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Abstract—An effective computational method based on a conven-
tional modal-expansion approach is presented for solving the problem
of diffraction by a deep grating. The groove depth can be the same as
or a little more than the grating period. The material can be a perfect
conductor, a dielectric, or a metal. The method is based on Yasuura’s
modal expansion, which is known as a least-squares boundary residual
method or a modified Rayleigh method. The feature of the present
method is that: (1) The semi-infinite region U over the grating sur-
face is divided into an upper half plane U0 and a groove region UG by
a fictitious boundary (a horizontal line); (2) The latter is further di-
vided into shallow horizontal layers U1, U2, · · ·, UQ again by fictitious
boundaries; (3) An approximate solution in U0 is defined in a usual
manner, i.e., a finite summation of up-going Floquet modal functions
with unknown coefficients, while the solutions in Uq (q = 1, 2, · · · , Q)
include not only the up-going but also the down-going modal functions;
(4) If the grating is made of a dielectric or a metal, the semi-infinite
region L below the surface is partitioned similarly into L0, L1, · · ·, LQ,
and approximate solutions are defined in each region; (5) A huge-sized
least squares problem that appears in finding the modal coefficients
is solved by the QR decomposition accompanied by sequential accu-
mulation. The method of solution for a grating made of a perfect
conductor is described in the text. The method for dielectric gratings
can be found in an appendix. Numerical examples include the results
for perfectly conducting and dielectric gratings.
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1. INTRODUCTION

Yasuura’s method [1–4] is one of the numerical techniques for solving
the problem of diffraction by a grating. Although alternative
terminology for the method (e.g., a least-squares boundary residual
method [5] or a modified Rayleigh method [6]) exists, we employ the
name throughout this paper. The method is a standard technique
having reliability for a numerical solution to the boundary value
problems of the Helmholtz equation. It is an accepted knowledge,
however, that the conventional Yasuura’s method (CYM) [1–4] with
Floquet modes as basis functions does not have a wide range of
application [6, 7].

Let us assume that we employ the CYM (see Appendix A)
in solving the problem of plane-wave diffraction from a perfectly-
conducting sinusoidal grating having a period D and a depth 2H. The
period is comparable to the wavelength as usual. For an E-wave (s
polarization) problem where 2H/D = 0.5, we can employ 45 Floquet
modal functions in the semi-infinite region over the grating surface and
obtain a solution with 0.1 percent error in both energy conservation and
boundary condition. Employment of additional modal functions easily
causes numerical trouble in making least-squares boundary matching.
Hence, a practical limit in 2H/D in the E-wave case is 0.5 so long as
we use conventional double-precision arithmetic. Similarly, the limit
in an H-wave (p polarization) case seems to be a little less than 0.4.

Yasuura’s method has been equipped with a smoothing procedure
(SP) [8, 9] in order that the method be capable of solving a wider class
of problems. It has been shown that: in the above problem, we can
obtain a solution with 0.1 percent error using 17−41 modal functions
(the number depends on the order of the smoothing procedure [8, 9] and
on the polarization). Although Yasuura’s method with the smoothing
procedure solves most of the problems for commonly used gratings,
the limit in 2H/D has as yet been scarcely dealt with. This is
because there still is a limit at about 2H/D = 0.7 and because the
SP is not convenient to employ due to difficult theory and increase of
computational complexity.

In the following sections we present an alternative way of
extending the range of application: First, we partition the semi-infinite
region over the grating surface into a half plane over the grating and a
couple of stratified horizontal layers in the groove region. Second, we
define approximate solutions in each region in the form of truncated
modal expansions with unknown coefficients. The solution in the half
plane is a commonly employed Floquet modal expansion, while one in
a layer is a sum of two finite expansions: one is up-going and another
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Figure 1. Cross section of a perfectly conducting grating.

is down-going. Then, applying the boundary conditions, we find the
modal coefficients that minimize a mean-squares boundary residual.

Although we present, for simplicity, the method assuming an
E-wave problem for a perfectly conducting grating, we include the
results for an H-wave problem and for a dielectric grating in the
numerical examples section. The methods for these types of problems
are concisely described in Appendices B and D.

