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Abstract
We show how to combine in a natural way (i.e., without any test nor switch) the conserva-
tive and non-conservative formulations of an hyperbolic system that has a conservative 
form. This is inspired from two different classes of schemes: the residual distribution one 
(Abgrall in Commun Appl Math Comput 2(3): 341–368, 2020), and the active flux formu-
lations (Eyman and Roe in 49th AIAA Aerospace Science Meeting, 2011; Eyman in active 
flux. PhD thesis, University of Michigan, 2013; Helzel et al. in J Sci Comput 80(3): 35–61, 
2019; Barsukow in J Sci Comput 86(1): paper No. 3, 34, 2021; Roe in J Sci Comput 73: 
1094–1114, 2017). The solution is globally continuous, and as in the active flux method, 
described by a combination of point values and average values. Unlike the “classical” 
active flux methods, the meaning of the point-wise and cell average degrees of freedom is 
different, and hence follow different forms of PDEs; it is a conservative version of the cell 
average, and a possibly non-conservative one for the points. This new class of scheme is 
proved to satisfy a Lax-Wendroff-like theorem. We also develop a method to perform non-
linear stability. We illustrate the behaviour on several benchmarks, some quite challenging.

Keywords Hyperbolic problems · high order · Active flux · MOOD · Residual distribution 
methods

Mathematics Subject Classification 65M06 · 65M08 · 65M99

1 Introduction

The notion of conservation is essential in the numerical approximation of hyperbolic sys-
tems of conservation: if it is violated, there is no chance, in practice, to compute the right 
weak solution in the limit of mesh refinement. This statement is known since the celebrated 

 * R. Abgrall 
 remi.abgrall@math.uzh.ch

1 Institute of Mathematics, University of Zürich, Winterthurerstrasse 190, CH 8057 Zurich, 
Switzerland

http://orcid.org/0000-0002-5553-7476
http://crossmark.crossref.org/dialog/?doi=10.1007/s42967-021-00175-w&domain=pdf


371Communications on Applied Mathematics and Computation (2023) 5:370–402 

1 3

work of Lax and Wendroff [20], and what happens when conservation is violated has been 
discussed by Hou and Le Floch [17]. This conservation requirement imposes the use of 
the conservation form of the system. However, in many practical situations, this is not 
really the one would like to deal with, since in addition to conservation constraints, one 
also seeks for the preservation of additional features, like contacts for fluid mechanics, or 
entropy decrease for shocks.

In this paper, we are interested in compressible fluid dynamics. Several authors have 
already considered the problem of the correct discretisation of the non-conservative form 
of the system. In the purely Lagrangian framework, when the system is described by the 
momentum equation and the Gibbs equality, this has been done since decades: one can 
consider the seminal work of Wilkins, to begin with, and the problem is still of interest; 
one can consider [5, 6, 10] where high order is sought for. In the case of the Eulerian 
formulation, there are less works. One can mention [4, 9, 16] where staggered meshes are 
used, the thermodynamic variables are localised in the cells, while the kinetic ones are 
localised at the grid points, or [3] where a non-conservative formulation with correction 
is used from scratch. The first two references show how to construct at most second-order 
scheme, while the last one shows this for any order. All constructions are quite involved 
in term of algebra, because one has to transfer information from the original grid and the 
staggered one.

In this paper, we aim at showing how the notion of conservation introduced in the resid-
ual distribution framework [1, 2, 23] is flexible enough to allow to deal directly with the 
non-conservative form of the system, while the correct solutions are obtained in the limit 
of mesh refinement. More precisely, we show how to deal with both the conservative and 
non-conservative forms of the PDE, without any switch, as it was the case in [19]. We 
illustrate our strategy on several versions of the non-conservative form, and provide first-, 
second and third-order accurate version of the scheme. More than a particular example, we 
describe a general strategy which is quite simple. The systems on which we will work are 
descriptions of the Euler equations for fluid mechanics.

• The conservation one: 

• the primitive formulation: 

• the “entropy” formulation: 
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where as usual � is the density, u the velocity, p the pressure, E = e +
1

2
�u2 is the total 

energy, e = (� − 1)p and s = log(p) − � log(�) is the entropy. The ratio of specific heats, � 
is supposed to be constant here, mostly for simplicity.

This paper has several sources of inspirations. The first one is the residual distribution (RD) 
framework, and in particular [1, 2, 23]. The second one is the family of active flux [7, 11–13, 
15], where the solution is represented by a cell average and point values. The conservation 
is recovered from how the average is updated. Here the difference comes from the fact that 
in addition several forms of the same system can be conserved, as (1)–(3) for the point value 
update while a Lax-Wendroff like result can still be shown. If the same systems were used, 
both for the cell average and the point values, this would easily fit into the RD framework, 
using the structure of the polynomial reconstruction. The difference with the active flux is that 
we use only the representation of the solution within one cell, and not a fancy flux evaluation. 
Another difference is about the way the solution is evolved in time: the active flux method 
uses the method of characteristics to evolve the point value, while here we rely on more stand-
ard Runge-Kutta methods.

