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MATHEMATICS

A COLOUR PROBLEM FOR INFINITE GRAPHS AND A PROBLEM
IN THE THEORY OF RELATIONS

BY

N. G. DE BRUIJN anxp P. ERDOS

(Communicated by Prof. H. D. KLOOSTERMAN at the meeting of November 24, 1951)

Theorems 1, 3 and 4 of this paper were announced in a previous paper
of one of us [1]. As related problems were discussed there, and references
were given, we present our theorems without any introduction.

The Axiom of Choice is adopted throughout the paper.

§ 1. A graph G is called k-colourable if to each vertex one of a given
set of k colours can be attached in such a way that on each edge the two
end-points get different colours.

Theorem 1. Let k be a positive integer, and let the graph G have the
property that any finite subgraph is k-colourable. Then G is k-colourable itself.

Our original proof was simplified by SzekERrEs. Later, a simple proof,
based on Tychonoff’s theorem that the cartesian product of a family
of compact sets is compact, was indicated by Rasson and A. SToNE. We~
suppress these proofs here, since theorem 1 can be considered as a special
cage of a theorem of R. Rapo which appeared meanwhile [3], and a
topological proof for Rado’s theorem was given by GOTTSCHALK [2].

Theorem 2 (Rapo). Let M and M, be arbilrary sets. Assume that
to any v € M, there corresponds a finite subset A, of M. Assume that to any
finite subset N C M, a choice function xy(v) is given, which attaches an
element of A, to each v € N:

xy(v) € 4,.

Then there exists a choice function x(v) defined for all v e M, (x(v) € 4, if
v € M,) with the following property. If K is any finite subset of M, then
there exists a finite subset N(K C N C M,), such that, as far as K is con-
cerned, the function x(v) coincides with xy(v):

z(v) = 2y (v) (v € K)

We now deduce theorem 1 from theorem 2. Let M be the set of k
colours, and let M, be the set of all vertices of G. We always choose
A, = M. To any finite N(N C M,) there corresponds a finite subgraph
of @, consisting of the vertices belonging to N, and all connections between
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these vertices as far as these belong to G. This subgraph is assumed to
be k-colourable, and so we have a function zy(»), defined for » € N, taking
its values in M. Now the function z(») defines a colouration of the whole
graph G. In order to show that opposite ends of any edge get different
colours, we consider an arbitrary edge e, and we denote the set of its two
end-points v, », by K. Let N be a finite set satisfying KCN C M,,
z(») = xy() (v € K). To N there corresponds a finite graph Gy which is
k-colourable by the function xy(»); Gy contains e. Therefore zy(v,) %
= zy(v,), and so x(v;) 7 #(v,). This proves theorem 1.

As to Rado’s theorem one could raise the following question. In the
statement of theorem 2 the words “finite subset” occur four times. Is
it allowed to replace these simultaneously by “subset of power < m”,
where m is an infinite cardinal? Naturally we may take m = &,, but we
may not take m = §¥;. A counterexample is readily obtained from the
ingenious counterexample which SPECKER [4] gave to a problem of

SIKORSKI.

§ 2. We shall apply theorem 1 to a problem in the theory of relations.
Let S be a set, and assume that to every element b €S a subset f(b)CS —b
is given. |f(b)| denotes the number of elements of f(b). Two elements b
and ¢ (b €8, ¢ €8) are called independent if b €5 — f(c) and ¢ € 8 — f(b)
both hold. A subset S, of 8 is called an independent set if any two elements
of 8, are independent. 8, is also called independent if |S;] = 0 or 1.

Theorem 3. Leik be a non-negative integer, and assume that |f(b)| < k
for each b € 8. Then 8 is the union of 2k + 1 independent sets.

~ Proof. Tirst assume S to be-finite. We proceed by induction with
respect te |S|. The case [S]| = 1 is trivial. Assume the theorem to be true
for |S| = m — 1; next consider [S|= m. :

Construct a graph G whose vertices are the elements of S. The vertices
b and ¢ are connected in G if b € f(c), and also if ¢ € f(b).

The number of edges is at most km, and so there exists a vertex d
which is connected with less than 2k 4+ 1 vertices. By the induction
hypothesis, § — d is the union of 2k + 1 independent sets. It follows that d
is independent of all elements of at least one of these independent sets;
hence d can be added to that set without disturbing independence. This
proves the theorem for finite [S|.

The division of § into 2k -+ 1 independent sets can be interpreted as
(2k + 1)-colourability of the graph @, and vice versa. Now theorem 1

immediately shows that theorem 3 holds true if S is infinite.

Theorem 4. If f(b) is finite for each b €S, then S is the union of a
countable number of independent sets.

Proof. Define S, as the set of all beS for which |f(b)] = k. Then
§=8,+8,+8;+ ..., and to each S, we can apply theorem 3.
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