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ABSTRACT 

In this paper, a new comb filter design method using 
fractional sample delay is presented. First , the specifica- 
tion of the comb filter design is transformed into that  of 
fractional delay filter design. Then, conventional FIR and 
allpass filter design techniques are directly applied to design 
fractional delay filter with transformed specification. Nex- 
t ,  we develop a constrained fractional delay filter design 
approach t o  improve the performance of the direct design 
method. Finally, several design examples are demonstrated 
to  illustrate the effectiveness of this new design approach. 

1. INTRODUCTION 

In many applications of signal processing it is desired to  
remove harmonic interferences while leaving the broadband 
signal unchanged. Examples are in the areas of biomedi- 
cal engineering, communication and control[l]-[5]. A typ- 
ical one i s  to  cancel power line interference in the record- 
ing of electrocardiogram (ECG). Usually, this task can be 
achieved by the comb filter whose desired frequency re- 
sponse is periodic with small stop-band notches at  0 He 
to  remove base-line wander as well as a t  50 He and at  its 
higher harmonics to  remove power line disturbance [l]. So 
far, several methods have been developed to  design IIR and 
FIR comb filters. When the fundamental frequency of har- 
monic interference is known in advance [1][5], fixed comb 
filter can be used. However, when fundamental frequency 
is unknown or time varying, adaptive comb filters are ap- 
plicable [2]-[4]. In this paper, we will focus on fixed comb 
filter design problem. 

Recently, fractional sample delay has become an impor- 
tant  device in numerous field of signal processing, includ- 
ing communication, array processing, speech processing and 
music technology. An excellent survey of the fractional de- 
la,y filter design is presented in tutorial paper [6]. Based 
on this useful and well-documented device, we will estab- 
lish the relation between the comb filter design problem and 
the fractional delay filter design problem. As a result, the 
comprehensive design tools of the fractional delay filter in 
the literature can be applied to design comb filter directly. 

2. COMB FILTER DESIGN USING 
FRACTIONAL SAMPLE IDELAY 

Generally, the input signal of comb filter has the fol- 
lowing form: 

M 

z ( n )  = s ( n )  + Ak sin(kwon + $ k )  

k=O 

where s ( n )  is the desired signal and I(n) is harmonic inter- 
ference with fundamental frequency W O .  In order to  extract 
s ( n )  from the corrupted signal z ( n )  undistortedly, the spec- 
ification of ideal comb filter is given by 

The purpose of this paper is to  design a filter such that  its 
frequency response approximates &(U) as well as possible. 
To achieve this purpose, we first show that  the harmonic 
interference I ( n )  satisfies the following property. Define 
the fractional sample delay D = $ which is the period of 
the harmonic interference I ( n ) ,  then we have 

I(n) = I ( n  - D )  (3)  

This expression tells us that  I ( n )  is equal to  its delayed 
version I ( n  - D ) .  Thus, if the signal z ( n )  passes through 
the filter H ( z )  = 1 - z - ~ ,  then its output y(n)  is given by 

y(n)  = z ( n ) - z ( n - D )  

= s(n) - s ( n  - D )  (4) 

Obviously, the harmonic interference has been eliminated 
in the output y(n).  However, y(n) is not equal to  s ( n ) ,  
i.e., some distortion is included in the signal y(n). In order 
to  explain this phenomenon, Fig.1 shows the frequency re- 
sponse of the filter H ( z )  = 1 - z - ~  and desired frequency 
response H d ( W )  defined in  (2) with WO = 0 . 2 2 ~  and M = 4. 
Note that  we usually choose M = 151 which denotes the 
largest ihteger smaller than or equal t o  $. It is clear that  
both responses have the same positions of stop-band notch- 
es, but they have a large difference in the passband. In 
order to  remove this distortion, a compensation procedure 
is performed as follows: I t  is easy to  show that  the zeros of 
the filter H ( z )  = 1 - z - ~  are given by 