The format of the paper is as follows. In the first part, we explain the general principles of 
our method, and justify why, under the assumptions made on the numerical sequence for the 
Lax-Wendroff theorem (boundedness in L∞ and strong convergence in Lp , p ⩾ 1 , of a subse-
quence toward a v ∈ Lp , then this v is a weak solution of the problem), we can also show the 
convergence of a subsequence to a weak solution of the problem, under the same assumptions. 
In the second part, we describe several discretisations of the method, and in the third part, we 
provide several simulations to illustrate the method.

In this paper, the letter C denotes a constant, and we use the standard “algebra”, for exam-
ple C × C = C , C + C = C , or �C = C for any constant � ∈ ℝ.

2  The Methods

2.1  Principle

We consider the problem 

with the initial condition

Here � ∈ D
�
⊂ ℝp . For smooth solutions, we also consider an equivalent formulation in 

the form

where � = Ψ(�) ∈ D
�
 and Ψ ∶ D

�
→ D

�
 is assumed to be one-to-one and C1 (as well as the 

inverse function). For example, if (4) corresponds to (1), then
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If (4c) corresponds to (2), then

and (for a perfect gas) the mapping Ψ corresponds to (�, �u,E) ↦ (
�, u, p = (� − 1)

(
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2
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))
,  

while

For (3),
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The idea is to discretise simultaneously (4a) and (4c). Forgetting the possible bound-
ary conditions, ℝ is divided into non-overlapping intervals Kj+1∕2 = [xj, xj+1], where 
xj < xj+1 for all j ∈ ℤ . We set Δj+1∕2 = xj+1 − xj and Δ = maxj Δj+1∕2 . At the grid points, 
we will estimate �j in time, while in the cells we will estimate the average value

When needed, we have �j = Ψ−1(�j) , however �̄j+1∕2 = Ψ(�̄j+1∕2) is meaningless since the 
Ψ does not commute with the average.
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�
 defined on Kj+1∕2 by

with

and

We see that

How to evolve �̄j+1∕2 following (4a) and vj following (4c) in time? The solution is simple 
for the average value: since

D
�
= {(𝜌, u, p) such that 𝜌 > 0 and p > 0}

J =

⎛
⎜⎜⎝

u � 0

0 u
1

�

0 e + p u

⎞
⎟⎟⎠
.

D
�
= {(p, u, s) ∈ ℝ3, p > 0}.

�̄j+1∕2 =
1

Δj+1∕2
∫

xj+1

xj

�(x)dx.

(
R
�

)
|Kj+1∕2

(x) = �jL
0
j+1∕2

+ �j+1L
1
j+1∕2

+ �̄j+1∕2L
1∕2

j+1∕2

L
�
j+1∕2

(x) = ��

(
x − xj

xj+1 − xj

)

�0(s) = (1 − s)(1 − 3s), �1(s) = s(3s − 2), �1∕2(x) = 6s(1 − s).

�0(0) = 1, �0(1) = 0, ∫
1

0

�0(s)ds = 0,

�1(1) = 1, �1(0) = 0, ∫
1

0

�1(s)ds = 0,

�1∕2(0) = 0, �1∕2(1) = 0, ∫
1

0

�1∕2(s)ds = 1.



374 Communications on Applied Mathematics and Computation (2023) 5:370–402

1 3

we simply take 

where �̂j+1∕2 is a consistent numerical flux that depends continuously on its arguments. In 
practice, since the approximation is continuous, we take

For � , we assume a semi-discrete scheme of the following form:
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 (ii) Consistency: set �h = R
�
 , then

 (iii) Regular mesh: the meshes are regular in the finite element sense.

The ODE systems (5) are integrated by a standard ODE solver. We will choose the Euler for-
ward method, and the second order and third order SSP Runge-Kutta scheme.

2.2  Analysis of the Method

In order to explain why the method can work, we will choose the simplest ODE integrator, 
namely the Euler forward method. The general case can be done in the same way, with more 
technical details. So we integrate (5) by

and

Setting Δj as the average of Δj+1∕2 and Δj−1∕2 , we rewrite (8) as
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for some constants that depend on the gradient of Ψ and the maximum of the �n
i
 for i ∈ ℤ.

