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ABSTRACT

Motivation: High-throughput sequencing of tumor samples has

shown that most tumors exhibit extensive intra-tumor heterogeneity,

with multiple subpopulations of tumor cells containing different som-

atic mutations. Recent studies have quantified this intra-tumor hetero-

geneity by clustering mutations into subpopulations according to the

observed counts of DNA sequencing reads containing the variant

allele. However, these clustering approaches do not consider that

the population frequencies of different tumor subpopulations are

correlated by their shared ancestry in the same population of cells.

Results: We introduce the binary tree partition (BTP), a novel com-

binatorial formulation of the problem of constructing the subpopula-

tions of tumor cells from the variant allele frequencies of somatic

mutations. We show that finding a BTP is an NP-complete problem;

derive an approximation algorithm for an optimization version of the

problem; and present a recursive algorithm to find a BTP with errors in

the input. We show that the resulting algorithm outperforms existing

clustering approaches on simulated and real sequencing data.

Availability and implementation: Python and MATLAB implementa-

tions of our method are available at http://compbio.cs.brown.edu/

software/

Contact: braphael@cs.brown.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Cancer is a disease driven by somatic mutations that accumu-
late in the genome during the lifetime of an individual.

High-throughput sequencing technologies now provide an un-
precedented ability to measure these somatic mutations in

tumor samples (Ding et al., 2013). Application of these technol-
ogies to cohorts of cancer patients has revealed a number of new

cancer-causing mutations and cancer genes (Kandoth et al.,
2013; Lawrence et al., 2013; Vogelstein et al., 2013). Cancer

sequencing studies have also demonstrated that most tumors ex-
hibit extensive intra-tumor heterogeneity characterized by individ-

ual cells in the same tumor harboring different complements of
somatic mutations (Ding et al., 2012; Gerlinger et al., 2012; Nik-

Zainal et al., 2012; Schuh et al., 2012; Shah et al., 2012). Such
heterogeneity is a consequence of the fact that cancer is an evo-

lutionary process in a population of cells. The clonal theory of
cancer evolution (Nowell, 1976) posits that the cells of a tumor

descended from a single founder cell. This founder cell contained
an advantageous mutation leading to a clonal expansion of

a large population of cells descended from the founder.
Subsequent clonal expansions occur as additional advantageous

mutations accumulate in descendent cells. A sequenced tumor
sample thus consists of multiple subpopulations of tumor cells

from the most recent clonal expansions (Fig. 1).
Nearly all cancer sequencing efforts thus far sequence DNA

from a single sample of a tumor at a single time. This is because

of technical limitations: the most cost-effective DNA sequencing
technologies (e.g. Illumina) require input DNA from many

tumor cells, and such samples are typically available only when
patients undergo surgery (Occasionally, paired samples from two

time points, such as a primary tumor and a metastasis, are also
sequenced.). While sequencing of multiple samples from the same

tumor (Gerlinger et al., 2012; Newburger et al., 2013; Salari
et al., 2013) or single-cell sequencing (Hou et al., 2012; Navin
et al., 2011; Xu et al., 2012) might eventually provide even better

datasets to assess intra-tumor heterogeneity, technical consider-
ations have limited their applicability utility thus far. Thus, there

is tremendous interest in methods that infer the relative propor-
tion of different subpopulations of tumor cells in a single sample.

Several recent studies (Ding et al., 2012; Nik-Zainal et al.,
2012; Shah et al., 2012) have demonstrated that it is possible
to infer the subpopulations of tumor cells by counting the

number of DNA sequence reads that contain a somatic muta-
tion. For single-nucleotide mutations, or variants, the variant

allele frequency (VAF) is defined as the fraction of DNA
sequence reads covering the variant position that contains the

variant allele rather than the reference/germ line allele. The VAF
provides an estimate of the fraction of tumor chromosomes con-

taining the mutation, but with error due to the stochastic nature
of the sequencing process (Fig. 1). In addition, technologies cur-
rently used in cancer sequencing studies produce short reads that

rarely contain more than one somatic mutation. Thus, for any
pair of somatic mutations, the only information available to

distinguish their subpopulation of origin is the VAF.
To overcome substantial variability in measured VAFs, a

