with Pm and Qm.
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Proof. For Pm, since st commutes with neg on colored words and colored tableaux, the
result follows from Proposition 14, Proposition 9 and the invertibility of neg. The proof
for Qm is similar.

If two colored words w and v have the same mixed insertion tableau, i.e., Pm(w) =
Pm(v), then they are mixed equivalent and we write w

m∼ v. Since the operator neg is
invertible on tableaux, we have the following corollary to Proposition 14.

Corollary 16. Suppose w and v are colored words. Then w
m∼ v if and only if wneg s∼

vneg.

The following is Haiman’s Corollary 3.18.

Proposition 17. If w is a colored biword, then

Pm(w)ev = Ps(w
ev) .

Haiman’s second insertion process is called left-right insertion. A doubly colored
biword w is called upper colored if winv is a colored biword. That is, w has colors only
on the upper word. Left-right insertion is defined on upper colored biwords. If T is a
semistandard tableau, define

(T
lr← i

x
) = (x

s→ T )

and

(T
lr← i

x
) = (T

s← x) .

Let Plr(w) denote the insertion tableau and Qlr(w) the recording tableau. The colors
are kept in the recording tableau, so that Qlr(w) is a colored semistandard tableau. For
example, if

w =

(
1 1 1 1 2 2 2
3 2 2 1 3 1 2

)
,

then

Plr(w) =

1 1 2

2 2 3

3

and Qlr(w) =

1 1 1

1 2 2

2

.

Haiman showed that mixed insertion and left-right insertion were, in effect, dual al-
gorithms. The following proposition is Haiman’s Theorem 4.3.

Proposition 18. If w is a colored biword, then

Pm(w) = Qlr(w
inv)

and
Qm(w) = Plr(w

inv) .
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Proposition 19. The tableau Qlr(w
inv) is semistandard. Also, st commutes with Plr and

Qlr.

Proof. That the tableau Qlr(w
inv) is semistandard follows from Proposition 18. That

st commutes with Plr and Qlr follows from Proposition 12, Proposition 15 and Proposi-
tion 18.

3.4 Doubly Mixed Insertion

We now extend Haiman’s results to doubly colored biwords. Haiman remarked that this
extension could be done, but had no need for it. Since we will find this extension useful,
we make Haiman’s remarks precise.

Suppose T is a colored semistandard tableau and
i
x

is a doubly colored biletter. Then

define

(T
m∗← i

x
) =

{
(T

m← x) if i is not barred

(T
dm← x) if i is barred

,

where
dm← is a “dual” mixed insertion in which the barred letters bump by rows and the

unbarred letters bump by columns. As usual, define Pm∗(w) and Qm∗(w) for a doubly
colored biword w. In this case, both tableaux will be colored. For example, if

T =

1 1 2 3

1 2 2

3

,

then

(T
m∗← 3

1
) =

1 1 1 2 3

1 2 2

3

.

If

w =

(
1 1 1 2 2 2 3 3 3

1 2 1 2 3 3 2 1 1

)

then

Pm∗(w) =

1 1 1 2 3

1 2 2

3

and

Qm∗(w) =

1 1 1 2 3

2 3 3

2

.
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Proposition 20. If w is a colored biword, then Pm∗(w) = Pm(w) and Qm∗(w) = Qm(w).
Similarly, if w is an upper colored biword, then Pm∗(w) = Plr(w) and Qm∗(w) = Qlr(w).

Proof. The first part is true since doubly mixed insertion and mixed insertion are the same
on colored biwords. The second part is true since doubly mixed insertion and left-right
insertion are the same on upper colored biwords.

Doubly mixed insertion can be realized as mixed insertion or left-right insertion.

Theorem 21. If w is a doubly colored biword, then

Pm∗(w) = Pm(winv neg inv) (1)

Pm∗(w)neg = Plr(w
neg) = Pm∗(wneg) (2)

Pm∗(w) = Qm∗(winv) (3)

Qm∗(w) = Qlr(w
neg) (4)

Qm∗(w)neg = Qm(winv neg inv) = Qm∗(winv neg inv) (5)

Qm∗(w) = Pm∗(winv) (6)

Proof. Equation (1) is a consequence of Haiman’s Remark 8.5. The first identity in
Equation (2) follows from Equation (1) since

Pm(winv neg inv)neg = Ps(w
inv neg inv neg) by Proposition 14

= Ps(w
neg inv neg inv) by Proposition 11

= Qs(w
neg inv neg) by Theorem 8

= Qm(wneg inv) by Proposition 14

= Plr(w
neg) by Proposition 18.

The second identity follows from Proposition 20.
From Equation (2), the shape change in Pm∗(w) is the same as the shape change in

Plr(w
neg). Since the upper words of w and wneg are the same, the recording tableaux are

the same, and hence Equation (4) holds.
Equation (3) is true since

Pm∗(w) = Pm(winv neg inv) by Equation (1)

= Qlr(w
inv neg) by Proposition 18

= Qm∗(winv) by Equation (4).

Equation (6) is an immediate consequence of Equation (3) and the fact that inv is an
involution.

Finally, the first identity in Equation (5) follows from

Qm∗(w)neg = Pm∗(winv)neg by Equation (6)

= Plr(w
inv neg) by Equation (2)

= Qm(winv neg inv) by Proposition 18

and the second follows from Proposition 20.
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Theorem 22. The mapping from doubly colored biwords w to pairs of colored semistan-
dard tableaux given by Pm∗(w) and Qm∗(w) is a bijection. The content of the upper word
is the content of Qm∗(w) and the content of the lower word is the content of Pm∗(w).

Analogous to Equation (2) above, doubly mixed insertion commutes with ev.

Proposition 23. If w is a doubly colored biword, then

Pm∗(w)ev = Plr(w
ev) = Pm∗(wev) .

Proof. The second equation is immediate from Proposition 20, since ev removes bars from
the lower word. The first equation can be derived as follows:

Pm∗(w)ev = Pm(winv neg inv)ev by Equation (1)

= Ps(w
inv neg inv ev) by Proposition 17

= Ps(w
ev inv neg inv) by Proposition 11

= Qs(w
ev inv neg) by Theorem 8

= Qm(wev inv) by Proposition 14

= Plr(w
ev) by Proposition 18.

Proposition 24. The operator st commutes with Pm∗ and Qm∗ .

Proof. This follows from Theorem 21, Proposition 15 and Proposition 11.

4 Colored Words and Ribbon Tableaux

In this section we define important classes of tableaux called domino tableaux and ribbon
tableaux, and we relate these tableaux to colored words and the insertion algorithms of
Haiman described in the previous section.

4.1 Domino Tableaux

A special kind of skew shape is a domino. This skew shape consists of two adjacent cells
in the same row or same column. If they are in the same row, it is called a horizontal
domino. If they are in the same column, it is called a vertical domino.

A domino tableau (resp. skew domino tableau) is a tableau (resp. skew tableau) with
the following properties. First, each number appears twice in the tableau. Second, the
two occurrences of each number appear adjacent to one another in the same row or in
the same column. Third, the numbers weakly increase across each row and down each
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column. For example, here is a domino tableau of shape (6, 6, 3, 3, 2):

1 2 4 4 7 8
1 2 6 6 7 8
3 3 9
5 5 9
10 10

.

It is clear that the cells occupied by the same value in a domino tableau make up a
domino. If D is a domino tableau, then domk refers to the domino whose entries are k’s,
while dom[k] refers to the skew domino tableau of shape domk, with entries both k.

Let Domλ be the set of domino tableaux of shape λ. Note that for certain λ (e.g.,
λ = (3, 2, 1)), this set is empty. Shapes for which Domλ is not empty are said to have
empty 2-core.

Domino tableaux are in one-to-one correspondence with pairs of standard tableaux,
as described by the following theorem.