To explain the validity of the approximation, we start by the Simpson formula, which 
is exact for quadratic polynomials:

From the point values �j , �j+1 , and �j+1∕2 at times tn and tn+1 , we define the quadratic 
Lagrange interpolant R
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In Appendix A, we will show that in the limit, the contribution of the Sn term will con-
verges towards 0, while the first term of (11) will converge to

while the second term will converge towards

This will be shown, using classical arguments, in Appendix A, so that we have

Proposition 1 We assume that the mesh is regular: there exist � and � such that 
� ⩽ Δj+1∕2∕Δj−1∕2 ⩽ �. If maxj∈ℤ ‖�n
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‖∞ are bounded,  and a subse-

quence of �Δ converges in L1 towards �, then � is a weak solution of the problem.

Remark 1 Indeed, the definition of a precise Δj is not really needed, and we come back 
to this in the next section. What is needed is a spatial scale that relates the updates in � and 
� in an incremental form of the finite difference type. This is why the assumption of mesh 
regularity is fundamental.

3  Some Examples of Discretisation
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We follow the work of Iserles [18] who gives all the possible schemes that guarantee a 
stable (in L2 ) semi-discretisation of the convection equation, for a regular grid which we 
assume. The only difference in his notations and ours is that the grid on which are defined 
the approximation of the derivative is made of the mesh points xj and the half points xj+1∕2.

The first list of examples has an upwind flavour:
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• Second order: we take 

• Third order: we take 

• Fourth order: the fully centered scheme would be 

but we prefer 

• Etc ⋯

It can be useful to have more dissipative versions of a first-order scheme. We take
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where �̃�j+1∕2 is the geometric average of �j and �j+1∕2 , ũj+1∕2 is the arithmetic average of uj 
and uj+1∕2 , while 𝜌c2

j+1∕2
 . For the model (3), we take

All this has a local Lax-Friedrichs’ flavour, and seems to be positivity preserving for the 
velocity and the pressure.

Using this, the method is 

combined with

 We see in (17a) that the time derivative of � is obtained by adding two fluctuations, one 
computed for the interval Kj+1∕2 = [xj, xj+1] and one for the interval Kj−1∕2 = [xj−1, xj] . 
These fluctuations are obtained from (12) with the increments in � defined by (13), (15), 
(16), etc. In the sequel, we denote the scheme applied on the interval Kj+1∕2 by Sj+1∕2(k) 
where the averages are integrated by (17b) and � by (17a) with the fluctuations (13) for 
k = 1 , (14) for k = 2 , and (15) for k = 3 , etc. To make sure that the first-order scheme is 
positivity preserving (at least experimentally), we may also consider the case denoted by 
k = 0, where Sj+1∕2(0) is the local Lax-Friedrichs scheme defined above. Both fluctuation 
(13) and the local Lax-Friedrichs scheme are first-order accurate, but the second one is 
quite dissipative but positivity preserving while the scheme (13) is not (experimentally) 
positivity preserving. The system (17) is integrated in time by a Runge-Kutta solver: RK1, 
RK SSP2, and RK SSP3.

3.1  Error Analysis in the Scalar Case

Here, the mesh is uniform, so that Δj+1∕2 = Δ for any j ∈ ℤ . It is easy to check the consist-
ency, and in Fig. 1 we show the L1 error on u and ū for (17) with SSPKR2 and SSPRK3 
(CFL = 0.4) for a convection problem

with periodic boundary conditions and the initial condition u0 = cos(2πx).

Remark 2 (Linear stability) In Appendix B, we perform the L2 linear stability and we get, 
with � =

Δt

Δ
,

• first-order scheme, |�| ⩽ 0.92,
• second-order scheme, |�| ⩽ 0.6,
• third-order scheme, |�| ⩽ 0.5.

Δj+1∕2
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�
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𝜕xj

=
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ũj+1∕2
�
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�
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j
) +

1
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pj+1∕2 − pj) + 𝜌c2
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uj+1∕2 − uj
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.
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dt
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= 0
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�u
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+
�u
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We also have run this scheme for the Burgers equation, and compared it with a standard 
finite volume (with local Lax-Friedrichs). The conservative form of the PDE is used for the 
average, and the non-conservative one for the point values: J = u and �(u) = u . This is an 
experimental check of conservation. The initial condition is

on [0, 1], so that there is a moving shock (Fig. 2).
We can see that the agreement is excellent and that the numerical solution behaves as 

expected.

3.2  Non‑linear Stability

As such, the scheme is at most linearly stable, with a CFL condition based on the fine grid. 
However, in case of discontinuities or the occurrence of gradients that are not resolved by the 
grid, we have to face oscillations, as usual.