common approach is to cluster VAFs and from these clusters
infer the number and proportion of various subpopulations of
tumor cells in the sample. A number of techniques have been

introduced to perform this clustering, with Dirichlet Process
Mixture models and related non-parametric models being par-

ticularly popular, as they do not fix the number of clusters in
advance (Miller et al., forthcoming; Nik-Zainal et al., 2012; Shah

et al., 2012). VAF clusters correspond to tumor subpopulations,
and the cellular fraction, or fraction of tumor cells containing

the cluster of somatic mutation, is derived from the VAF of
the clusters. In the simplest case, the VAF directly determines
the cellular fraction: e.g. a cluster with VAF=0.5 corresponding

to homozygous mutations in 50% of tumor cells, or
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heterozygous mutations in 100% of tumor cells. However, in

practice, the inference of cellular fraction is complicated by

copy number aberrations and normal admixture (percentage of

the tumor sample that is normal cells), and these two factors are

themselves correlated (Carter et al., 2012; Oesper et al., 2013;

Strino et al., 2013). We will not consider such complications

here; rather we restrict attention to heterozygous somatic muta-

tions outside of copy number aberrations; assumptions that were

made in sequencing studies including Ding et al. (2012).
With two exceptions (Jiao et al., 2014; Strino et al., 2013),

current techniques for clustering VAFs treat each subpopulation

independently and do not consider that these frequencies are

correlated by the fact that they are partitions of the same cellular

population. Thus, these approaches do not explicitly construct

an evolutionary history of the accumulated somatic mutations in

the cells. Strino et al. (2013) performs a heuristic search over

possible trees, and we discuss Jiao et al. (2014) below.
Contributions. In this article, we formulate the problem of infer-

ring subpopulations of tumor cells from VAF data obtained from

a single tumor sample as the combinatorial problem of construct-

ing a Binary Tree Partition (BTP). We show that the problem of

finding a BTP is NP-complete and present a 2
3� oð1Þ-approxima-

tion algorithm for a related max -BTP problem. The approxima-

tion algorithm is based on Local Search and we use the

well-known packing bound of Hurkens and Schrijver (1989) for

the purpose of analysis.Next, we define "-BTP, a generalization of
the BTP problem that allows for the possibility that VAFs are

observed with errors and some VAFs are not observed. We pre-

sent a straightforward recursive algorithm to find an "-BTP and

show that this algorithm outperforms existing VAF clustering

approaches on simulated and real data. This recursive algorithm

is fast in practice and runs in less than a minute, on a single CPU,

for each of our simulated or real samples.

2 TUMOR SUBPOPULATIONS AND THE BTP

In this section, we formulate the problem of determining tumor

subpopulations from VAF clusters. The clonal theory of cancer

evolution proposes that the cancerous cells in a tumor are the re-

sult of multiple waves of somatic mutation and clonal expansion.

Given the relationship between sequence coverage (1000–

10 000� for targeted studies) and number of tumor cells that

are sequenced in a tumor sample (millions), we first assume

that any somatic mutation reported in the data must be present

in an appreciable fraction of tumor cells. This implies that the

observed somatic mutations were present in at least one clonal

expansion. Second, as in other recent studies (Jiao et al., 2014;

Salari et al., 2013), we assume that somatic mutations follow the

infinite sites assumption such that at most one single mutation

occurs at a genomic locus (e.g. single position) during the evolu-

tion of the tumor. It follows from this assumption that if a mu-

tation � occurs in a tumor cell subsequent to a mutation �, then
the fraction of cells containing mutation � must be at least as

large as the fraction of cells containing �. This condition was also

recently noted in Jiao et al. (2014).
We assume that at any particular time in the cancer progres-

sion at most one cell in the tumor population acquires a new

mutation leading to a clonal expansion. We emphasize that

(a)

(c)

(b)

Fig. 1. (a) The cells in a tumor descend from a single founder cell via multiple waves of clonal expansion. Each circle represents a population, each dot

corresponds to a mutation and the shaded sections indicate the cells descended from each founder cell of the clonal expansion. (b) Under mild

assumptions, these clonal expansions give rise to a BTP, with nodes representing populations of tumor cells with specific subsets of somatic mutations.