Theorem 25. There is a one-to-one correspondence between domino tableaux D, using
the numbers {1, 2, . . . , n}, and pairs of standard tableaux, (U, V ), which together use the
numbers {1, 2, . . . , n}. Furthermore, the shape of the domino tableau determines the shapes
of the standard tableaux.

This bijection was probably first due to Littlewood [13], whose work was inspired
by earlier papers of Robinson [18] and Nakayama [15][16]. A simple description of this
bijection appears in [3] and in [5] and somewhat different descriptions appear in [26] and
on page 83 of [9].

We illustrate here this bijection. Our description of the bijection follows [5]. Label
each domino in D either 0 or 1 according to whether the lattice distance between the
upper or right cell of the domino and the main diagonal is even or odd. Similarly label
each diagonal of D either 0 or 1 according to whether its lattice distance to the main
diagonal is even or odd.

Now delete all dominoes labeled 1. The remaining entries on diagonals labeled 0 are
the same as the entries of the diagonals of U . Deleting dominoes labeled 0 and retaining
diagonals labeled 1 produces V .

In our example above, first deleting the dominoes labeled 1 gives

1 7
1 6 6 7

9
5 5 9

.

The diagonals labeled 0 then produce this tableau

1 6 7
5 9

.
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First deleting the dominoes labeled 0 gives

2 4 4 8
2 8

3 3

10 10

.

The diagonals labeled 1 then yield this tableau

2 4 8
3
10

.

It is not too difficult to see that this is a bijection and that different domino tableaux of
the same shape give the same shapes for the corresponding U and V . We write D = U ∗V
to denote this decomposition, and λ = µ ∗ ν to denote the corresponding decomposition
of the shape of D into the shapes of U and V . The pair (U, V ) (resp. (µ, ν)) is called the
2-quotient of D (resp. λ).

Theorem 25 would lead one to view domino tableaux as a complicated description of
a simple idea: a pair of standard Young tableaux. However, the statistic spin, defined
next on domino tableaux, is not so easily described on the 2-quotient, and gives us reason
to consider domino tableaux apart from their corresponding 2-quotient. See [21] for an
exact description of spin on the k-quotient of a k-ribbon tableau.

For a domino (skew) tableau D, let ov(D) be the number of vertical dominoes in odd
columns and let ev(D) be the number of vertical dominoes in even columns. Let v(D) be
the number of vertical dominoes in D.

For a domino (skew) tableau, D, spin is defined by sp(D) = v(D)/2, i.e., half the
number of vertical dominoes. For shape λ, let sp∗ be the maximum spin of all domino
tableaux of shape λ. Then the cospin of D of shape λ is cosp(D) = sp∗ − sp(D). We use
cospin in this paper because of the following proposition.

Proposition 26. If D is a domino tableau, then cosp(D) is integral.

4.2 Ribbon Tableaux

We now define a natural semistandard analogue of domino tableaux. Details of this
construction may be found in [3].

A 2-ribbon tableau or ribbon tableau is made up of a collection of ribbons. A ribbon
is the skew shape consisting of 2k cells with the following property. A ribbon can be
tiled by k dominoes so that the cell directly above the topmost (for vertical dominoes) or
rightmost (for horizontal dominoes) cell of each domino in the tiling is not in the ribbon.
It is not too difficult to see that there is only one such tiling with this property. We
will call this the standard 2-ribbon tiling or standard tiling. A 2-ribbon tableau R has
its entries weakly increasing across rows and down columns and the cells containing each
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entry form a ribbon. Since every value will appear in a ribbon tableau an even number
of times, we define the content of a ribbon tableau R, to be the vector (v1, v2, . . . ), where
vi is half the number of i’s appearing in R.

Now suppose λ = µ∗ν. If R is a ribbon tableau of shape λ, then R may be decomposed
into two tableaux, U and V , of shapes µ and ν respectively, by using the domino bijection
described in the previous subsection, with the dominoes determined by the standard tiling
and the entries in the dominoes determined by the entries in the corresponding ribbon.
The following proposition is Theorem 6.3 in [3].

Proposition 27. If the ribbon tableau R corresponds to the two tableaux U and V , then
U and V are semistandard. Furthermore, if U and V are semistandard, then there is an
unique ribbon tableau R which corresponds to U and V .

As with domino tableaux, we will write R = U∗V and we will call (U, V ) the 2-quotient
of R. Define Ribλ to be the set of 2-ribbon tableaux of shape λ.

We illustrate this construction with the following example. Let R be the following
ribbon tableau (with the standard tiling indicated):

R =

1 1 1 2 2 2 2
1 1 1 2 2
2 3 3 3
2 3
3
3

.

Then U and V are as follows.

U =
1 1 2 2
2
3

V =
1 2
3 3

.

We now define spin on 2-ribbon tableaux. The spin of R, sp(R), is half the number of
vertical dominoes in the standard 2-ribbon tiling of R. In the above example, sp(R) = 4.
Similarly, we can define cospin on ribbon tableaux.

Spin on 2-ribbon tableaux is discussed in [3], while spin on more general k-ribbon
tableaux is discussed in detail in [11]. The generating function for spin on the more
general ribbon tableaux generalizes the Hall-Littlewood symmetric functions [14] [11].

Finally, there is a natural standardization of ribbon tableaux. In the standard tiling
of ribbon tableau R, within each ribbon label the dominoes in the standard tiling in
increasing order from left to right. Then label the ribbons in order from smallest to
largest. Since we will later view ribbon tableaux as colored tableaux, we will write Rrst
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to denote this standardization. In the above example,

Rrst =

1 2 3 5 6 7 7
1 2 3 5 6
4 9 10 10
4 9
8
8

.

Proposition 28. Standardization is compatible with spin, that is, sp(R) = sp(Rrst). It is
also compatible with the 2-quotient in the following sense: if R = U ∗ V and Rrst = A ∗B
then A and B are standardizations of U and V .

Again, using the above example, we have

A =
1 3 6 7
4
8

B =
2 5
9 10

.

Now suppose R is a 2-ribbon tableau. Following Carré and Leclerc [3], we define w(R)
as the column-reading word, as in the case of semistandard tableaux, except that the
letter in the second occurrence of each domino is ignored. For example, if

R =

1 1 1 1 2 2
1 1 2 3 3
2 2 2
3 3 3
3

then w(R) = 3 2 1 3 1 2 1 3 2. We say a 2-ribbon tableau R is Yamanouchi if w(T ) is a
reverse lattice word. For example,

Y =

1 1 1 1 1
1 1 1 2 2
2 2 2
2 3 3

is a Yamanouchi 2-ribbon tableau. Unlike Yamanouchi semistandard tableaux, there can
be more than one Yamanouchi 2-ribbon tableau of the same shape.

In a similar fashion we can define Yamanouchi 2-ribbon skew tableaux. The following,
proved in [28], is a central result in [3].

Theorem 29. There is a bijection from 2-ribbon skew tableaux R of shape ρ/µ and content
ν and pairs (Y, Q) where Y is Yamanouchi 2-ribbon of shape ρ/µ and content λ and Q is
semistandard of shape λ and content ν. Furthermore, sp(R) = sp(Y ).
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4.3 Domino Insertion

In this subsection we describe a bijection from colored permutations to pairs of domino
tableaux such that the total color of the permutation equals the sum of the spins of the
domino tableaux. This bijection is the insertion algorithm of Garfinkle [7] and, as proved
by van Leeuwen [27], is equivalent to the algorithm of Barbasch and Vogan [1].

It differs from the domino insertion in [26], which does not have the color-to-spin
property. Another domino insertion is described in [22], which also has the color-to-spin
property, and which extends to k rim-hook tableaux. We do not use this insertion here
because it does not have the necessary insertion equivalence.

In a later subsection we shall extend this bijection to 2-ribbon tableaux.
Suppose δ = α/β is a domino. We say δ is an outer domino of α. We will write α− δ

to mean β. We will also say that δ is a domino outside β. We will write β + δ to mean α.
Similarly, suppose λ/µ is a skew shape and δ = ν/µ is a domino, with ν contained in

λ. Then we say δ is an inner domino of λ/µ and we write λ/µ− δ to mean λ/ν. And we
call δ a domino inside λ/ν and write λ/ν + δ to mean λ/µ.