In order to get high-order oscillation free results, a natural option would be to extend the 
MUSCL approach to the present context. However, it is not very clear how to proceed, so we 
have relied on the MOOD paradigm [8, 24]. The idea is to work with several schemes ranging 
from order p to 1, with the lowest-order it is able to provide results with positive density and 
pressure. These schemes are the Sj+1∕2(k), k = 1,⋯ , 3 schemes defined above. They are 
assumed to work for a given CFL range, and the algorithm is as follows: for each Runge-Kutta 
sub-step, starting from Un = {�̄n

j+1∕2
, �̄n

j
}j∈ℤ , we compute

�0(x) = sin(2πx) +
1

2

0.001 0.010 0.100

10–1

10–2

10–3

10–4

10–5

10–6

10–7

u O(2)
Ave(u), O(2)
u O(3)
Ave(u) O(3)
Slope 2
Slope 3

Fig. 1  Error plot for u and ū for (17) with SSPKR2 and SSPRK3 (CFL = 0.4). Here f (u) = u . The second-
order results are obtained with SSPRK2 with (17a) and (17b), the third-order results are obtained by (17a) 
and (17b)
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by the scheme Sj+1∕2(p) . Then we test the validity of these results in the interval [xj, xj+1] 
for the density (and possibly the pressure). This is described a little bit later. The variable � 
is updated as in (18), because at tn+1 , the true update of �j is the half sum of �̃n+1

j
 and �̃n+1

j+1
.

If the test is positive, then we keep the scheme Sj+1∕2(p) in that interval, else we start again 
with Sj+1∕2(p − 1) , and repeat the procedure unless all the intervals Kj+1∕2 have successfully 
passed the test. This is described in Algorithm 1 where Sj+1∕2 is the stencil used in Kj+1∕2.

(18)

⎧⎪⎨⎪⎩

̃̄�n+1
j+1∕2

= �̄
n
j+1∕2

− 𝜆n
�
� (�n

j+1
) − � (�n

j
)
�
, 𝜆n =

Δtn

Δj+1∕2

,

�̃
n+1
j

= �̃
n
j
− 2Δtn �⃖�Φ

�

j+1∕2
,

�̃
n+1
j+1

= �̃
n
j+1

− 2Δtn ��⃗Φ
�

j+1∕2
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(a)
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Fig. 2  Solution of Burgers with 10 000 points, tf in = 0.4 , CFL = 0.4 for the second order (a, b) [(17a) and 
(17b) with SSPRK2] and third order (c, d) [(17a) and (17b) with SSPRK3]. The global solution is repre-
sented in a and c, and a zoom around the discontinuity is shown in b and c 
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Now, we describe the tests. We do, in the following order, for each element Kj+1∕2 , at 
the iteration k > 0 of the loop of (i): the tests are performed on variables evaluated from 
� and � . For the scalar case, they are simply the point values at xj, xj+1∕2 , and xj+1 . For 
the Euler equations they are the density, and possibly the pressure. 

 (i) We check if all the variables are numbers (i.e., not NaN). If not, we state 
�j+1∕2 = Sj+1∕2(k − 1).

 (ii) (Only for the Euler equations) We check if the density is positive. We can also request 
to check if the pressure is also positive. If the variable is negative, then we state that 
�j+1∕2 = Sj+1∕2(k − 1).

 (iii) Then we check if at tn , the solution was not constant in the numerical stencils of the 
degrees of freedom in Kj+1 , in order to avoid detecting a fake maximum principle. 
We follow the procedure of [24]. If we observe that the solution was locally constant, 
then �j+1∕2 is not modified.

 (iv) Then we apply a discrete maximum principle, even for systems though it is not very 
rigorous. For the variable � (in practice the density, and we may request to do the 
same on the pressure), we compute minj+1∕2 � (resp. maxj+1∕2 � ) the minimum (resp. 
maximum) of the values of � on Kj+1∕2 , Kj−1∕2 , and Kj+3∕2 . We say we have a potential 
maximum if 𝜉n+1 ∉ [minj+1∕2 𝜉

n + 𝜀j+1∕2, maxj+1∕2 𝜉
n − 𝜀j+1∕2]with �j+1∕2 estimated 

as in [8]. Then we get the followings.

• If 𝜉n+1 ∈ [minj+1∕2 𝜉
n + 𝜀j+1∕2, maxj+1∕2 𝜉

n − 𝜀j+1∕2] , then �j+1∕2 is not modified.
• Else we use the following procedure introduced in [24]. In each Kl+1∕2 , we can 

evaluate a quadratic polynomial pl+1∕2 that interpolates � . Note that its derivative 
is linear in � . We compute p�j−1∕2(xj), p

�
j+3∕2

(xj+1), p
�
j+1∕2

(xj) and p�
j+1∕2

(xj+1).