(c) The variant allele frequencies (VAFs) of somatic mutations are determined from sequencing data and used to infer tumor subpopulations and/or the

BTP. Here the clusters correspond to clonal expansions, and center of each cluster estimates the frequency of the newly formed subpopulation (denoted

with colored marker). Note that the size of each cluster depends on the number of mutations that accumulate before its expansion
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this assumption restricts only the number of clonal expansions

that begin at a given time and not the number of clonal expan-

sions that are ongoing at one time. Under this assumption, each

clonal expansion splits the present tumor cell population into

exactly two subpopulations: the subpopulation P of cells con-

taining the newly acquired somatic mutation and the subpopula-

tion P0 of cells without the mutation (and possibly with a

different set of new mutations occurring later in time). Thus,

the ancestral history of the sequenced tumor cell population is

represented by a rooted binary tree with nodes corresponding to

populations of cells at each clonal expansion, and edges indicat-

ing the ancestral relationships between these populations.

Consequently, each node v in the tree has a set Mv of somatic

mutations that accumulate along the unique edge pv that con-

nects v to its parent (As the root r does not have a parent, the set

Mr represents the somatic mutations that accumulate before the

first clonal expansion. Alternatively, we can let pr be a hidden

edge that connects the founder cell of the tumor (represented by

the root r) to the normal cell from which it is derived.). Each

node v also has a frequency av representing the proportion of

sequenced tumor cells with mutations Mv (Fig. 1). Note that

most tumor samples contain admixture by normal cells with

no detectable somatic mutations, and thus in general ar51.

A consequence of these assumptions is that every internal node

v in the tree satisfies the children sum to parents (CSP) condition:P
u child of v au=av. We make the following definition:

DEFINITION 1.. Given a multiset L=fa1; . . . ; ang with 05ai� 1, a

BTP for L is a complete rooted weighted binary tree T=(V,E)

with nodes V= v1; . . . ; vnf g such that vi has weight ai and every

internal node satisfies the CSP condition.

Figure 1 shows a simple example of a complete binary tree in

which the CSP conditions are satisfied for every internal node

(also see Supplementary Appendix D.6 for a more general ex-

ample). Recall that a complete rooted binary tree is a binary tree

wherein there is a unique node of degree 2 (the root), and every

node in the tree is either a leaf or has exactly two children. Our

goal is to construct such a tree from the measured VAF data. We

define the following.

DEFINITION 2 (BTP problem). Given a multiset L=fa1; . . . ; ang,
find a BTP for L if one exists.

Note that in some cases, at the split defined by a clonal

expansion, cells from P 0 may survive to the present, without

undergoing additional clonal expansions (e.g. such cells may

cease dividing, or senesce). In this case, there are no mutations

that exclusively occur in P0. We discuss this case in Section 5

below.

3 COMPLEXITY OF THE BTP PROBLEM

In this section, we outline the proof of the following theorem.

THEOREM 3. The BTP problem is NP-complete.

The proof of this theorem relies on the idea of finding a set of

conflict-free triangles in the multiset L. This idea is also useful

below for deriving an approximation for a related problem of

finding a max -BTP, and so we now define the relevant concepts.

Suppose L= a1; . . . ; anf g is a multiset of n elements. For any
distinct i, j and k such that ai+ aj= ak, we define the ordered

pair ðk; i; j
� �
Þ as a triangle in the multiset. See Supplementary

Appendix A.1 for an example. We call k as the peak of the tri-

angle and i, j as the tails of the triangle.
We say that triangles t=ðk; i; j

� �
Þ and t0=ðk0; i0; j0

� �
Þ are in

conflict if k= k0 or i; j
� �

\ i0; j0
� �

6¼ ;. In other words, two tri-

angles are in conflict if and only if they either share a common

peak or a common tail. A set Z of triangles is conflict-free if no

pair of triangles in Z are in conflict. If T is a BTP for L, for each

internal node ak and its children ai and aj, we have ak= ai+ aj,

by CSP. Therefore, ðk; i; j
� �
Þ is a triangle in L, and thus, T cor-

responds to a set of conflict-free triangles in L: each internal

node and its children form a triangle in L, and no two triangles
share a common peak or a common tail.