(5) 
’ 27r k 

Zk = e 3 r  k = any integer 

For all zeros Zk, we introduce the poles 

to  eliminate the distortion in 
response of H ( z )  = 1 - z - ~ .  
satisfy the inequality 0 < p 
poles to  be within the unit 

k = any integer (6) 

the passband of the frequency 
The  radius of the pole p must 
< 1 in order to  constrain the 
circle. After performing this 



compensation, the new transfer function of the comb filter 
is given by 

The Fig.2 shows the frequency response of H,(z) with pa- 
rameters w~ = 0 . 2 2 ~  and p = 0.99. It is clear that  the 
frequency response of filter H,(z )  approximates f l d ( W )  very 
well. In fact, H,( z )  becomes an ideal comb filter when pole 
radius p approaches unity. Moreover, the direct form im- 
plementation of IIR comb filter H,(z)  in eq(7) only requires 
a fractional sample delay z P D .  When D is an integer, the 
delay z P D  is implementable without requiring any design. 
However, when D is not an integer, we need to  design frac- 
tional sample delay z P D .  In [6], a comprehensive review of 
FIR and allpass filter design techniques for approximation 
of fractional delay has been presented. Thus, we can di- 
rectly use these well-documented techniques to design z - ~ .  
Now, two examples are provided to  illustrate the perfor- 
mance of the method. One concerns FIR design case, the 
other is IIR allpass filter case. 

Example 1: FIR fractional delay case 
In this example, we use Lagrange interpolation method 

to  design an FIR filter for approximating a given fractional 
delay z P D  [6]. In this method, the delay z - ~  is approxi- 
mated by 

N 

n = O  

where filter coefficients h(n)  have the explicit form as: 

n = 0 ,  l,.'. , N (9 )  n - k  
k = O , k + n  

When the parameters are chosen as w = 0.227r,p = 0.99 
and N = 16,  the frequency response of H,(z) is shown 
in Fig.3. It is clear that  the comb filter has an excellent 
approximation a t  low frequency because the Lagrange in- 
terpolation design is a maximally flat design at  frequency 
w = 0. 

Example 2: Allpass fractional delay case 
In this example, we use the maximally flat group delay 

allpass filter to  approximate a given fractional delay z - ~  
[6]. In this case, the z - ~  is approximated by 

If the positive real number D is splitted an integer N plus 
a fractional number d ,  i.e, D = N + d ,  the  filter coefficients 
U k  is given by 

n=O 

where Cf = is a binomial coefficient. The Fig.4 
shows the frequency response of the comb filter in this de- 
sign if the parameters are chosen as WO = 0 . 2 2 a , p  = 0.99. 
It is clear that  the specification is well satisfied at  low fre- 
quency. 

3.  COMB FILTER DESIGN BASED ON 
CONSTRAINED FRACTIONAL DELAY 

FILTER DESIGN 
Although the design methods in the example 1 amd 

example 2 provide two excellent approximations t o  the ideal 
comb filter, the frequency responses a t  harmonic frequencies 
kwo are not exactly zero valued. This result makes the 
harmonic interference I ( n )  can not be eliminated clearly by 
the designed comb filter. In order to  remove this drawback, 
some suitable constraints need to  be incorporated in the 
design of fractional sample delay zWD.  In the following, 
the cases of FIR filter and allpass filter will be described in 
details. 

3.1: FIR Fractional Delay Filter Design: 
In this subsection, we will design an FIR filter to  ap- 

proximate the fractional smaple delay z - ~ .  The transfer 
function of a causal N t h  order FIR filter can be represent- 
ed as 

N 

H ( z )  = h(n)ZYn 
n= 0 

The frequency response of the FIR filter is given by 

H ( w )  = h t e ( w )  = e t ( w ) h  (12 )  

where vectors h and e ( w )  are 

h = [h(O) h ( l ) . . . h ( N ) ] *  

= e-jw . . . e--jNw]t (13) 

For fractional delay filter desi n, the desired frequency re- 
sponse F d ( W )  is chosen as e-j In this paper, the filter 
coefficients h are obtained by minimizing the following least 
squares error: 

B 

I H ( w )  - Fd(w)12dw (14) J J(h) = 
wE(R+ U R -  ) 

where frequency bands RS = [O,aa] and R- = [-a?r,O]. 
Using the conjugate symmetric property of H ( w )  and 
F d ( w ) ,  the error J(h) can be rewritten as the quadratic 
form: 

J(h) = htQh - 2 h t p  + c (15) 
where matrix Q, vector p, and scalar c are real and given 
by 

Re( e( ")eH (w ))dw 

= 2 L E R +  Re( Fd(w)e* (w))dw 

c = 2 LE,+ IFd(w)12dw = 2 a a  (16) 

The H denotes the Hermitian conjugate transpose opera- 
tor, and Re(.) stands for the real part of a complex number. 
In order t o  make comb filter be exactly zero valued a t  the 
harmonic frequencies kwo, the  following constraints are con- 
sidered in the design procedure: 