• If p�
j+1∕2

(xj) ∈ [min(p�
j−1∕2

(xj), p
�
j+3∕2

(xj+1)] and p�
j+1∕2

(xj+1) ∈ [min(p�
j−1∕2

(xj), p
�
j+3∕2

(xj+1)],  
we say it is a true regular extrema and �j+1∕2 will not be modified.

• Else the extrema is declared not to be regular, and �j+1∕2 = Sj+1∕2(k − 1).

As a first application, to show that the oscillations are well controlled without sacrific-
ing the accuracy, we consider the advection problem (with constant speed unity) on [0, 1], 
periodic boundary conditions with the initial condition:
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Here a = 0.5 , z = −0.7 , � = 0.005 , � = 10,

and

Using the MOOD procedure with the third-order scheme, the results obtained for 300 
points for T = 10 are displayed in Fig. 3. They look very reasonable.

4  Numerical Results for the Euler Equations

In this section, we show the flexibility of the approach, where conservation is recovered 
only by (17a), and so lots of flexibility is possible with the relations on the �i . To illustrate 
this, we consider the Euler equations. We will consider the conservative formulation (1) for 
the average value, so � = (�, �u,E)T and either the form (2), i.e., � = (�, u, p) or the form 
(3) with � = (p, u, s)T.

u0(x) =

⎧
⎪⎪⎨⎪⎪⎩

0 if y ∈ [−1,−0.8[,
1

6

�
G(y, �, z − �) + G(y, �, z + �) + 4G(y, �, z)

�
if y ∈ [−0.8,−0.6],

1 if y ∈ [−0.4,−0.2]

1 − �10y − 1� if y ∈ [0, 0.2],
1

6

�
F(y, �, z − �) + G(y, �, z + �) + 4F(y, �, z)

�
else.

with y = 2x − 1,

� =
log 2

36�2

G(t, �, z) = exp
(
− �(t − z)2

)
, F(t, a, �) =

√
max

(
0, 1 − �(t − a)2

)
.

0 0.2 0.4 0.6 0.8 1.0
0

0.5

1.0 Exact
Average

Fig. 3  Shu-Jiang problem, CFL = 0.4, third-order scheme with MOOD, 300 points, periodic conditions, 10 
periods. The point values and cell average are almost undistinguishable
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4.1  Sod Test Case

The Sod case is defined for [0, 1], the initial condition is

The final time is T = 0.16 . The problem is solved with (1) and (2) and displayed in Figs. 4, 
5, 6 and 7, while the solution obtained with the combination (1)–(3) is shown in Figs. 8 
and 9. When the MOOD procedure is on, it is applied with � and p and all the tests are 
performed. The exact solution is also shown every time. Different orders in time/space are 
tested. The results are good, even though the MOOD procedure is not perfect. The use of 
the combination (1)–(3) seems more challenging, we have performed a convergence study 
(with 10 000 points). This is shown in Fig. 9, and a zoom around the contact discontinuity 
is also shown.

We can observe a numerical convergence to the exact one in all cases. In Appendix C, we 
show some results on irregular meshes, with the same conclusions.

(𝜌, u, p)T =

{
(1, 0, 1)T for x < 0.5,

(0.125, 0, 0.1)T else.
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0.5

1.0 Points
Average
Exact

(c)

Fig. 4  One hundred grid points, and the second-order SSPRK2 scheme with CFL = 0.1. a density, b veloc-
ity, c pressure
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4.2  A Smooth Case

We consider a fluid with � = 3 : the characteristics are straight lines. The initial condi-
tion is inspired from Toro: in [−1, 1],

The classical case is for � = 0.999 995 where the vacuum is almost reached. Here, since 
we do not want to test the robustness of the method, we take � =

3

4
 . The final time is set to 

T = 0.1.
The exact density and velocity in this case can be obtained by the method of charac-

teristics and are explicitly given by

where for each coordinate x and time t the values x1 and x2 are solutions of the non-linear 
equations

(19)

⎧⎪⎨⎪⎩

�0(x) = 1 + � sin(2πx),

u0(x) = 0,

p0(x) = �0(x)
� .

�(x, t) =
1

2

�
�0(x1) + �0(x2)

�
, u(x, t) =

√
3
�
�(x, t) − �0(x1)

�
,
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Fig. 5  One hundred grid points, and the second-order SSPRK2 scheme with CFL = 0.1. a density, b veloc-
ity, c pressure. MOOD test made on � and p 
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An example of the numerical solution, superimposed with the exact one, is shown in 
Fig. 10. It is obtained with the third-order (time and space) scheme, and here we have used 
the model (�, u, p) . The CFL number is set to 0.2.

The errors are shown in Table 1.
The errors, computed in [−1, 1] are in reasonable agreement with the −3 expected slopes. 