Because the number of nodes in a complete binary tree is

always odd, jLj being an odd number is a necessary condition

for the existence of a BTP for L. For a multiset L, with
jLj=2q� 1, the size of a conflict-free set of triangles is at

most q� 1. This is because each triangle has exactly two tails,

and in a set of conflict-free triangles, all the tails must be distinct

elements.
We have the following theorem, whose proof is in

Supplementary Appendix A.2.

THEOREM 4. Suppose L= a1; . . . ; a2q�1
� �

. L has a BTP if and

only if there exists a set of q� 1 conflict-free triangles in L.

The proof of NP-completeness of the BTP problem (Theorem

3) is by a reduction from the Numerical Matching with Target

Sums (NMTS) problem, (Garey and Johnson, 1979). An instance
of NMTS is a triple I=ðX;Y;BÞ where X;Y;B � Z

+, and

X= x1; . . . ;xmf g; Y= y1; . . . ; ym
� �

and B= b1; . . . ; bmf g. The

goal is to find two permutations �X and �Y on 1; . . . ;mf g such

that x�XðiÞ+y�YðiÞ=bi for i=1 . . . ,m.

THEOREM 5. Let I=ðX;Y;BÞ be an instance of NMTS. Then, I

has a solution if and only if a particular multiset LI has a BTP

(i.e. a set of 2m� 1 conflict-free triangles). Moreover, each solu-

tion of I can be obtained (in polynomial time) from a BTP of L,
and vice versa.

PROOF. For a given instance I=ðX;Y;BÞ, let x̂i=4ðm+1Þxi

+1; ŷi=4ðm+1Þyi+3 and b̂i=4ðm+1Þbi+4; 1 � i � m.

Moreover, let �j=
Xj

k=1
b̂k; 2 � j � m. Now we construct an

instance LI of BTP (i.e. a multiset), with 4m� 1 elements

as follows: LI= x̂1; . . . ; x̂mf g [ ŷ1; . . . ; ŷm
� �

[ fb̂1; . . . ; b̂mg[

�2; . . . ; �m
� �

:

()) First assume that we have two permutations �X; �Y on

1; . . . ;mf g such that x�XðiÞ+y�YðiÞ=bi: By definition of x̂i; ŷi and
b̂i we have also x̂�XðiÞ+ŷ�YðiÞ=b̂i. Now we construct a set of con-

flict-free triangles for LI of size 2m� 1: for each i 2 1; . . . ;mf g,

add the triangle ðb̂i; fx̂�XðiÞ; ŷ�YðiÞgÞ. In addition, for each

i 2 1; . . . ;m� 1f g, we add all triangles ð�i+1; fb̂i; b̂i+1gÞ.

Thus, by Theorem 4 we obtain a BTP from �X and �Y in poly-

nomial time.
(() Suppose S is a set of 2m� 1 conflict-free triangles for LI .

We claim that for each x̂i a triangle ðb̂�ðiÞ; fx̂i; ŷ�ðiÞgÞ exists, where
� and � are two permutations on {1, . . . ,n}. Note that this
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completes the proof, by taking �X= ��1 and �Y=ð�
�1

* �Þ for
the instance I . Node x̂i cannot be the root, as the largest number

in LI is �m. Therefore, x̂i has a sibling s and a parent p. For all

i 2 1; . . . ;mf g, we have x̂i=1; ŷi=3; b̂i=4 and �i=4i, all in

mod 4(m+1). Thus, if x̂i+s=p 2 LI , we have s=3

mod 4ðm+1Þð Þ and p=4 mod 4ðm+1Þð Þ. This implies s=ŷ�ðiÞ
and p=b̂�ðiÞ for some �(i) and �(i). Finally, because all the elem-

ents of LI are presented uniquely in T, � and � are two permu-

tations on 1; . . . ;mf g. Note that we construct �X and �Y from T

in polynomial time, and the proof is complete. h
We note that the proof above shows that the BTP problem

in NP-complete in the strong sense, i.e. the problem is still NP-

complete if the elements of the multiset are polynomially

bounded. In addition, the analogous partition problem for

non-binary trees is also NP-complete by reduction from the

subset sum problem. See Supplementary Appendix A.6.