If δ is a domino, let δ[k] denote the domino skew tableau of shape δ with both entries
k.

Also, if T is a domino tableau with largest entry k, then domk is an outer domino of
sh(T ). Write T −dom[k] to denote the removal of this domino from T . Similar definitions
hold for the addition of a domino to a tableau and for skew domino tableaux.

Let α be a shape and β be a skew shape such that α and β intersect in a domino δ
which is an outer domino of α and an inner domino of β. We call such a pair (α, β) a
domino overlapping partition pair.

Suppose (α, β) is a domino overlapping partition pair. Let U be a domino tableau of
shape α and let V be a skew domino tableau of shape β. Suppose all the entries of U are
smaller than all the entries of V . We call such a pair (U, V ) a domino overlapping tableau
pair. We say (U, V ) has shape (α, β).

Now suppose (U, V ) is a domino overlapping tableau pair of shape (α, β) with inter-
section δ. Suppose U has entries {a1 < a2 < · · · < ak−1} and V has non-empty set of
entries {ak < · · · < an}. We will show how to construct another overlapping tableau pair,
(Ũ , Ṽ ) of shape (α̃, β̃) with intersection δ̃, and where Ũ has entries {a1 < · · · < ak} and
Ṽ has entries {ak+1 < · · · < an}. Furthermore,

sp(U) + sp(V ) + sp(δ) = sp(Ũ) + sp(Ṽ ) + sp(δ̃) . (7)

We will call this algorithm Bump, that is, (Ũ , Ṽ ) = Bump(U, V ).
The construction of Ũ and Ṽ proceeds by cases, depending on how domak

and δ
overlap. In all cases,

β̃ = β − domak

Ṽ = V − dom[ak] .
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If domak
and δ are disjoint, then

α̃ = α + domak

Ũ = U + dom[ak]

δ̃ = δ .

Clearly, Equation (7) holds.
If domak

and δ overlap in a single cell, then one must be vertical (say domak
) and one

must be horizontal (say δ). In this case, construct a new vertical domino δ̃, which will
be δ with the intersecting position moved diagonally out one position. Also, construct
a new horizontal domino, called dom′

ak
, from domak

by moving the intersecting position
diagonally out one position. Call the corresponding domino with ak’s dom′[ak]. Then

α̃ = α + dom′
ak

Ũ = U + dom′[ak] .

Note that the number of vertical dominoes in U is unchanged, the number of vertical
dominoes in V has gone down by one, and δ has gone from horizontal to vertical. Thus,
Equation (7) is established. Here is an example of this case.

U =

1 1 4 4
2 3 5
2 3 5
6
6

, V =
9

7 8 9
7 8

Ũ =

1 1 4 4
2 3 5
2 3 5
6 7 7
6

, Ṽ =
9

8 9
8

.

As described thus far, this algorithm is identical to the insertion algorithm of Stanton
and White [26]. The difference arises when the two dominoes domak

and δ are identical.
When this happens, there are two cases, depending upon whether δ is vertical or

horizontal. If it is horizontal, let δ̃ be the unique horizontal domino in the next row which
is outside α. Note that α + δ̃ is a shape, since δ was a horizontal outer domino in the
previous row. Let δ̃[ak] denote this domino with ak’s placed in it. Then define

α̃ = α + δ̃

Ũ = U + δ̃[ak] .
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Note that the spins of U , V , and δ remain unchanged. Here is an example of this case.

U =

1 1 4 4
2 3 5
2 3 5
6
6

, V =
9

7 7 9
8
8

Ũ =

1 1 4 4
2 3 5
2 3 5
6 7 7
6

, Ṽ =
9
9

8
8

.

The last case is when domak
and δ are identical and both vertical. This case is exactly

the same as the previous case, except that δ̃ is the unique vertical domino in the next
column which is outside α. In this case, note that the number of vertical dominoes in U
goes up by 1, the number of vertical dominoes in V goes down by 1, and both δ and δ̃
are vertical. This case is illustrated below.

U =

1 1 3 3
2 4 4
2 5 5
6
6

, V =

8 8
7 9 9
7

Ũ =

1 1 3 3
2 4 4 7
2 5 5 7
6
6

, Ṽ =

8 8
9 9

.

Finally, we will need a special definition to give a stopping rule. If T is a domino
tableau, let Aug(T ) be a domino tableau consisting of T and an outer border of domino
shapes filled with letters from some larger alphabet (which we call the augmenting alpha-
bet). For example, if

T =

1 1 3 3
4 5 5
4 6 6
7 8
7 8

,
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then one possibility is

Aug(T ) =

1 1 3 3 ∞3

4 5 5 ∞2 ∞3

4 6 6 ∞2

7 8 ∞4 ∞4

7 8 ∞5

∞1 ∞1 ∞5

,

where the augmenting alphabet is

∞1 <∞2 <∞3 <∞4 <∞5 .

Note that there are several possible choices for Aug(T ).
If λ is a shape, let domr(λ) denote the domino consisting of the two cells in row 1,

columns λ1+1 and λ1+2. Also, if λ has l parts, let domc(λ) denote the domino consisting
of the two cells in column 1, rows l + 1 and l + 2. If T is a domino tableau and x is a
colored letter, let |x| denote the letter x with the “color” removed, let T<x be the portion
of T consisting of letters smaller than |x| and let T>x be the portion of T consisting of
letters larger than |x|.

We now describe domino insertion. Let x be a colored letter and let T be a domino
tableau not containing |x|.
Algorithm 1.

if x is unbarred then
U := T<x ∪ domr(sh(T<x))[|x|]

else if x is barred then
U := T<x ∪ domc(sh(T<x))[|x|]

W := T>x

V := Aug(W )
{(U, V ) forms a domino overlapping tableau pair}

while V contains letters not in the augmenting alphabet do
(U, V ) := Bump(U, V )

(T
d← x) := U

δ = sh(T
d← x)/sh(T )

Note that from Equation (7) we have

sp(T
d← x) + sp(δ) =

{
sp(T ) if x is unbarred

sp(T ) + 1 if x is barred
. (8)

For example, if

T =

1 1 3 3
4 5 5
4 6 6
7 8
7 8

,
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then

(T
d← 2) =

1 1 2 2
3 3 5
4 4 5
6 6 8
7 7 8

.

The spin of T is 3/2 and the spin of (T
d← 2) is 1, while the spin of δ is 1/2.

As another example, if

T =
1 1 2 2
4 5 5
4 6 6

,

then

(T
d← 3) =

1 1 2 2
3 4 5
3 4 5
6 6

.

The spin of T is 1/2, while the spin of (T
d← 3) is 3/2 and the spin of δ is 0.

We can now insert an entire colored permutation. Each application of Algorithm 1 will
create a tableau which differs from the previous by a domino shape, so we can construct
a recording tableau. If π = a1a2 . . . an is a colored permutation, where the ai are colored
letters, write

Pd(π) = (. . . ((∅ d← a1)
d← a2) . . .

d← an)

and Qd(π) to represent the recording tableau.
It is clear that the algorithm described above is reversible. Equation (8) then leads to

the following theorem.

Theorem 30. There is a bijection between colored permutations π and pairs of domino
tableaux of the same shape, given by

Pd(π) and Qd(π) .

Furthermore,
tc(π) = sp(Pd(π)) + sp(Qd(π)) .

That is, the total color of π is the sum of the spins of the two tableaux.

We illustrate Theorem 30 with an example. Let

π = 38 5 2 19 7 46 .

Then

Pd(π) =

1 1 3 4 4
2 2 3 5 5
6 7 8
6 7 8
9 9

Qd(π) =

1 2 2 5 8
1 3 3 5 8
4 4 9
6 7 9
6 7

.