We also have done the same test with the non-linear stabilisation procedure described in 
Sect. 3.2. Exactly the same errors are obtained: the order reduction test is never activated.

4.3  Shu‑Osher Case

The initial conditions are

on the domain [−5, 5] until T = 1.8 . We have used the combination (1) and (2), since 
another one seems less robust. The density is compared to a reference solution (obtained 
with a standard finite volume scheme with 20 000 points, and the solution obtained with 

x +
√
3�0(x1)t − x1 = 0,

x −
√
3�0(x2)t − x2 = 0.

(𝜌, u, p) =

{
(3.857 143, 2.629 369, 10.333 333 3) if x < −4,

(1 + 0.2 sin(5x), 0, 1) else
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Fig. 6  One hundred grid points, and the third-order SSPRK3 scheme with CFL = 0.1. a density, b velocity, 
c pressure
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the third-order scheme with CFL = 0.3 and 200, 400, 800 and 1 600 points. The MOOD 
procedure uses the first-order upwind scheme if a PAD, a NaN or a DMP is detected, the 
other cases use the third-order scheme. The solutions are displayed in Fig. 11. With little 
resolution, the results are very close to the reference one.

For Fig. 11, the second-order scheme is used as a rescue scheme.

4.4  Le Blanc Case

The initial conditions are

where e = (� − 1)p and � =
5

3
 . The final time is t = 6 . This is a very strong shock tube and 

we use the combination (1) and (2). It is not possible to run higher than first order without 
the MOOD procedure. The second- and third-order results are shown in Fig. 12, and zooms 
around the shocks and the fan are showed in Fig. 13.

At time t = 6 , the shock wave should be at x = 8 : in addition to the extreme condi-
tions, it is generally difficult to get a correct position of the shock wave; this is why 
a convergence study is shown in Fig. 14. It is performed with 400, 800, 10 000 grid 
points, and the third-order SSPRK3 scheme with CFL  =  0.1. It is compared to the 

(�, u, e) =

{
(1, 0, 0.1) if x ∈ [−3, 3],

(0.001, 0.10−7) if x ∈ [3, 6],
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Fig. 7  One hundred grid points, and the third-order SSPRK3 scheme with CFL = 0.1. a density, b velocity, 
c pressure. Mood test made on � and p 
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exact solution, and the results are good, see for example [22] for a comparison with 
other methods, or [21] for a comparison with Lagrangian methods.

5  Conclusion

This study is preliminary and should be seen as a proof of concept. We show how to 
combine, without any test, several formulations of the same problem, one in the con-
servative form and the others in the non-conservative form, to compute the solution of 
hyperbolic systems. The emphasis is mostly put on the Euler equations.

We explain why the formulation leads to a method that satisfies a Lax-Wendroff-like 
theorem. We also propose a way to provide the non-linearity stability, and this method 
works well but is not yet completely satisfactory.

Besides the theoretical results, we also show numerically that we get the conver-
gence to the correct weak solution. This is done on standard benchmark and it is very 
challenging.

We intend to extend the method to several space dimensions and improve the 
limiting strategy. Different systems, such as the shallow water system, will also be 
considered.
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Fig. 8  Solution with the variables (s, u, p) for 100 points, comparison with the exact solution, third order in 
time/space with MOOD and non MOOD. MOOD is done on � and p. CFL = 0.2
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Appendix A Proof of Proposition 1

We show Proposition 1 in the scalar case, and the system case is identical.
We start by some notations: ℝ is subdivided into intervals Kj+1∕2 = [xj, xj+1] with 

xj < xj+1 , and h will be the maximum of the length of Kj+1∕2 . On each interval, from 
the point values ui and ui+1 , as well as the average ūj+1∕2 , we can construct a quadratic 
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Fig. 9  Solution with the variables (s,  u,  p) for 10  000 points, comparison with the exact solution. 
CFL = 0.1, no MOOD. The zoomed figures are for x ∈ [0.6, 0.7] and the ticks are for 10−7 . We plot u and p 
across the contact
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polynomial. From this and as above, we can construct a globally continuous piecewise 
quadratic function and it is denoted by RuΔ

.
Let T > 0 and a time discretisation 0 < t1 < ⋯ < tn < ⋯ < tN ⩽ T  of [0, T]. We define 

Δtn = tn+1 − tn and Δt = maxn Δtn . We are given the sequences {up
j
}
p=0,⋯,N

j∈ℤ
 and 

{ūn
j+1∕2

}
p=0,⋯,N

j∈ℤ
 . We can define a function uΔ by

The set of these functions is denoted by XΔ and is equipped with the L∞ and L2 norms.
We have the following lemma.

if (x, t) ∈ [xj, xj+1] × [tn, tn+1[, then uΔ(x, t) = Run
Δ
(x).