4 A 2
3� oð1Þ APPROXIMATION FOR MAX-BTP

In the previous section, we showed that for a given multiset L of

2q� 1 elements, each BTP for L corresponds to a collection of

q� 1 conflict-free triangles. Because L can have at most q� 1

conflict-free triangles, we define the max -BTP problem to be the

problem of finding the maximum sized set of conflict-free tri-

angles. This is a closely related problem to the BTP problem:

in the context of VAF data, the maximum sized set of conflict-

free triangles denotes partial information about the ancestral re-

lationships among mutations. Moreover, for a multiset of m

elements if max -BTP has a solution of size " then a BTP with

k=m� 1� 2" additional nodes can be found. See

Supplementary Appendix A.7.

We derive a 2
3� oð1Þ approximation algorithm for the max -

BTP problem for L. The algorithm is based on Local Search. We

start with any collection of conflict-free triangles in L as a solu-

tion and iteratively add another triangle as follows. For a fixed

constant t� 1, we iteratively replace any subcollection of s� t

triangles in the solution with s+1 triangles of L such that the

new collection still contains only conflict-free triangles.

It is easy to see that the above local search terminates in poly-

nomial time. Let OPT be the size of the optimal solution.

Because we cannot have more than q� 1 conflict-free triangles

in a solution, OPT� q� 1. After each iteration, the size of the

collection increases by 1, and because t is a constant, the search

procedure at each iteration is polynomial time. Similar to the

technique that was used in Hajirasouliha et al. (2007), we use

the packing bound of Hurkens and Schrijver (1989) to prove the

following theorem (Proof in Supplementary Appendix A.7).

THEOREM 6. There exists a polynomial time algorithm that

gives an approximated solution to the problem of finding max-

imum set of conflict-free triangles within a factor of 2
3� � for

any �40.

5 THE "-BTP PROBLEM

Typically on real data, a BTP will not exist—either because the

frequencies ai are determined with some error or the VAF data

does not capture the frequency of a subpopulation that does not

have mutations that exclusively occur in that subpopulation

(VAFs provide information only about the proportion of cells

with a mutation, and do not provide information about propor-

tions of cells that have a specific mutation and lack another

mutation.). In this section, we introduce the "-BTP to account

for these scenarios. Suppose we have the multiset ~L=
~a1; . . . ; ~amf g of observed frequencies and a corresponding VAF

error vector "=("1, . . . ,"m) for ~L, where "i is the maximum pos-

sible error in observing ~ai for 1� i�m. To account for subpo-

pulations without distinguishing mutations, we may need to add

auxiliary frequencies to ~L that correspond to the missing sub-

population frequencies. We make the following definitions.

DEFINITION 7 ("-BTP). Given a multiset ~L= ~a1; . . . ; ~amf g with

associated VAF error vector �=ð�1; . . . ; �mÞ, an "-BTP with

k� 0 auxiliary nodes is a BTP for a multiset L=

a1; a2; . . . am+kf g such that for all i � m : jai � ~aij � �i. We call

the nodes am+1, . . . ,am+k the auxiliary nodes of the "-BTP.

DEFINITION 8 (The "-BTP problem). Given a multiset ~L and an

associated VAF error vector ", find an "-BTP of ~L with min-

imum number of auxiliary nodes such that two auxiliary nodes

are not siblings.

The constraint on auxiliary nodes in the definition of "-BTP
problem follows from the assumptions in our model of cancer

progression: each branching in the cancer progression happens

only when at least one clonal expansion starts. So, the VAF data

captures the frequency of the newly formed subpopulation (see

Section 2). Thus, at least one of the children of the current sub-

population node is not an auxiliary node.
It is straightforward to show that for any multiset L of size m,

it is always possible to obtain an "-BTP with k=m� 1 auxiliary

nodes (proof in Supplementary Appendix A.3). Also, when

"i=0 for all 1� i�m, a BTP exists for L if and only if the

corresponding "-BTP has a solution with k=0 auxiliary nodes.
To outline our algorithm, we need the following definitions.