We have tc(π) = 5 and sp(Pd(π)) + sp(Qd(π)) = 2 + 3.
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4.4 Mixed Insertion and Domino Insertion

We now draw the connection between domino insertion and doubly mixed insertion. Sup-
pose D is a domino tableau. We may regard D as a colored tableau by barring exactly
one number in each domino, so that the resulting tableau is standard in the alphabet of
colored letters.

Lemma 31. Let D be a domino tableau, let x be a colored letter whose value is not in D,
and let x∗ be the “color complement” of x, that is, x∗ is barred if x is not and vice versa.
Then

((D
m← x)

dm← x∗) = (D
d← x) .

Proof. The proof is by induction on the number of dominoes in D. It is easy to check that
the result is true if D is empty. Suppose the lemma is true for all D with k dominoes.
Let D be a domino tableau with k + 1 dominoes. Let z be the largest entry in D. Let D0

denote D with the domino of z’s removed. First, we notice that

X = (D
m← x)

dm← x∗)

can be done in two steps. First, we construct

X0 = (D0
m← x)

dm← x∗) .

By induction δ = sh(X0)/sh(D0) must be a domino. We then verify that X can be
constructed by first constructing X0, and then using the two cells in δ to “bump” the
domino in D0 containing z and z. This is because once a particular element of D0 has
been “bumped” by the insertion of x, it will not be affected again until it is “bumped”
by x∗.

But by induction, X0 = (D0
d← x). Thus, in the construction of (D

d← x), the domino
δ will “domino bump” the domino containing the z’s. We must therefore verify that the
result of this “domino bump” is the same as the two mixed insertion “bumps” described
above. Clearly if δ does not intersect domz then both processes do nothing to the z’s.
There are four cases left to consider. Each case has a corresponding figure. Let a and b

be the elements bumped into δ. We use
d→ to indicate domino bumping and

m→ and
dm→

to indicate the two forms of mixed bumping.

i. The horizontal δ overlaps the vertical domz. See Figure 1.

ii. The vertical δ overlaps the horizontal domz. See Figure 2.

iii. The dominoes δ and domz are vertical and equal. See Figure 3.

iv. The dominoes δ and domz are horizontal and equal. See Figure 4.
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Figure 3: Case (iii)
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Figure 4: Case (iv)

Lemma 31 motivates the definitions of the following two operators on colored biwords.
Let w be a colored biword. Then wdup (“duplicate”) is the doubly colored biword obtained
as follows. If k is a letter appearing j times in the upper word of w, then both k and k
will appear j times in the upper word of wdup. If v is the subword of w which appears
below the k’s, then v will appear below the k’s in wdup, while v∗ will appear below the
k’s in wdup, where v∗ is v with the bars and non-bars reversed.

For example, if

w =

(
1 1 1 2 2
2 1 1 2 3

)
,

then

wdup =

(
1 1 1 1 1 1 2 2 2 2
2 1 1 2 1 1 2 3 2 3

)
.

The second operator is wpal (for “palindrome”). It is simply wdup inv neg inv. In the
above example,

wpal =

(−2 −2 −1 −1 −1 1 1 1 2 2
3 2 1 1 2 2 1 1 2 3

)
.

The colored biword wpal can be described directly. For the upper word, write the reverse-
negative of the upper word of w, followed by the upper word of w. For the lower word,
write the reverse of the lower word of w, with bars complemented, followed by the lower
word of w. This description of the lower word also defines pal on colored words.

The following theorem shows that domino insertion of π is equivalent to doubly mixed
insertion of πdup or mixed insertion of πpal. It connects the Garfinkle insertion algorithm
with Haiman’s insertion algorithms. This theorem is essentially due to van Leeuwen [27].
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Theorem 32. If π is a colored permutation, then

Pd(π) = Pm∗(πdup)

Pd(π) = Pm(πpal)

Qd(π) = Qm∗(πdup)

Qd(π)neg = Qm(πpal)

Proof. The first and third identities follow immediately from Lemma 31. The second and
fourth identities follow from Theorem 21.

In order to extend the domino insertion algorithm to colored biwords and ribbon
tableaux, we need a lemma to replace Proposition 4. An ascent in a permutation π is a
pair of adjacent values πi and πi+1 such that πi < πi+1.

Lemma 33. Let π be a colored permutation. Then πneg has an ascent at i if and only if
domi lies to the left of domi+1 in Qd(π).

Proof. Let π = π1π2 . . . πn, π(j) = π1π2 . . . πj and T (j) = Plr(π
(j)dup neg

). Then by Theo-
rem 21 and Theorem 32 domj in Qd(π) is the shape difference between T (j−1) and T (j).
Thus,

T (j+1) = ((π∗
j+1

neg s→ ((π∗
j
neg s→ T j−1)

s← πneg
j ))

s← πneg
j+1) ,

where we again use the notation x∗ to denote the color-reversing operation. However,
since row and column insertion commute (Corollary 3),

T (j+1) = (π∗
j+1

neg s→ (π∗
j
neg s→ ((T j−1 s← πneg

j )
s← πneg

j+1))) .

The insertion of πneg
j into T starts the domino domj , while the subsequent insertion of

πneg
j+1 starts the domino domj+1. The result then follows from Proposition 4.

If w is a colored biword whose lower word is standard, then Pd(w) is still defined and
is a domino tableau. It follows from Lemma 33 that Qd(w), formed by recording the
upper letter in the domino shape created at each step of domino insertion, is a ribbon
tableau.

Corollary 34. If w is a colored biword whose lower word uses a standard alphabet, then
Qd(w) is a ribbon tableau and, in fact,

Qd(w
st) = Qd(w)rst .

5 A Ribbon RSK-Correspondence

In this section we describe a RSK-correspondence for colored biwords and pairs of ribbon
tableaux. We then describe its relationship to the q-Littlewood-Richardson coefficients of
Carré and Leclerc.

the electronic journal of combinatorics 8 (2001), #R21 30



5.1 The Ribbon RSK-Correspondence

While it would be possible to define an RSK-correspondence, similar to that described
in Algorithm 1, which maps colored biwords directly into pairs of ribbon tableaux, it is
more convenient at this point to use the connection to doubly mixed insertion given by
Theorem 32 and our standardization results.

Motivated by Theorem 32, we define Pr and Qr on colored biwords as follows:

Pr(w) = Pm∗(wdup)

and
Qr(w) = Qm∗(wdup) .

Note that Pr(w) and Qr(w) are colored tableaux. The tableaux Pd(w) and Pr(w) agree
on colored permutations (except one is domino and the other colored) as do Qd(w) and
Qr(w).

We will eventually show that Pr(w) and Qr(w) may be regarded as ribbon tableaux.
But first, we describe several of the properties of these tableaux, based on Theorem 21.

Let w be a colored biword. We define a new “inverse” operator winvr to be winv,
except that the colors are placed on the lower letter of each biletter. In fact, if we define
the operator up on colored biwords w so that wup moves the bars from the lower letter
to the upper letter on each biletter, then winvr = wup inv. For example, if

w =

(
1 1 1 2 2 3
2 1 2 1 3 1

)
,

then

wup =

(
1 1 1 2 2 3
2 1 2 1 3 1

)
and

wup inv = winvr =

(
1 1 1 2 2 3
3 2 1 1 1 2

)
.

The definitions of colored biword and doubly colored biword guarantee that winvr will be
a colored biword.

Proposition 35. The operator invr commutes with dup and ev in the following sense.

winvr ev = wev inv

and
winvr dup = wdup inv .

Proposition 36. If a colored biword is duplicated, then evacuated, the result is that the
bars migrate to the upper word. That is, wdup ev = wup.
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Theorem 37. If w is a colored biword, then we have

Pr(w) = Pm(wpal) (9)

Qr(w)neg = Qm(wpal) (10)

Pr(w) = Qr(w
invr) (11)

Qr(w) = Pr(w
invr) (12)

Pr(w)ev = Plr(w
up) (13)

Qr(w)ev = Qm(w) = Qs(w
neg) (14)

The permutation version of Equation (11) and Equation (12) was given in [27].