2. STATEMENT OF THE PROBLEM

The cross section of the grating made of a perfectly conducting metal
and a coordinate system are shown in Fig. 1. We assume that the
grating is periodic in X and uniform in Y . The surface profile of the
grating is assumed to be

z = f(x) = H cos
2πx
D

(1)

where H and D are the half depth (amplitude) and the period of the
grating. The profile of the grating is a boundary between two regions U
(Z > f(X)) and L (Z < f(X)). The region U is filled with a dielectric
medium having a relative refractive index nU, and the region L is
occupied by a perfect conductor. Note that the pair of capital letters
(X,Z) represents a point in U; and lower-case letters (x, z) denote a
point on the boundary.

We consider the problem to seek the diffracted waves in U for
the case of an E-wave incidence. Statement for the case of an H-wave
incidence may be found in Appendix B together with the method of
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solution. We write the incident electric field as

Ei(P) = iY Φi(P) (2)

where
Φi(P) = exp[i(α0X − βU

0 Z)] (P ∈ U) (3)

In (2) and (3) P = (X,Z) is a position vector of a point P in U, iY
is a unit vector in the Y direction, α0 = nUk sin θ, βU

0 = nUk cos θ,
k = ω

√
ε0µ0 = 2π/λ and θ is the angle of incidence shown in Fig. 1.

The time dependence exp(−iωt) is suppressed throughout.
We denote by Φd(P) the Y component of the diffracted electric

field in U, which satisfies the following conditions:

1. The 2-D Helmholtz equation;
2. A periodicity condition that Φd(X +D,Z) = eiα0DΦd(X,Z);
3. A radiation condition in the Z direction that Φd(X,Z) propagates

or attenuates in the positive Z direction; and
4. A boundary condition that the tangential component of the total

electric field vanishes on the boundary:

(Φi + Φd)
∣∣∣
z=f(x)+0

= 0 (4)

3. METHOD OF ANALYSIS

As shown in Fig. 2, we first divide the region U over the grating surface
into a half plane U0 over the grating (Z > H) and the groove region
UG (f(X) < Z < H) below the half plane U0. U0 and UG are sub
regions of U having a common border at Z = H. Next, we partition the
groove region UG into shallow horizonal layers U1,U2, · · · ,UQ, where
Q is the number of the layers. The boundary between Uq and Uq+1 is
a horizontal line given by (see Fig. 2)

Z = zq = (1 − 2q/Q)H (q = 1, 2, · · · , Q− 1) (5)

Consequently, we have Q+ 1 sub-regions in one period (0 < X < D).
An approximation for the diffracted electric field Φd(P) in U0

is defined in terms of a finite Floquet modal expansion. Here,
the Floquet modal functions are separated solutions of Helmholtz’s
equation satisfying the radiation and periodicity condition, and are
given by

φ+
m(X,Z) = exp[i(αmX + βU

mZ)] (m = 0,±1, · · ·) (6)
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Figure 2. Partition of the semi-infinite region U.

with

αm = α0 +
2mπ
D
, βU

m = (n2
Uk

2 − α2
m)1/2 (Im βU

m ≥ 0) (7)

In (6) the superscript + means that the modal function φ+
m propagates

or attenuates in the positive Z direction (up-going wave). Thus the
approximate solution in U0 takes the form that

Φd
0N (P) =

N∑
m=−N

A(0)
m φ

+
m(X,Z −H) (P ∈ U0) (8)

where N is a number of truncation. Note that: although the modal
coefficients A(0)

m are functions of the truncation number and should be
represented as A(0)

m (N), we omit (N) for simplicity.
In defining an approximate solution in the thin layers Uq (q =

1, 2, · · · , Q), we employ not only the up-going but also down-going
Floquet modal functions:

φ−m(X,Z) = exp[i(αmX − βU
mZ)] (m = 0,±1, · · ·) (9)

where − denote down-going waves. Approximate solutions in the sub-
regions Uq, hence, are commonly represented as

Φd
qN (P)=

N∑
m=−N

{
A(q)

m φ
+
m(X,Z − zq) +B(q)

m φ−m(X,Z − zq−1)
}

(P ∈ Uq ; q = 1, 2, · · · , Q) (10)
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Thus we have defined the approximate solutions in U0 and Uq

(q = 1, 2, · · · , Q). The total number of unknown coefficients is NT =
(2N + 1)(2Q+ 1): (2N + 1) for U0 and 2Q(2N + 1) for Uq’s.