1.0

–1.0 1.0 –1.0 1.0

–1.0 1.0

–

–0.5 –0.5

–0.5

Fig. 10  Solutions (numerical and exact) for the conditions (19). The number of grid points is set to 80, with 
periodic boundary conditions

Table 1  L1 , L2 and L∞ errors for the initial conditions (19) with the third-order scheme

h = 1∕N L1 L2 L∞

20 2.136 × 10−4 − 2.968 × 10−4 − 6.596 × 10−4 −
40 1.912 × 10−5 −3.48 2.702 × 10−5 −3.45 5.750 × 10−5 −3.52

80 1.398 × 10−6 −3.77 2.138 × 10−6 −3.65 4.673 × 10−6 −3.62

160 1.934 × 10−7 −2.85 2.595 × 10−7 −3.04 5.753 × 10−7 −3.02

320 3.641 × 10−8 −2.40 5.523 × 10−8 −2.23 1.276 × 10−7 −2.17
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Lemma A1 Let T > 0, {tn}n=0,⋯,N be an increasing subdivision of [0, T],  [a, b] a compact 
of ℝ. Let (uΔ)h be a sequence of functions of XΔ defined on ℝ ×ℝ+. We assume that there 
exists C ∈ ℝ independent of Δ and Δt, and � ∈ L2

loc
([a, b] × [0, T]) such that

Then

Proof First, because the vector space of polynomials of degree 3 on [xj, xj+1] is finite-
dimensional and with a dimension independent of j, there exist C1 and C2 such that

 so that

where for simplicity we have introduced ūΔ the function defined by

Then we rely on classical arguments of functional analysis: since (uΔ) is bounded and 
L∞([a, b] × [0, T]) ⊂ L1([a, b] × [0, T]) , there exists u� ∈ L∞([a, b] × [0, T] such that 

sup
Δ

sup
x,t

|uΔ(x, t)| ⩽ C and lim
Δ,Δt→0

|uΔ − u|L2([a,b]×[0,T]) = 0.

(A1)lim
Δ,Δt→0

N∑
n=0

Δtn

[∑
j∈ℤ

Δj+1∕2

(
|un

j
− ūn

j+1∕2
| + |un

j+1
− ūn

j+1∕2
| + |un

j
− un

j+1
|
)]

= 0.

C1Δj+1∕2

(
|un

j
− ūn

j+1∕2
| + |un

j+1
− ūn

j+1∕2
|
)

⩽ ∫
xj+1

xj

|uΔ(x, tn) − ūn
j+1∕2

|dx

⩽ C2Δj+1∕2

(
|un

j
− ūn

j+1∕2
| + |un

j+1
− ūn

j+1∕2
|
)
,

K∑
n=0

Δtn
∑

j,Kj+1∕2⊂[a,b]

Δj+1∕2

(
|un

j
− ūn

j+1∕2
| + |un

j+1
− ūn

j+1∕2
|
)

⩽ C−1
1 ∫

T

0 ∫
b

a

|uΔ − ūΔ|dx,

if (x, t) ∈ [xj, xj+1[×[tn, tn+1[, ūΔ(x, t) = ūn
j+1∕2

.
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Fig. 11  a Solution of the Shu-Osher problem, b zoom of the solution around the shock
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uΔ → u� in the weak-⋆ topology. Similarly, there exists ū ∈ L∞([a, b] × [0, T]) such that 
ūΔ → ū for the weak-⋆ topology.

Since uΔ → u in L2
loc

 , we have u� = u because [a, b] × [0, T] is bounded and 
C∞
0
([a, b] × [0, T]) is dense in L1([a, b] × [0, T]) . Let us show that ū = u . let 

� ∈ C∞
0
(ℝ ×ℝ+) . We have, setting
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Fig. 12  Le Blanc test case, CFL = 0.1 , from 400 to 800 points. Left column: MOOD test on � and p, second 
order; right column: MOOD test on � and p, third order
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Fig. 13  Le Blanc test case, zooms, comparison on the pressure between second order and third order with 
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Fig. 14  Convergence study on the density for the Le Blanc test case
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and using the fact that for any [xj, xj+1] × [tn, tn+1] , we have ∫ tn+1
tn

∫ xj+1
xj

(
ūΔ − uΔ

)
dxdt = 0.

Since � ∈ C∞
0
(ℝ ×ℝ+) , there exists C that depends only on ‖ d�

dx
‖L∞(ℝ×ℝ+) such that

and then

and passing to the limit, ū = u� . Since a subsequence of uΔ converges to u in L2 , we have 
ū = u� = u.