Proof. Equation (9) and Equation (10) follow directly from Theorem 21. Equation (11)
is a consequence of Theorem 21 and Proposition 35. Equation (12) follows from the in-
volutionary property of invr and from Equation (11). Equation (13) follows from Propo-
sition 23 and Proposition 36. Finally, Equation (14) is proved as follows.

Qr(w)ev = Pr(w
invr)ev by Equation (12)

= Plr(w
invr up) by Equation (13)

= Plr(w
inv)

= Qm(w) by Proposition 18

= Qs(w
neg) by Proposition 14.

It follows from Equation (9) that Pr(w) is independent of its upper word.
Suppose R is a ribbon tableaux. We define an operator Rneg similar to the neg operator

on colored tableaux. Working from the smallest ribbon to largest, and within a ribbon
from left to right, convert (using the conversion operation described in Subsection 3.2)
exactly one of the pair corresponding to one of the dominoes in the standard tiling to
its negative. If R is a domino tableau, then this operation is just the usual Rneg where
R is regarded as a colored tableau, with each domino having exactly one barred letter
and one unbarred letter. This operation is compatible with ribbon standardization in the
following sense:

Rrst neg = Rneg st . (15)

Now suppose T is a colored tableau such that there is a ribbon tableau R satisfying
Rneg = T neg. The invertibility of neg establishes the uniqueness of R. We will therefore
regard R and T as the same tableau and call T a ribbon tableau, even though technically
it is not. Note that R can be recovered from T by simply removing the bars.

For example, let

T =

1 1 1 1 2 2 2 2

1 1 2

2 2 2
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and

R =
1 1 1 1 2 2 2 2
1 1 2
2 2 2

.

Then we have

Rneg = T neg =
−2 −2 −2 −2 −1 1 2 2
−1 −1 1
1 2 2

,

and we regard T and R as the same tableau, that is, both ribbon and colored.

Lemma 38. If w is a colored biword, then both Pr(w) and Qr(w) are ribbon tableaux (in
the sense defined above).

Proof. We first show that if w has a standard lower word, then Qr(w) is ribbon. The
tableau Qd(w) is ribbon (Corollary 34), so we will show Qr(w) = Qd(w). First form
Qd(w)neg st, that is, negate as described above, then standardize. By Equation (15) this
is Qd(w)rst neg. From Corollary 34, this is Qd(w

st)neg. Since Qd and Qr agree on colored
permutations and wst is a colored permutation, we have

Qd(w
st)neg = Qr(w

st)neg.

By Theorem 37, this is Qm(wst pal), which is also Qm(wpal st), from the obvious fact that
standardization commutes with pal on colored biwords with standard lower word. But st
commutes with Qm by Proposition 15, so we have

Qd(w)neg st = Qm(wpal)st.

Since Qd(w)neg and Qm(wpal) both use the same alphabet, the fact that their standard-
izations are equal means they are equal. By Theorem 37,

Qm(wpal) = Qr(w)neg,

and the result follows by the invertibility of neg.
Now we extend to arbitrary colored biwords. We first show Pr(w) is ribbon. Since

Pr(w) is independent of the upper word, Pr(w) = Pr(w
st). But by Theorem 37, this is

Qr(w
st invr). However, wst invr has standard lower word, and so this tableau is ribbon.

It then follows that Qr(w) will be ribbon by Equation (12).

Proposition 39. The ribbon RSK-algorithm commutes with standardization. That is,
for colored biword w,

Qr(w)rst = Qr(w
st)

and
Pr(w)rst = Pr(w

st) .
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Proof. It is easy to check that wst invr st = wst invr for colored biwords w. Therefore we
have

Pr(w)rst = Pr(w
st)rst

= Qr(w
st invr)rst by Theorem 37

= Qr(w
st invr st) by Corollary 34

= Qr(w
st invr) from above

= Pr(w
st) by Theorem 37.

The calculation for Qr is similar.

Theorem 40. If w is a colored biword, then the two tableaux Pr(w) and Qr(w) are ribbon
tableaux. Furthermore, this mapping is a bijection from colored biwords to pairs of ribbon
tableaux. The content of Pr(w) is the content of the lower word in w, while the content
of Qr(w) is the content of the upper word in w. Finally,

tc(w) = sp(Pr(w)) + sp(Qr(w)) .

Proof. That the contents are as described is immediate from the definition. The tableaux
are ribbon from Lemma 38. Finally, the color-to-spin property follows from Proposition 39
and Theorem 30.

We illustrate Theorem 40 with the following example. Suppose

w =

(
1 1 1 2 2 2 3 3 3
1 2 3 3 1 2 2 2 1

)
.

Then

Pr(w) =

1 1 1 1 2 2
1 1 2 2 3
2 2 3 3 3
2 2

and

Qr(w) =

1 1 1 1 1 1
2 2 2 2 3
2 2 3 3 3
3 3

Note that tc(w) = 4 while sp(Pr(w)) + sp(Qr(w) = 5/2 + 3/2.
Recall that Pr(w) is independent of the upper word. We may therefore speak of

“ribbon insertion” of colored words, and define ribbon equivalence. That is, we say two
colored words w and v are ribbon equivalent if Pr(w) = Pr(v) and we write w

r∼ v.

Theorem 41. If w and v are two colored words, then w
r∼ v if and only if wpal neg s∼

vpal neg.
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Proof. This result is immediate from Theorem 37 and Corollary 16.

Theorem 41 has two corollaries which will play a significant role in Section 6.

Corollary 42. If w and v are two colored words and if wneg s∼ vneg then w
r∼ v.

Proof. Let w′ be the colored word obtained from w by reversing and swapping bars with
non-bars. Thus wpal = w′w. If wneg s∼ vneg, then by the definition of Knuth equivalence,
w′neg s∼ v′neg. Therefore, wpal neg s∼ vpal neg, so by Theorem 41, w

r∼ v.

Corollary 43. Let w be a colored word with w = k w2 . . . wn, where the wi are colored
letters. Let v = k w2 w3 . . . wn. Then w

r∼ v if any of the follow three conditions holds.

i. w2 = j and k > j;

ii. w2 = j and k > j;

iii. w2 = k.

Proof. In the first case, we have

wpal neg = · · · − j k − k j · · ·
and

vpal neg = · · · − j − k k j · · · .
In the second case,

wpal neg = · · · j k − k − j · · ·
and

vpal neg = · · · j − k k − j · · · .
And in the third case

wpal neg = · · · k k − k − k · · ·
and

vpal neg = · · · k − k k − k · · · .
In all three cases, wpal neg s∼ vpal neg, so by Theorem 41, w

r∼ v.

5.2 q-Littlewood-Richardson Coefficients

We will now consider the generating function for cospin for 2-ribbon tableaux. Suppose
R is a 2-ribbon tableau, with R = U ∗V . Let x = {x1, x2, . . . } be a set of indeterminates.
Define

xR = xUxV .

For a shape ρ, define

Gρ(x; q) =
∑

R∈Ribρ

xRqcosp(R) .

The following theorem is due to Carré and Leclerc [3].
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Theorem 44. For partition ρ = µ ∗ ν,

Gρ(x; q) =
∑

λ

cλ
µ,ν(q)sλ(x) ,

where cλ
µ,ν(q) is a polynomial in q with non-negative integer coefficients and cλ

µ,ν(1) = cλ
µ,ν.

We will call the coefficients cλ
µ,ν(q) q-Littlewood-Richardson coefficients. Our q-Littlewood-

Richardson coefficients (and our generating function Gρ(x; q)) differ from those of Carré
and Leclerc in that we use cospin instead of spin. Our preference for cospin stems from
the fact that cospin is integral, while spin is not necessarily so.