The solutions in (8) and (10) satisfy the Helmholtz equation
and the periodicity condition. In addition, (8) satisfies the radiation
condition. The unknown coefficients, hence, should be determined
in order that the solutions meet the boundary condition (4) and an
additional set of boundary conditions on the fictitious boundaries:

(Φiδq0 + Φd
q )

∣∣∣
z=zq+0

= Φd
q+1

∣∣∣
z=zq−0

(q = 0, 1, ..., Q) (11)

∂(Φiδq0 + Φd
q )

∂ν

∣∣∣∣∣
z=zq+0

=
∂Φd

q+1

∂ν

∣∣∣∣∣
z=zq−0

(q = 0, 1, ..., Q) (12)

where ∂/∂ν (= ∂/∂Z|z=zq) represents the normal derivative on the
fictitious boundary and δq0 is Kronecker’s delta.

We employ the least-squares method to find the A(q)
m and B(q)

m

coefficients. To do this, we define a mean-square error

IN =
Q−1∑
q=0

{∫
Γq

∣∣∣[Φiδq0 + Φd
qN − Φd

q+1N

]
(x, z(x))

∣∣∣2 dx
+W 2

∫
Γq

∣∣∣∣∣
[
∂(Φiδq0 + Φd

qN )
∂ν

−
∂Φd

q+1N

∂ν

]
(x, z(x))

∣∣∣∣∣
2

dx


+

Q∑
q=1

{∫
C0q

∣∣∣Φd
qN (x, z(x))

∣∣∣2 dx} (13)

where W is an intrinsic impedance of vacuum and Γq and C0q denote
fictitious boundaries and segments of C0 that are the boundaries of
Uq (Fig. 3). The method for solving the least-squares problem on a
computer, i.e., the method of discretization and the method of solution
for the discretized problem is described in Appendix C.

4. NUMERICAL RESULTS

4.1. Preparation

The mth order reflection efficiency for a propagating order m (βU
m > 0)

is given by:

ρm =
βU

m

βU
0

|A(0)
m |2 (14)
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Figure 3. A layer Uq with boundaries Γq−1, Γq and C0q.

For the case of a perfectly conducting grating, the energy error is
calculated by:

εN = 1 −
∑
m

′ρm (15)

where
∑′

stands for the summation over the propagating orders.
The energy error εN and the norm error on the boundary IN (see
Appendix C for details) will be used in checking the accuracy of
solutions.

4.2. Convergence of Solution

We here check the convergence of the results obtained by the present
method. Figure 4 shows the variation of the energy error εN and
the norm error IN as functions of the number of truncation N at
2H/D = 1.0 and Q = 20 for both E-wave (Fig. 4(a)) and H-wave
(Fig. 4(b)) incidence. Other parameters are given in the figure caption.
As we observe in these figures, IN decreases as N increases. An
approximate solution with 0.1 percent energy error is obtained at
N = 14 for an E-wave. In an H-wave case convergence of solutions
is not so fast as in the E-wave case. We obtain a solution with 1.0
percent energy error at N = 23 in that case of polarization.

4.3. Comparison with Other Methods

We examine our results for a perfectly conducting grating by comparing
them with existing results obtained by an integral-equation method [10,
11]. We then show a couple of results for a dielectric grating and
compare them with the results obtained by the Rigorous Coupled Wave
Analysis (RCWA) method [12].
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(a) E-wave (b) H-wave

Figure 4. Decrease of the energy error εN and the norm IN as
functions of the number of truncation. Q = 20, nU = 1, 2H/D = 1.0,
D = 0.5λ, and θ = 30◦.

(a) 0 and −1 order (b) −2 and −3 order

Figure 5. Diffraction efficiency as functions of D/λ (E-wave). N =
25, Q = 25, nU = 1, H = 0.25λ, and θ = 0◦.

4.3.1. Perfectly Conducting Grating: E-wave Case

Figure 5 shows the comparison of reflection efficiency as a function
of D/λ, the grating period normalized by the wavelength. E-wave
incidence is assumed and the amplitude of the surface modulation
is given by H/λ = 0.25. The curves and the symbols, respectively,
represent the present results and the results in Reference [10].
We observe good agreement in zeroth order efficiency and notice
considerable discrepancy in non-zero orders. We believe that the
present results are accurate because they have been obtained by
Yasuura’s method that has proof of convergence and because their
error is less than 0.01 percent in the range D/λ > 0.5 in both energy
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Figure 6. Diffraction efficiency as functions of θ (E-wave). nU = 1
and D = 0.75λ. H/D = 0.31, (N,Q) = (15, 4); H/D = 0.4, (15, 5);
and H/D = 1.066, (30, 20).

conservation and boundary condition. The difference, hence, may
come from inadequate computational technology at the time when
Reference [10] was published.