~ ( k w ~ )  = e--jDkwo IC == 0 , 1 , . . . , M  (17) 
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where M = 1x1.  After some maniputation, these con- 
straints can be written in vector matrix form Ch = f ,  where 
real valued matrix C and vector f are given by 

c = [e(o),  Re(e(wo)), Im(e(wo)), . . . , Im(e(Mwo))lt 

f = [l,cos(Dwo), -s in(Dwo), . . . ,  -sin(DMwo)lt 

W O  

where In(.) stands for the imaginary part of a complex 
number. Using tne Lagrange multiplier method, the opti- 
mal solution of this constrained problem is given by 

h = Q-lp - Q-lCt(CQ-'Ct)-l[CQ-'~ - f] (18) 

Now, we use an example to  examine the performance of this 
design method. 

Example 3: Constrained FIR Filter Case 
In this example, the design parameters are chosen as a! = 

0.!3, W O  = 0.22a,p = 0.999 and N = 16. The frequency 
response of the designed comb filter H,(z) is shown in Fig.5. 
It is clear that  the frequency response of the comb filter is 
exactly zero valued a t  harmonic frequencies kq, and almost 
has unity gain a t  the remaining frequencies. 

3.2: Allpass Fractional Delay Filter Design: 
I t  is easy to  show that  the phase response OA(c4.J) of the 

allpas filter in eq(l0) can be written as 

The purpose of this subsection is t o  design an allpass fil- 
ter such that  the Oa(w)  approximates the prescribed phase 
response -Dw, that  is, we want to  achieve the following 
specification: 

e A ( W )  = -DW w E [O,a!a] (20) 

atb(w) = -sin @(TU)) (21) 

Substitute eq(19) into eq(20), we obtain the expression [7]: 

where p ( w )  = +( -Ow + N w ) ,  and two vectors 

a = [a1 a2 . . .aivIt  

b(w) = [sin(P(w) + w )  . . .sin(P(w) + Nw)It 

In this paper, we will minimize the following least squares 
error to  obtain optimal filter coefficients a :  

J(a) = lUT l a t b ( w )  + sin(fl(w))12dw 

= atQa - 2 p t a  + c (22)  

where matrix Q, vector p and scalar c are given by 

Q = b(w)b(w)tdw 

P =  - 1 b ( w )  sin(P(w)')dw 

a7r 

a7r 

c = Lar sin(p( w ) ) ~  dw (23) 

In order to make comb filter be exactly zero valued at har- 
monic frequencies kwo, the following constraints are incor- 
porated in the design: 

where M = I$]. After some maniputation, these con- 
straints can be written in vector matrix form Ca = f ,  where 
real valued matrix C and vector f are given by 

C = [b(wo),  b(2wo), . . . b(Nwo)lt 
f = [- sin(@(wo)), - sin(P(2wo)), . . . , - sin(P(Nwo))It 

Using tne Lagrange multiplier method, the optimal solu- 
tion of this constrained problem can be obtained as FIR 
design case. Finally, we use an example to  investigate the 
performance of this design method. 

Example 4: Constrarned Allpass Fzlter Case 
In this example, the design parameters are chosen as 

a! = 0.9, W O  = 0.22alp = 0.999 and N = LE] = 9, The 
frequency response of H , ( z )  is shown in Fig.6. I t  is clear 
that  the frequency response of the designed comb filter is 
exactly zero valued at  harmonic frequencies kq, and almost 
has unity gain ab the remaining frequencies. 

4. CONCLUSION 
In this paper, a new comb filter design method using 

fractional sample delay has been presented. First, the spec- 
ification of the comb filter design is transformed into that 
of fractional delay filter design. Then, the FIR and allpass 
filter design techniques are directly used to  design fractional 
delay filter with transformed specification. Next, we devel- 
op a constrained fractional delay filter design approach to  
improve the performance of the direct design method. Fi- 
nally, several design examples are demonstrated to  illustrate 
the effectiveness of this new design approach. 
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Figure 1: The frequency responses of 
the filter H ( z )  = 1 - . z - ~  (dashed 
line) and the ideal comb filter (solid 
line). 

Figure 2: The magnitude response of 
the comb filter H,(z ) .  

Figure 3: The magnitude response of 
the designed comb filter in example 
1. 

Figure 4: The magnitude response of 
the designed comb filter in example 
2. 

Figure 5: The magnitude response of 
the designed comb filter in example 
3. 

"I 

Figure 6: The magnitude response of 
the designed comb filter in example 
4. 
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