The generating function for spin on more general ribbon tableaux generalizes the Hall-
Littlewood symmetric functions [14] [11].

Fix once and for all a ribbon tableaux R of shape ρ = µ ∗ ν. We now consider all
T ∈ Ribρ and the colored biwords wT formed through Theorem 40 so that Pr(wT ) = R
and Qr(wT ) = T . Now form the two semistandard tableaux obtained by applying the
usual RSK-correspondence to wneg

T , PT = Ps(w
neg
T ) and QT = Qs(w

neg
T ). As T ranges over

all of Ribρ, PT will range over a certain set of semistandard tableaux. These tableaux will
have positive and negative entries, and the number of negative entries, which we will call
tc(PT ), will be the same as tc(wT ).

Furthermore, since Knuth equivalence on the negative of colored words implies ribbon
equivalence on the colored words, for each such PT , every possible semistandard tableau
of the same shape will appear as a possible QT .

Theorem 45. Let R be a fixed ribbon tableau of shape ρ = µ ∗ ν and let T range over
Ribρ. Let wT , PT and QT be as described above. For each λ and for each QT ∈ SSλ there
are exactly cλ

µ,ν corresponding PT . The content of QT is the content of T . The sum of the
spins of R and T equals the number of minus signs in PT . In fact,∑

PT

qrρ−tc(PT ) = qcosp(R)cλ
µ,ν(q) ,

where the sum is over all such PT of shape λ, and where rρ = 2sp∗, that is, the maximum
number of vertical dominoes in a domino tableau of shape ρ.

Proof. The spin-to-color property of the ribbon RSK algorithm and the fact that every
possible QT must occur gives us

qsp(R)
∑

T∈Ribρ

qsp(T )xT =
∑

λ

∑
PT

∑
QT∈SSλ

qtc(PT )xQ

=
∑

λ

sλ(x)
∑
PT

qtc(PT )

Now converting to cospin gives

qcosp(R)
∑

T∈Ribρ

qcosp(T )xT =
∑

λ

sλ(x)
∑
PT

qrρ−tc(PT ) .

the electronic journal of combinatorics 8 (2001), #R21 36



But by Theorem 44,

qcosp(R)
∑

T∈Ribρ

qcosp(T )xT = qcosp(R)
∑

λ

cλ
µ,ν(q)sλ(x)

and the result follows by equating coefficients of sλ.

To illustrate, suppose ρ = (4, 4, 4, 2, 2, 2), µ = (2, 1, 1), ν = (2, 2, 1), so that ρ = µ ∗ ν.
Then if λ = (4, 3, 1, 1) we have that cλ

µ,ν = 1. Now pick any R of shape ρ, say

R =

1 1 2 2
2 2 3 4
2 2 3 4
4 4
5 5
5 5

.

Then there is a unique T , which in this case is

T =

1 1 1 4
1 1 1 4
2 2 5 5
3 3
3 3
4 4

,

such that PT has shape λ. In fact, we have

wT =

(
1 1 1 2 3 3 4 4 5
4 4 3 1 5 2 5 2 2

)
,

PT =

−5 −5 −2 −2
−4 −4 2
1
3

and QT =

1 1 1 4
2 3 5
3
4

.

Note that T and R both have spin 3, and PT has 6 minus signs.
The fact that the cλ

µ,ν(q) are polynomials in q with non-negative integer coefficients
is an immediate consequence of this proof. Also immediate is the fact that Gρ(x; q) is a
symmetric function. This can be realized combinatorially by converting T to (PT , QT ),
then applying a multiplicity swapping bijection to QT , then reversing the bijection. Mul-
tiplicity swapping on semistandard tableaux is usually done in one of two ways. One,
so-called Knuth switching, is due to Knuth [10], but can also be viewed as jeu de taquin.
The other, the so-called automorphism of conjugation [12], results in an Sn action on the
tableaux.

By setting q = 1 in Theorem 45 we obtain the following corollary which describes a
new Littlewood-Richardson rule.
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Corollary 46. Let R be a ribbon tableau of shape ρ = µ ∗ ν. Then

#{PT : sh(PT ) = λ} = cλ
µ,ν .

We can short-circuit the calculation of QT as follows.

Corollary 47. The tableau QT is independent of R and in fact

QT = T ev .

Proof. This is immediate from Theorem 45 and Theorem 37.

Our construction is related to the construction of Carré and Leclerc (Theorem 29) by
the following theorem.

Theorem 48. Let T be a 2-ribbon tableau of shape ρ. Then under the bijection in The-
orem 29, T maps to (Y, Q) where Q = QT has shape λ, QY is Yamanouchi of shape λ,
and PY = PT .

The fact that the Q in the Carré-Leclerc bijection is exactly T ev is due to van
Leeuwen [28].

We now characterize colored words whose ribbon insertion tableau is Yamanouchi.

Theorem 49. Let w be a colored word. Then Pr(w) is Yamanouchi if and only if wpal ev

is a reverse lattice word.

Proof. We replace w with a corresponding colored biword: w is the bottom row and
the top row is standard. Call this colored biword also w. A result of van Leeuwen [28]
states that the ribbon tableau T is Yamanouchi if and only if T ev is Yamanouchi. But
Pr(w)ev = Ps(w

pal ev) by Proposition 17 and Theorem 37, and by Proposition 6 Ps(w
pal ev)

is Yamanouchi if and only if wpal ev is a reverse lattice word.

We illustrate with the following example. Let

w = 3 1 1 2 2 2 1 3 3 1 .

Then
wpal ev = 1 3 3 2 2 3 1 1 2 1

and

Pr(w) =

1 1 1 1 1 1
1 1 2 2
2 2 2 2
3 3 3 3
3 3

.

Note that Pr(w) is Yamanouchi while wpal ev is a reverse lattice word.
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6 An Application to Rectangles

In this section we analyze the q-Littlewood-Richardson coefficients of Subsection 5.2 for
ribbon tableaux whose 2-quotient is a pair of rectangular shapes.

6.1 d-Rectangles and Semi-Self-Complementary Shapes

Let ρ be the partition whose 2-quotient is a pair of rectangles α and β. That is, ρ = α ∗β
with α = lk and β = nm. We say ρ is (α, β) d-rectangular, or simply d-rectangular. For
instance, the shape (7, 6, 6, 5) is (42, 22) d-rectangular.

Suppose β = nm is a rectangle and suppose λ ⊆ β, where

λ = (λ1, λ2, . . . , λm).

We call the partition λc the β-complement of λ if

λc = (n− λm, n− λm−1, . . . , n− λ1) .

We say λ is β self-complementary if λc = λ.
For example, if β = (5, 5, 5, 5) and λ = (4, 2, 1, 0), then λc = (5, 4, 3, 1). Also, (4, 4, 1, 1)

is β self-complementary.
Semi-self-complementary partitions are a generalization of self-complementary parti-

tions. They depend upon two rectangles.
Let α and β be two rectangles. Let γ be the cellwise union of the Ferrers diagrams of

α and β. We call the shape λ (α, β) semi-self-complementary if

i. The partition λ contains the cells in γ.

ii. The skew shape λ/γ consists of at most two shapes, one (µ) to the right of γ and
one (ν) below γ.

iii. The shapes µ and ν are α ∩ β-complementary.

Here are some examples of semi-self-complementary shapes. If α = 64 and β = 45,
then let λ = (10, 8, 7, 6, 4, 4, 3, 2, 0) with µ = (4, 2, 1, 0) and ν = (4, 3, 2, 0). Figure 5 shows
the shape λ with γ indicated with •, µ with +, and ν with ∗.

If α = 24 and β = 43, then let λ = (6, 5, 5, 2, 1, 1, 0) with µ = (2, 1, 1) and ν = (1, 1, 0).
See Figure 6.

If α = 44 and β = 32, then let λ = (6, 4, 4, 4, 3, 1) with µ = (2, 0) and ν = (3, 1). See
Figure 7.