Figure 6 shows comparison of reflection efficiency as functions of
the incident angle for E-wave incidence and D = 0.75λ. The curves
and the symbols, again, represent the present results and the results
in [10]. We find good agreement between the results.

Figure 7 shows comparison of reflection efficiency as functions of
H/λ, the surface amplitude normalized by the wavelength. The grating
period is a parameter, which is given by D = 1.6λ in Fig. 7(a) and
D = 1.9λ in Fig. 7(b). The curves and the circles denote the present
results and the results from [10]. Since the depth-to-period ratio 2H/D
in these figures is relatively small, i.e., 0 < 2H/D < 0.625 in Fig. 7(a)
and 0 < 2H/D < 0.526 in Fig. 7(b), we have set N = 25 and Q = 5 to
obtain solutions with 0.1 percent energy error.

In Figs. 8–10 we show the results for relatively deep gratings.
The curves and the circles denote the present results and the results
from [10]. We choose Q and N given in Table 1 to keep the accuracy
of solutions.
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(a) D = 1.6λ (b) D = 1.9λ

Figure 7. Diffraction efficiency as functions of H/λ (E-wave). N =
25, Q = 5, nU = 1, and θ = 0◦.

Figure 8. Diffraction efficiency as functions ofH/λ (E-wave). nU = 1,
D = 0.75λ, θ = 41.8◦, and N = 20. Q = 10 (H/λ < 0.375); Q = 20
(0.375 ≤ H/λ).

4.3.2. Perfectly Conducting Grating: H-wave Case

We solved the problem of an H-wave incidence by the present method.
The statement of problem and the method of analysis are concisely
described in Appendix B.

Figure 11 shows reflection efficiency as a function of the incident
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Figure 9. Diffraction efficiency as functions ofH/λ (E-wave). nU = 1,
D = 0.8λ, θ = 36.0◦, N = 20. Q = 10 (H/λ < 0.425); Q = 20
(0.425 ≤ H/λ).

Figure 10. Diffraction efficiency as functions of H/λ (E-wave).
nU = 1, D = 0.9λ, θ = 33.72◦, and N = 20. Q = 10 (H/λ < 0.45);
Q = 20 (0.45 ≤ H/λ).

angle. The curves and the symbols represent the present results and
the results in [11]. We find that the results agree with each other
except for the grazing limit.
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Table 1. Parameters in Figs. 8–10.

Fig. N Q D/λ θ Range of Energy error

2H/D < 1.0 ≥ 1.0 [deg] 2H/D εN [%]

8∗ 20 10 20 0.75 41.8 < 2.666 εN < 3

9 20 10 20 0.85 36.0 < 1.412 εN < 1

10 20 10 20 0.9 33.72 < 1.556 εN < 1
∗We have set Q = 40 and N = 25 in the range 1.6 ≤ 2H/D.

Figure 11. Diffraction efficiency as functions of θ (H-wave). nU = 1,
N = 15, and Q = 4. D = 0.75λ (H/D = 0.31); D = 0.8λ
(H/D = 0.25); and D = 0.85λ (H/D = 0.1882).

4.3.3. A Dielectric Grating

We solved the problem of a dielectric grating by the present method
and compared the results with those obtained by the Rigorous Coupled
Wave Analysis (RCWA) method [12]. Interested readers can find the
details of our analysis in Appendix D.

Figure 12 shows the reflection and transmission efficiency
calculated by the present method (solid curves) and by the RCWA
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Figure 12. Diffraction efficiency of a dielectric grating as functions
of the groove depth 2H (E-wave). D = λ, nU = 1, nL = 1.58, and
θ = 30◦.

(dots). Setting Q = 19 and N = 9, we obtained the solutions with 0.3
percent energy error in the range 2H/D ≤ 2.4. Our results agree well
with those given in [12].

4.4. Discussions

The basic idea of the present method includes two main points:
(i) Partition of the groove region: the groove region is divided into
stratified shallow layers and the Floquet modal functions are defined
in each layer.
(ii) Employment of up- and down-going modal functions: an
approximate solution in a layer consists not only of up-going but also
of down-going modal functions.

The partition can be understood as normalization of modal
functions. This is needed when we solve the problem of a deep grating
to reduce the strongly oscillating nature of higher evanescent orders
(they strongly oscillate in X and rapidly change their magnitude in
Z).