DEFINITION 9 ("-CSP tree). Given a VAF error vector ", an

"-CSP tree is a (weighted) binary tree, such that for each internal

node ~ai we have ~aj+ ~ak 2 ½ ~ai � ð�i+�j+�kÞ�, where ~aj and ~ak are

the children of ~ai.

We say that an "-CSP tree ~T for a multiset ~L is acceptable if we

can obtain a BTP, �ð ~TÞ, by replacing each ~ai by a value ai where

jai � ~aij � �i. Note that �ð ~TÞ is an "-BTP for ~L. Also, note that

an "-CSP tree is not necessarily acceptable (See Supplementary

Appendix D.8). However, one can easily check whether a given

"-CSP tree ~T is acceptable by finding a collection of ei’s, where

jeij � �i, satisfying the following constraints: ð ~ai+eiÞ=ð ~aj+ejÞ+

ð ~ak+ekÞ; for each internal nodes ~ai and its children ~aj; ~ak. This

can be easily done via a linear program, which we denote by

LPð ~TÞ.

Our Rec-BTP algorithm (Algorithm 1) uses a recursive

method that works as follows: at each recursion during the al-

gorithm, we have (i) a partially constructed "-CSP tree T̂, (ii) a

multiset of remaining frequencies L̂ and (iii) the number of re-

maining auxiliary nodes that we are allowed to use. We check if

T̂ can be extended by attaching two elements of L̂, or one elem-

ent from L̂ and an auxiliary node, to one of the leaves in T̂ (we

assign the auxiliary node’s weight accordingly). If L̂ is empty, it
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means the algorithm has constructed an "-CSP tree. So we

output �ðT̂Þ
n o

if LPðT̂Þ has a feasible solution. Finally, Rec-

BTP outputs all the "-BTPs. Iterating over all values of k from

0 to m� 1, the algorithm will find the smallest k such that there

exists an "-BTP.
Later in Section 6, for the purpose of benchmarking our re-

sults, in case of multiple "-BTP outputs, we choose only the tree

whose list of node frequencies has the minimum root mean

square deviation (RMSD) from the original VAFs data (defined

below in Section 6).

6 EXPERIMENTAL RESULTS

6.1 Simulated data

We generate simulated mutation data from all complete rooted

binary trees with 3, 5, 7 and 9 nodes (Supplementary Appendix

D.7). For each tree topology, we generate 1000 random BTPs by

assigning a weight ai to each node i, as follows. For the root r, we

set ar=1, assuming that our tumor sample is pure, i.e. is not

contaminated with normal cells. Next, we proceed down the tree:

for each parent with weight ai, we select a pair of real numbers aj
and ak for the children uniformly at random such that the CSP

condition (ai= aj+ ak) is satisfied. Finally, we generate a set Mi

of somatic mutations for each node, with jMij selected uniformly

from [50 400] independently for each node. We assume all som-

atic mutations in the set Mi happened independently because the

parental cell was created. For each such BTP and set of muta-

tions, we generate a VAF data corresponding to each tumor

subpopulation. Ideally, the VAF of a tumor subpopulation

from node v equals av. However, because the observed frequen-

cies are estimated from alignments of sequencing data, the

observed frequencies will deviate from the true values. We

assume that the observed VAFs for mutations of a subpopula-

tion v are normally distributed with mean av and standard devi-

ation �. Specifically, for each node v, let Xv be a set of jMvj

samples from Nðav; �Þ. Here, we present the results when

�=2, with results on �=1, 4 in Supplementary Appendix B.

The VAF data for the tumor sample is thus X=[vXv. Note that

we simulate VAFs directly rather than the number of mapped

reads containing a mutation. Because we assume that our se-

quence coverage is high (41000�), it follows that the correspond-

ing binomial (or negative binomial) distribution of read counts is

well approximated by the normal distribution. For lower cover-

ages, the asymptotic normal approximation may not model the

data as accurately; nevertheless, the simulations provide a com-

parison of the different methods on high-quality data.
For each simulated VAF dataset X, we estimate the number