The following theorem, which appears in the work of Kostant and of Littelmann, easily
follows from the Littlewood-Richardson rule.

Theorem 50. Let α and β be a pair of rectangles. Then cλ
α,β = 1 if λ is (α, β) semi-self-

complementary and is 0 otherwise.
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• • • • • • + + + +
• • • • • • + +
• • • • • • +
• • • • • •
• • • •
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

Figure 5: A (64, 45) semi-self-complementary shape

• • • • + +
• • • • +
• • • • +
• •
∗
∗

Figure 6: A (24, 43) semi-self-complementary shape

• • • • + +
• • • •
• • • •
• • • •
∗ ∗ ∗
∗

Figure 7: A (42, 32) semi-self-complementary shape
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Next we define the statistic twist on (α, β) semi-self-complementary shapes. Suppose
λ is a semi-self-complementary shape with associated µ and ν. Then

tw(λ) = |ν| .

In the previous examples, tw(10, 8, 7, 6, 4, 4, 3, 2, 0) = 9, tw(6, 5, 5, 2, 1, 1, 0) = 2 and
tw(6, 4, 4, 4, 3, 1) = 4.

Note that there is exactly one (α, β) semi-self-complementary shape with twist 0. This
shape is

α + β = (α1 + β1, α2 + β2, . . . ) .

6.2 q-Littlewood-Richardson Coefficients for Pairs of Rectangles

Suppose D is a fixed domino tableau of (α, β) d-rectangular shape. The domino tableau
D will play the role of R in the construction of Subsection 5.2. According to Theorem 45
and Theorem 50 there is a bijection between domino tableaux T of (α, β) d-rectangular
shape and standard tableaux QT of the different (α, β) semi-self-complementary shapes.
Furthermore, the spin of T corresponds in a natural way to the number of minus signs in
PT .

Also according to Theorem 50 there will be a one-to-one correspondence between the
(α, β) semi-self-complementary shapes and standard tableaux PT . Each PT will have a
different semi-self-complementary shape. In this subsection we will show that the number
of minus signs in PT (and hence the spin of T ) will correspond in a predictable way to
the twist of the semi-self-complementary shape.

We therefore seek to identify a particular D and the corresponding set of PT . Since
there is one PT for each semi-self-complementary shape, we will write P [λ] for this PT ,
where λ is semi-self-complementary.

Our proof will proceed as follows. We will produce a domino tableau D which has
d-rectangular shape. We will then construct PD. That is, we will find the semistandard
tableau PD such that PD = Ps(w

neg
D ) where Pr(wD) = D and Qr(wD) = D. We will show

that the shape of PD is α + β, and so we will define P [α + β] = PD.
We will then prove that P [α+β] is endowed with a particular set of properties. These

properties will enable us to describe the P [λ] as a certain construction applied to P [α+β].
We will then show that all the P [λ] so constructed will be all possible PT .

Since D is domino, Pr(wD) = Pd(wD) and Qr(wD) = Qd(wD). We therefore will
view Pr(wD) as domino insertion, as described in Subsection 4.3, and Qr(wD) as the
corresponding domino recording tableau.

To construct D, we first construct two semistandard tableaux, U and V , of shapes α
and β respectively. We then construct the ribbon tableau R = U ∗V . The tableau D will
be the standardization of R.

Suppose α = lk and β = nm and suppose k ≥ m (the case where m > k is treated in
a similar manner). Let U and V be the unique pair of tableaux of shapes α and β such
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that the total content of U and V is

(

k−m︷ ︸︸ ︷
l, l, . . . , l,

m︷ ︸︸ ︷
l + n, l + n, . . . , l + n) .

We now use the definition of U ∗V to make some observations about R. We call the shape
(j, j − 1, . . . , 1) a j-triangle. We will assume n ≥ l. The case when n < l is somewhat
simpler.

Lemma 51. The entries 1, 2, . . . , k − m in R form a subtableau A whose shape is a
(k −m)× (2l − k + m) rectangle with a (k −m− 1)-triangle to its right and a (k −m)-
triangle below. The entries i, i = k − m + 1, . . . , k, form ribbons R1, R2, . . . , Rm. The
ribbon R1 has height 2 in each column from the first column to column 2l, and height 1
thereafter. Similarly, the ribbon R2 has height 2 from the first column to column 2l + 1,
and height 1 thereafter, etc.

We illustrate Lemma 51 with an example. Suppose k = 5, l = 3, m = 3 and n = 6.
First,

U =

1 1 1
2 2 2
3 3 3
4 4 4
5 5 5

and

V =
3 3 3 3 3 3
4 4 4 4 4 4
5 5 5 5 5 5

.

Then R looks like this.

R =

1 1 1 1 1 3 3 3 3 3 3 3
A 1 2 2 2 3 3 4 4 4 4 4

2 2 3 3 3 4 4 5 5 5
2 3 3 3 4 4 5 5

R1 3 3 4 4 4 5 5
3 4 4 4 5 5

R2 4 4 5 5 5
4 5 5 5

R3 5 5
5

.

Note that when we standardize, each ribbon Ri contains a contiguous strip of successively
larger values, and the leftmost 2l + i− 1 columns of each ribbon Ri consists of all vertical
dominoes.
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In our example,

D =

1 2 2 3 3 12 13 13 14 14 15 15
A 1 5 6 6 11 12 22 23 23 24 24

4 5 9 10 11 21 22 32 33 33
4 8 9 10 20 21 31 32

R1 7 8 18 19 20 30 31
7 17 18 19 29 30

R2 16 17 27 28 29
16 26 27 28

R3 25 26
25

.

Now we consider what happens when we form w = wD such that D = Pr(w) and
D = Qr(w). Consider the diagonal whose intersection with the first row of D is the
cell just after the first row of A. Strictly above this diagonal all dominoes are horizontal
while weakly below it, all dominoes not in A are vertical. The horizontal dominoes all
get bumped out to the north under reverse domino insertion. They form a triangle of
dominoes which we will call C+.

It is now easy to see from the definition of domino insertion, from our construction
of D and from Lemma 51 that all of the entries in the ribbons Ri will be removed from
D before any entry in A. The entries in C+ will be bumped out horizontally, while the
other entries in the ribbons Ri will be bumped out vertically.

Let wR denote the colored permutation resulting from the removal of these ribbons,
and let wA denote the colored permutation resulting from the removal of A. Thus, we
write w = wAwR. In our example,

wA =
(

1 2 6 5 4 3
)

and

wR =
(

12 11 10 9 8 7 13 23 33

22 21 20 19 18 17 16 14 24

32 31 30 29 28 27 26 25 15
)

.

In other words, R = (A
d← wR) and A = Pd(wA). Next, let

B = Ps(w
neg
A )

and
C = Ps(w

neg
R ) .

In our example,

B =
−5 −4 3
−1 2 6
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and

C =
−32 −31 −30 −29 −28 −27 −26 −25 15
−22 −21 −20 −19 −18 −17 −16 14 24
−12 −11 −10 −9 −8 −7 13 23 33

.

Reading the diagonals of C+ gives the positive elements in the tableau C by rows.
The vertical dominoes which appear in a given Ri then appear negated and reversed in
the (m− j)-th row of C.

The tableaux B and C thus have the following properties.

i. The tableau B is rectangular of dimension (k−m)×l. This is because the 2-quotient
of A is a single rectangle.

ii. The tableau C is rectangular of dimension m×(l+n). For, from the above discussion,
wneg

R is the row-reading word of C.

iii. The subtableau of C consisting of the first 2l columns is entirely negative. This
follows from the fact that each ribbon Ri has at least 2l vertical dominoes.

iv. The entries of B are all greater than these first 2l columns of C.

Therefore, the tableau P [α + β] = Ps(w
neg) will consist of the rectangle C with the

rectangle B directly below. In our example,

P [α + β] =

−32 −31 −30 −29 −28 −27 −26 −25 15
−22 −21 −20 −19 −18 −17 −16 14 24
−12 −11 −10 −9 −8 −7 13 23 33
−5 −4 3
−1 2 6

.