The employment of the down-going waves increases the degree of
freedom in the least-squares boundary matching and, consequently,
extends the range of application. In order to see how the down-
going waves work, we show the comparison of energy error decrease in
Fig. 13. The curves (1), (2), and (3) represent the results obtained by
the CYM, the results by a method with the partition (normalization)
alone, and the results by the present method. When the grating is
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(a) 2H/D = 0.2 (b) 2H/D = 0.6

(c) 2H/D = 1.0 (d) 2H/D = 2.0

Figure 13. Comparison of the solutions obtained by the CYM (1), a
method with normalization alone (2), and by the present method (3).
D = 0.6λ, nU = 1.0, nL = 1.58, θ = 30◦, and Q = 20 (for (2) and (3)).

shallow (2H/D = 0.2), the CYM gives the best solution. If 2H/D is
increased beyond 0.6, however, the present method is found to be the
best: the CYM fails to give a solution for 2H/D = 1.0; and the solution
by a method with the partition alone converges not so rapidly as the
solution by the present method. In particular, when 2H/D = 2.0, the
present method with Q = 20 and N = 13 gives a solution with 0.01
percent energy error while the error of the solution by the method with
the partition alone cannot be less than 0.5 percent. We, hence, can
conclude that the partition (normalization) alone is not so effective as
the combined ideas.

It is useful to remember the argument by Lippmann [13] that
the Rayleigh expansion (an infinite series in terms of up-going Floquet
modes in U) seems unrealistic because not only up-going but also down-
going waves are expected to exist in UG. This was the first doubt about
the Rayleigh expansion and was the starting point of the controversy



Progress In Electromagnetics Research, PIER 64, 2006 307

on the validity of the Rayleigh hypothesis. It was shown, however, that
the expansion can represent the field in U provided that the infinite
series converges inside UG and on the grating surface. Hence, to find
the range of validity of the infinite series was considered to be the main
subject of the controversy. We, however, do not go further in this topic
because the aim of this article is not to give a review of the Rayleigh
hypothesis. Readers can find a list of interesting references in [14].

It is an accepted knowledge that the set of up-going Floquet modes
alone is necessary to describe the field in UG. From a physical point
of view, however, it is natural to assume a discontinuity at the border
between U0 and UG and, hence, the existence of down-going waves
in UG. In particular, when the grooves are deep, this really seems
to be the case. This is the reason why employment of down-going
Floquet modes, although it is not necessary from a mathematical point
of view, has increased the effectiveness of Yasuura’s method of modal
expansion.

5. CONCLUSIONS

We have shown that Yasuura’s method, when combined with the
partition of the groove region, can solve the problem of diffraction from
a deep grating with a depth-to-period ratio beyond unify. Although
there are a couple of methods [15, 16] that are capable of solving the
problems of extremely deep gratings, the present results make sense
showing a limit of a conventional modal-expansion approach with the
Floquet modes as basis functions.

We are working with a doubly periodic grating (the grating surface
is periodic in both X- and Y -direction) [17] and with a stratified
grating (gratings made of different materials are stratified in Z) [18].
When the amplitude of the surface modulation becomes large in these
problems, the present method works to obtain reliable solutions.

APPENDIX A. CYM FOR AN E-WAVE PROBLEM

For readers’ convenience, we here state briefly the method of solution
by the conventional Yasuura’s method (CYM) [1–4] applied to a
problem of diffraction by a perfectly conducting grating.

We define an approximate solution

Φd
N (P) =

N∑
m=−N

Amφ
+
m(X,Z) (P ∈ U) (A1)

where φ+
m(X,Z) is given by (6).
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We determine the Am coefficients in order that the solution meets
the boundary condition (4) in the sense of least-squares. That is, we
define a mean-square error

I ′N =
∫
C0

∣∣∣Φd
N (x, z(x)) + Φi(x, z(x))

∣∣∣2 dx (A2)

and find the Am’s that minimize (A2).

APPENDIX B. H-WAVE CASE

In an H-wave problem we assume that the incident wave is given by

Hi(P) = iY Φi(P) (B1)

instead of (2). The solution of this problem Φd(P), the Y component
of the diffracted magnetic field, satisfies the requirements 1., 2., 3., and
the boundary condition

∂(Φi + Φd)
∂ν

∣∣∣∣∣
z=f(x)+0

= 0 (B2)

The method of solution for this problem is almost the same as
that described in Section 3 except that the last term in the right-hand
side of (13) should be replaced by

Q∑
q=1

W 2
∫
C0q

∣∣∣∣∣∂Φ
d
qN

∂ν
(x, z(x))

∣∣∣∣∣
2

dx

 (B3)

If we solve this problem by the CYM (Appendix A), the quadratic
form

I ′′N =
∫
C0

∣∣∣∣∣∂Φd
N

∂ν
(x, z(x)) +

∂Φi

∂ν
(x, z(x))

∣∣∣∣∣
2

dx (B4)

should be minimized instead of (A2).