The same method shows that (u2
Δ
) and (ū2

Δ
) have the same weak-⋆ limit. Let us show it is 

u2 . Since C∞
0
([a, b] × [0, T] is dense in L1([a, b] × [0, T] ) and u2

Δ
 is bounded independently 

of Δ and Δt , we can choose functions � in C∞
0
([a, b] × [0, T]) . This test function is bounded 

in [a, b] × [0, T] and we have at least for a subsequence,

and then

By the Cauchy-Schwarz inequality, u� ∈ L1([a, b] × [0, T]) : the second term tends towards

so that

�̄�n
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=
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∫
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)(
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and u2
Δ
→ u2 in L∞ weak-⋆.

Last, again by the same argument for � = 1 , since u2
Δ
→ u2 in L∞ weak-⋆ , we get

and finally

Since [a, b] × [0, T] is bounded and L1([a, b] × [0, T]) ⊂ L2([a, b] × [0, T]) , we obtain

From this we get (20) because

Then we can proof Proposition 1. We proceed the proof in several lemmas.

Lemma A2 Under the conditions of Proposition 1, for any � ∈ C∞
0
(ℝ ×ℝ+) we have

Proof This is a simple adaptation of the classical proof, see for example [14]. We have, 
using that

and the compactness of the support of �,

∫
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a ∫
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where 𝛿�j+1∕2 = �̄
n+1
j+1∕2

− �̄
n
j+1∕2

 and ��j = �
n+1
j

− �
n
j
 . The first part, (I), is the classical 

term, and under the condition of the lemma, converges to

Since � ∈ C∞
0
(ℝ ×ℝ+) , there exists C that depends only on the L∞ norm of the first deriv-

ative of � such that the term (II) can be bounded by

This tends to zero because max
j∈ℤ,p∈ℕ

|�p
j
| is finite. 

Lemma A3 Under the assumptions of Proposition 1,

Proof This is again a simple adaptation of the classical proof since 
�j+1∕2f = f (uj+1) − f (uj) . We have

Then using the boundedness of the solution and Lebesgue dominated convergence theo-
rem, we get the result. 
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Lemma A4 Under the conditions of Proposition 1, we have

Proof Since � ∈ C∞
0
(ℝ ×ℝ+) , there exists C that depends only on the first derivative of 

� such that

Then using (10), we get

and also

by using the Lipschitz continuity of the fluctuations and the regularity of the transforma-
tion � ↦ � together with the boundedness of the solution. Then, from Lemma A1, we see 
that the results hold true. 

This ends the proof of Proposition 1.

Appendix B Linear Stability Analysis

The scheme writes, setting � = a
Δt

Δx
 and assuming a > 0,

on with periodicity 1. We set Δx = 1

N
 . It is more convenient to work with point values only, 

and we will use the form

We perform a linear stability analysis by Fourier analysis. What is not completely stand-
ard is that the grid points do not play the same role. For ease of notations, we double the 
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indices, this avoids to have half integer in the Fourier analysis. In other points, the quanti-
ties uj associated to the grid points xj are denoted by u2j : this will be the even terms. Those 
associated to the intervals [xj, xj+1] , i.e., ūj+1∕2 and uj+1∕2 will be denoted as ū2j+1 and u2j+1 , 
they are the odd terms, so that we use

 We have the Parseval equality,

with

where, by setting � = e
iπ

N ,

The usual shift operator [S(u)]j = uj+1 gives

Using this, we see that the Euler forward method (A2) gives
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for the second order scheme, and

for the third order in time space.
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1

N

N−1∑
j=0

u2j𝜔
(2j)k.
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Combined with the RK time stepping we end up with an update of the form

and writing

we end up with

so that

from which we get

with

We have the stability if the spectral radius of these matrices is always ⩽ 1 , and we immedi-
ately see that

After calculations, we see that the stability limits are

• first-order scheme, |�| ⩽ 0.92,
• second-order scheme, |�| ⩽ 0.6,
• third-order scheme, |�| ⩽ 0.5.
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Appendix C Some Numerical Results on Irregular Meshes

To support the theoretical analysis of the method, we have applied it on irregular meshes. 
The goal is to show that even here, one gets convergence of the solution to a weak solution 
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Fig. A1  Plot of the density, pressure, velocity and the pressure. This is obtained with the “third order” with 
MOOD test on the density and the pressure
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Fig. A2  Zoom of the density around the shock wave
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that appears to be the right one. Since we use the same schemes, there is no hope to get 
anything but first order accuracy. Accuracy on irregular meshes will be the topic of future 
work. The mesh is defined by: for 0 ⩽ i ⩽ N,

and

Then we define the actual mesh by

On the Sod problem, with N = 10 000 , we get the results of the Fig. A1.
In Fig. A2, we show a zoom of the density around the shock wave. The discretisation 

points as well as the numerical and exact solutions are shown.
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