Next, let r = min{k, m} and let s = min{l, n} and let τ = α ∩ β. Thus, τ = sr. Let
S be the part of P [α + β] in τ . Let E be the portion of P [α + β] to the right of S, that
is, the first r rows of P [α + β] beyond column s. Let L be the portion of P [α + β] below
row r. Here is a picture of these definitions.

P [α + β] =

s

r S E

L

.

Here is the list of properties subscribed to by P [α + β].
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Lemma 52.

i. All the entries in S are negative.

ii. The tableaux E and L are rectangular.

iii. If the tableau L is placed below the tableau E, the resulting tableau is standard.

iv. If the tableau S is rotated 180◦, negated, and placed below L, the resulting tableau is
standard.

Proof. This lemma follows from the above discussion about the construction of P [α +
β].

Now we will describe how all of the P [λ] are constructed. Let µ and ν be as described
in the definition of the semi-self-complementary shape λ. A general P [λ] will have the
following form:

P [λ] =

s

µ
r

L

ν

.

Let P = P [λ] and pick any “corner” cell in the shape µ in P , say (ic, jc).

Algorithm 2.

find x and A such that

(x
s→ A) = P

sh(P )/sh(A) = (ic, jc)
ix := row of x in P

cyc(P ) := (−x
s→ A)

i−x := row of −x in cyc(P )
(i−c, j−c) := sh(cyc(P ))/sh(A)
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We illustrate Algorithm 2 here. Let

P [λ] =

−17 −16 −15 −14 −13
−11 −10 −9 −8 −7
−4 −3 −2 −1
5 6
12
18

.

Let ic = 3 and jc = 4. Then x = −4 and

A =

−17 −16 −15 −14 −13
−11 −10 −9 −8 −7
−3 −2 −1
5 6
12
18

.

Inserting 4 into A gives

cyc(P ) =

−17 −16 −15 −14 −13
−11 −10 −9 −8 −7
−3 −2 −1
4 5 6
12
18

This algorithm has a natural “inverse”: Find a corner cell in the shape ν and use it
to begin reverse column insertion. Remove x, negate it, and reinsert it.

We now make the following observations about Algorithm 2, based on Lemma 52. As
noted earlier, the operator neg on colored words is invertible. Let bar denote the inverse
of this operator.

Lemma 53.

i. The entry x is negative (positive in the inverse algorithm).

ii. The rows ix and ic are equal.

iii. The rows i−x and i−c are equal.

iv. We have ix + i−x = m + k + 1.

v. The tableau cyc(P ) = P [cyc(λ)] where cyc(λ) is obtained from λ by removing a
single corner cell in µ and placing it in the complementary position in ν.

vi. Let w be a word such that P = Ps(w) and let v be a word such that cyc(P ) = Ps(v).
Then wbar r∼ vbar.
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Proof. Items (i)-(v) follow from Lemma 52. For item (vi), recall that P = (x
s→ A)

and cyc(P ) = (−x
s→ A). Now do a reverse column insertion from row i−x − 1 of A.

This is possible since A can be constructed by a reverse column insertion from row i−x.
Let y be the letter thus removed and B the resulting tableau. By Lemma 52, we have
y > 0 and y < −x. Also, since A = (y

s→ B), we have P = (x
s→ (y

s→ B)) and
cyc(P ) = (−x

s→ (y
s→ B)).

Therefore, by Corollary 5, w(P )
s∼ x y w(B) while w(cyc(P ))

s∼ −x y w(B). By Corol-
lary 42 and Corollary 43, w(P )bar r∼ w(cyc(P ))bar. The result then follows from Corol-
lary 42 and Corollary 5.

Our construction has produced an injection from (α, β) semi-self-complementary stan-
dard tableaux to domino tableaux of (α, β) d-rectangular shape. That this is, in fact, a
bijection follows now from Theorem 50, which shows that these two sets are bijectively
equivalent.

Furthermore, P [cyc(λ)] has one less minus sign than P [λ]. By Theorem 45, sp(T )
must decrease by one. On the other hand, the above discussion shows that in going from
λ to cyc(λ), twist increases by one. But the minimum twist and the minimum cospin are
both 0. Thus, cosp(T ) = tw(λ).

Note that since one domino recording tableau corresponding to P [α+β] is D, we must
also have cosp(D) = 0.

Theorem 54. The bijection from ribbon tableau T of (α, β) d-rectangular shape to (α, β)
semi-self-complementary semistandard tableau QT of shape λ, defined by QT = T ev, sat-
isfies

cosp(T ) = tw(λ) .

We illustrate Theorem 54 as follows. Let α = 42 and β = 33 and let

T =

1 1 1 1 2 3 3
1 1 2 2 2 4 5
2 2 2 2 4 4 5
3 3 3 4 4 6 6
3 4 4 4 7 7

.

We have cosp(T ) = 2. Then

QT = T ev =

1 1 1 2 2 3 5
2 2 4 4 4
3 3 6
4 7

so that λ = (7, 5, 3, 2, 0) and tw(λ) = 2.
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7 Remarks

The domino insertion algorithm described in Subsection 4.3 shares many features with
the more general ribbon insertion algorithm of [22]. Both insertions can be placed into a
Fomin-like array-of-tableaux context.

While the new Littlewood-Richardson bijection given in Subsection 5.2 is quite easily
described, and the spin of the tableau is the same for the entire recording equivalence
class, it does happen that the same shape occurs more than once from ribbon tableaux
with different spins. The rectangular case happened to have multiplicity-free Littlewood-
Richardson coefficients, and the spin statistic translated to a simple statistic on the shape.
This is not always the case. For instance, if µ = ν = (2, 1) and λ = (3, 2, 1), then
cλ
µ,ν(q) = q + q2. Thus each standard tableau of shape (3, 2, 1) occurs twice as a QT , and

the coimage of such a tableau consists of two ribbon tableaux with differing spins. To
identify this spin requires knowledge of the tableaux PT .

The Littlewood-Richardson bijection in Subsection 5.2 is somewhat unusual in that
it holds the insertion tableau fixed and lets the recording tableau range over all ribbon
tableaux. In proofs of the Littlewood-Richardson rule, the opposite is usually done. A
dual version of Theorem 45 should be possible, wherein the recording tableau is held
constant and the insertion tableau varies. This dual version will identify the insertion
tableau with a pair of semistandard tableaux, but this identification will not be directly
through the usual RSK correspondence. We leave for the reader to work out the details
of this dual version.

It would be interesting to find an algorithm for generating the list of PT . Such an
algorithm would be a new Littlewood-Richardson rule which would keep track of the
power of q in cλ

µ,ν(q). One method, by no means complete, is the “cyclage” method
described in Subsection 6.2.

It should be possible to generalize many of the results in this paper to shapes with
non-empty 2-core, as in [27].

Corollaries 42 and 43 were needed in the proof of Theorem 54. These corollaries are
not sufficient to define ribbon equivalence completely. For instance, 1 4 2 3

r∼ 1 4 3 2, as
can be easily seen by applying Theorem 41 or by simply applying the domino insertion
of Subsection 4.3 directly. However, this equivalence cannot be obtained by a sequence of
switches as described in Corollaries 42 and 43.

8 Acknowledgments

The authors wish to thank the referee for many useful comments, suggestions and rec-
ommendations. The second author benefitted greatly from several helpful conservations
with Vic Reiner.

the electronic journal of combinatorics 8 (2001), #R21 48



References

[1] D. Barbasch and D. Vogan, Primitive ideals and orbital integrals on complex classical
groups, Math. Ann. 259 (1982), pp. 153–199

[2] A. Berenstein and A. Kirillov, Schützenberger involution and action of the symmetric
group Proceedings of 10th International Conference on Formal Power Series and
Algebraic Combinatorics, Fields Institute, Toronto, 1998
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