APPENDIX C. DISCRETIZATION AND A METHOD OF
SOLUTION FOR THE DISCRETIZED PROBLEM

We show how to find the modal coefficients that minimize the mean-
square error (13) on a computer. Because (13) defines a least-squares
problem in a function space, we first state how to discretize the
problem.
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(a) Sampling points on the (b) Sampling points on the
fictitious boundaries grating surface

Figure C1. Location of the sampling points on the boundaries.

Before doing this, we modify the integrand term of (13) slightly:
We remove a common factor eiα0x from each function in the absolute
symbol. Resultant functions are periodic inX with a periodD. Noting
that the rectangular rule gives the same result as the trapezoidal rule
for a definite integral of a periodic function over one period, we apply
the rectangular rule to the modified (13) to have a discretized least-
surface problem.

Determination of the number of sampling points. We locate
sampling points on the fictitious boundaries Γq (q = 0, 1, · · · , Q − 1)
and on the grating surface C0q (q = 1, 2, · · · , Q) as shown in Fig. C1.
Let the total number of the sampling points be

J = JS + JC (C1)

where JS and JC stand for the numbers on the fictitious boundaries
and on the grating surface. We determine the numbers by the following
rules:
(R1) The number of lows of a Jacobian in the discretized least-squares
problem (the number of linear equations in an over-determined set of
equations) is twice as many as the number of columns (the number of
unknowns NT);
(R2) The distance between two neighboring sampling points is fixed
approximately.

Let an approximation of the surface length be

* ′ = D

√
1 +

(
4H
D

)2

(C2)
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Then, according to (R2), we have a relation between JC and JS0, the
number on the top fictitious boundary Γ0:

JC

JS0
=
* ′

D
=

√
1 +

(
4H
D

)2

(C3)

If we adopt an additional approximation

JS = (Q+ 1)JS0/2 (C4)

and if we combine (C3) and (C4) with (R1), we have

JS ≈ 1

1 + 1
Q+1

√
1 +

(
4H
D

)2
·(2Q+1)(2N+1), JC ≈ 2

Q+ 1

√
1 +

(
4H
D

)2

·JS

(C5)
because the number of unknowns is (2Q+ 1)(2N + 1) and the number
of equations at a point on the fictitious boundary is 2 while the number
at a surface point is 1.
Location of the sampling points. Having determined the numbers
of sampling points on each boundary, we can locate the points as
follows: The sampling points on fictitious boundaries Γq are given by

(x, z) = (xS
j , zq) (j = 1, 2, · · · , JSq ; q = 0, 1, · · · , Q− 1) (C6)

xS
j =

2j − 1
2JS0

D (j = 1, 2, · · · , JS0 ; zq > f(xS
j )) (C7)

And the points on the grating surface are given by

(x, z) = (xC
j , f(x

C
j )) (j = 1, 2, · · · , JC) (C8)

xC
j =

2j − 1
2JC

D (j = 1, 2, · · · , JC) (C9)

Discritized form of (13). Application of the rectangular rule to
(13) gives

IN 
 INJ ≡ 1
J
||ΦA − b||2MT

(C10)

where || · ||MT
denotes the MT-dimensional Euclidean norm with

MT = 2JS + JC and Φ is a Jacobian having a block-diagonal structure

Φ =


Φ11 Φ12 0 · · · 0

0 Φ22 Φ23
. . .

...
...

. . . . . . . . . 0
0 · · · 0 ΦQQ ΦQQ+1

 (MT ×NT) (C11)



Progress In Electromagnetics Research, PIER 64, 2006 311

Φq�(* = q, q + 1; q = 1, 2, · · · , Q) are mq × n� partial matrices where
mq = 2JSq−1+JC/Q (q = 1, 2, · · · , Q), n1 = 2N+1, and nq = 2(2N+1)
(q = 2, 3, · · · , Q + 1). The elements of Φq� are the modified boundary
values of the modal functions at the sampling points. We assume that
Φ is full rank (rank(Φ) = NT), i.e., the NT column vectors of Φ are
linearly independent.

The vector A is a solution vector defined by

A =
[

A1
T A2

T · · · AQ
T AQ+1

T
]T

(NT × 1) (C12)

with A1 =
[
A

(0)
−N , A

(0)
−N+1, · · · , A

(0)
N

]T
(n1 × 1), Aq =

[
A

(q−1)
−N , A

(q−1)
−N+1,

· · · , A(q−1)
N , B

(q−1)
−N , B

(q−1)
−N+1, · · · , B

(q−1)
N

]T
(nq ×1) (q = 2, 3, · · · , Q+1).

The vector

b =
[

b1
T b2

T · · · bQ
T

]T
(MT × 1) (C13)

is a given right-hand side whose first entry (b1) consists of the sampled
values of the incident wave. Other bq’s are mq-dimensional zero
vectors.
The method of solution. Here, we describe the method of solution
for the discretized least-squares problem. The problem becomes large
when Q (the number of divisions) or N (the number of truncation)
increases. In solving such a large problem, we employ the sequential
accumulation (SA) [19] to reduce the computational complexity. The
SA-scheme to obtain a QR decomposition of the Jacobian (C11) is as
follows:
A QR method with SA.
Step 1. We take partial matrices Φ11 and Φ12 from Φ and b1, the
corresponding right-hand side, to define
Φ(1) = [ Φ11 Φ12 ] (m1×(n1 +n2)), b(1) = [ b1 ] (m1×1) (C14)

We then decompose Φ(1) to obtain

Φ(1) = Q(1)R̃(1) = Q(1)

 R(1)
11 R(1)

12

0 R(1)
22

0

 (C15)

Hence, if we operate Q(1)∗ (= Q(1)T) to a combination [Φ(1) b(1)] from
the left, we have

Q(1)∗
[

Φ(1) b(1)
]

=

 R(1)
11 R(1)

12 g(1)
1

0 R(1)
22 g(1)

2

0 e(1)

 (C16)
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Step q (q = 2, 3, · · · , Q). We take partial matrices R(q−1)
qq from

R̃(q−1), Φqq and Φqq+1 from Φ, g(q−1)
q , and bq to define

Φ(q) =

[
R(q−1)

qq 0
Φqq Φqq+1

]
((nq +mq) × (nq + nq+1)),

b(q) =

[
g(q−1)

q

bq

]
((nq +mq) × 1) (C17)

We obtain Q(q)R̃(q) by decomposing Φ(q). Then, operating Q(q)∗ to
[Φ(q) b(q)], we have

Φ(q) = Q(q)R̃(q) = Q(q)

 R(q)
qq R(q)

qq+1

0 R(q)
q+1q+1

0

 (C18)

Q(q)∗
[

Φ(q) b(q)
]

=

 R(q)
qq R(q)

qq+1 g(q)
q

0 R(q)
q+1q+1 g(q)

q+1

0 e(q)

 (C19)

Step Q+ 1. If R(q)
qq , R(q)

qq+1 and g(q)
q are obtained, Aq’s are found by

solving simultaneous linear equations, which have upper triangle
coefficient matrices, by backward substitution: R(Q)

Q+1Q+1AQ+1 = g(Q)
Q+1

R(q)
qq Aq = g(q)

q − R(q)
qq+1Aq+1 (q = Q,Q− 1, · · · , 1)

(C20)

The above is an algorithm of QR method with SA. We can prove
that the solution vector A composed of Aq’s obtained from (C20)
agrees with the solution vector found by the conventional QR method.
The minimized error is given by

INJmin = ||e(1)||2m1−(n1+n2) +
Q∑

q=2

||e(q)||2mq−nq+1
(C21)

APPENDIX D. A DIELECTRIC GRATING

When the grating shown in Fig. 1 is made of a dielectric or a metal,
we have a transmitted field ΦL(P) in L in addition to the incident
and reflected field, Φi(P) and ΦU(P), in U. ΦU(P) and ΦL(P) satisfy



Progress In Electromagnetics Research, PIER 64, 2006 313

Figure D1. Partition of the upper and the lower regions U and L.

the 2-D Helmholtz equations, the periodicity condition, the radiation
condition, and the boundary condition

ΦU
q

∣∣∣
z=f(x)+0

= ΦL
Q−q+1

∣∣∣
z=f(x)−0

(q = 1, 2, · · · , Q) (D1)

∂ΦU
q

∂ν

∣∣∣∣∣
z=f(x)+0

=
∂ΦL

Q−q+1

∂ν

∣∣∣∣∣
z=f(x)−0

(q = 1, 2, · · · , Q) (D2)

for an E-wave incidence or

ΦU
q

∣∣∣
z=f(x)+0

= ΦL
Q−q+1

∣∣∣
z=f(x)−0

(q = 1, 2, · · · , Q) (D3)

1
n2

U

∂ΦU
q

∂ν

∣∣∣∣∣
z=f(x)+0

=
1
n2

L

∂ΦL
Q−q+1

∂ν

∣∣∣∣∣
z=f(x)−0

(q = 1, 2, · · · , Q) (D4)

for an H-wave incidence. Here, nU and nL denote refractive indices of
the material in U and L. We state the method of solution assuming
an E-wave incidence.

First, we divide the semi-infinite region U into the half plane U0

and the thin layers Uq (q = 1, 2, · · · , Q). We have done this in Section 3.
Next, we divide the lower semi-infinite region L in a similar way to have
L0 and Lq (q = 1, 2, · · · , Q) shown in Fig. D1. The fictitious boundary
between Lq and Lq+1 is a horizontal line

Z = zQ−q = (−1 + 2q/Q)H (q = 0, 1, · · · , Q− 1) (D5)

Approximate solutions in Uq (q = 0, 1, · · · , Q) take the same forms
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as in Section 3. The solutions in Lq (q = 0, 1, · · · , Q) are defined by

ΦL
0N (P) =

N∑
m=−N

D(0)
m φL−

m (X,Z +H) (P ∈ L0) (D6)

and

ΦL
qN (P)=

N∑
m=−N

{
C(q)

m φL+
m (X,Z − zQ−q+1) +D(q)

m φ
L−
m (X,Z − zQ−q)

}
(P ∈ Lq ; q = 1, 2, · · · , Q) (D7)

Here, the modal functions in Lq should have the form

φL±
m (X,Z) = exp[i(αmX ± βL

mZ)] (D8)

because they are the solutions of Helmholtz’s equation in L.
The approximate solutions should meet an additional set of

boundary conditions on the fictitious boundaries:

(Φiδq0 + ΦU
q )

∣∣∣
z=zq+0

= ΦU
q+1

∣∣∣
z=zq−0

(q = 0, 1, ..., Q) (D9)

∂(Φiδq0 + ΦU
q )

∂ν

∣∣∣∣∣
z=zq+0

=
∂ΦU

q+1

∂ν

∣∣∣∣∣
z=zq−0

(q = 0, 1, ..., Q) (D10)

ΦL
q+1

∣∣∣
z=zQ−q+0

= ΦL
q

∣∣∣
z=zQ−q−0

(q = 0, 1, ..., Q) (D11)

∂ΦL
q+1

∂ν

∣∣∣∣∣
z=zQ−q+0

=
∂ΦL

q

∂ν

∣∣∣∣∣
z=zQ−q−0

(q = 0, 1, ..., Q) (D12)

Here, δq0 is Kronecker’s delta.
We find the coefficients that minimize the quadratic form

IN =
Q−1∑
q=0

{∫
Γq

∣∣∣[Φiδq0 + ΦU
qN − ΦU

q+1N

]
(x, z(x))

∣∣∣2 dx
+ W 2

∫
Γq

∣∣∣∣∣
[
∂(Φiδq0 + ΦU

qN )
∂ν

−
∂ΦU

q+1N

∂ν

]
(x, z(x))

∣∣∣∣∣
2

dx


+

Q−1∑
q=0

{∫
ΓQ−q

∣∣∣[ΦL
q+1N − ΦL

qN

]
(x, z(x))

∣∣∣2 dx
+ W 2

∫
ΓQ−q

∣∣∣∣∣
[
∂ΦL

q+1N

∂ν
−
∂ΦL

qN

∂ν

]
(x, z(x))

∣∣∣∣∣
2

dx
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+
Q∑

q=1

{∫
C0q

∣∣∣[ΦU
qN − ΦL

Q−q+1N

]
(x, z(x))

∣∣∣2 dx
+ W 2

∫
C0q

∣∣∣∣∣
[
∂(ΦU

qN − ΦL
Q−q+1N )

∂ν

]
(x, z(x))

∣∣∣∣∣
2

dx

 (D13)
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