and frequencies of tumor subpopulations using two non-

parametric clustering algorithms: (i) Accelerated variational

Dirichlet process Gaussian mixture model (AVDPM; Kurihara

et al., 2006), as implemented in https://sites.google.com/

site/kenichikurihara/academic-software/variational-dirichlet-

process-gaussian-mixture-model, which is a general clustering

method that we apply directly on VAF data, and (ii) SciClone

(Miller et al., forthcoming), which is a recent algorithm (with

available software but no published paper) that estimates

tumor composition from VAF data by clustering the data

using a mixture of Gaussian model. Parameter settings for

each method are given in Supplementary Appendix C. Also, be-

cause SciClone runtimes were extremely long, we down sampled

the mutation data by a factor of 20. For each of our synthetic

dataset, we implanted the fraction of the mutations (together

with their corresponding VAF) on a synthetic chromosome

with neutral copy number compatible with the SciClone input

format (See Supplementary Appendix C). We ran SciClone with

default parameters on each dataset and then extracted the means

of reported clusters from SciClone.

From the output of each clustering algorithm, we obtain the

input for our Rec-BTP algorithm. We compute the sample mean
~ai and standard deviation �i for each cluster Ci, and set the VAF

error "i for the subpopulation frequency of cluster Ci equal

to 1:96 	 c �iffiffiffiffiffiffi
jCij
p , where c is a constant set to 3. Note that

1:96 	 �i=
ffiffiffiffiffiffiffiffi
jCij
p

is the radius of the empirical 95% confidence

interval in estimating the true subpopulation frequency.
We set L= ~a1; . . . ; ~amf g and �=ð�1; . . . ; �mÞ as the input

to Rec-BTP. We find the minimum k for which there exists a

"-BTP for L with k auxiliary nodes. In many cases, there are

multiple BTPs for L with exactly k auxiliary nodes. In these

cases, we select a single BTP with the minimum cost

costXðTÞ=
Xs

i=1

P
x2Di
jx� aij

2, where s=n� k; X is the

VAF dataset and Di=fx 2 Xjargminjjaj � xj=ig is the subset

of elements of X that are closest to ai.
We compare the results of our Rec-BTP algorithm (applied to

clusters from both AVDPM and SciClone) to the original
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clusters output from these algorithms over the 1000 randomly

constructed BTPs for each of the seven tree topologies. We use

two measures to compare the estimated subpopulation frequen-

cies: (i) the number of subpopulations and (ii) the RMSD be-

tween the set of estimated subpopulation frequencies and the

true subpopulation frequencies.
Number of subpopulations. Figure 2 shows that Rec-BTP out-

puts the correct number of clusters more frequently than the

clustering methods. For trees with 3 and 5 nodes, Rec-BTP

does not improve the AVDPM clusters much. However, with

larger number of nodes the advantage of Rec-BTP grows. Rec-

BTP provides a large improvement over the SciClone clusters.
We further examined the scenarios where each algorithm

reported the correct and incorrect number of clusters. Figure 3

compares the fraction of cases where the clustering method and

the Rec-BTP assisted method report too few, the correct number

or too many clusters. We see that most of the cases where Rec-

BTP reports the correct number of cases (blue squares) are those

where the clustering algorithm reported too few clusters and the

Rec-BTP algorithm created additional clusters. Only in the case

of 3 and 5 nodes do AVDPM and SciClone determine the correct

number of clusters (green squares) in an appreciable fraction of

cases. Overall, we see that the clustering methods tend to under-

estimate the correct number of clusters (first columns in each

table in Fig. 3). In a significant fraction of these cases, Rec-

BTP adds auxiliary nodes to obtain the correct number of clus-

ters, although this becomes more difficult with larger trees. We

also see that SciClone tends to underestimate the number of

subpopulations more frequently than AVDPM.

Accuracy of the subpopulation frequencies. We compare the

estimated population frequencies and true population frequen-

cies for each method using the RMSD. Suppose a1 � . . .� an are

the true subpopulation frequencies, and ~a1 � . . . � ~am are the

estimated subpopulation frequencies. If m= n, the RMSD isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i=1
ðai � ~aiÞ

2
q

. If m 6¼ n, we add zeros to the shorter se-

quence so the two sequences have equal length. The zeros reflect

the fact that we have not estimated the frequencies of some

subpopulations.
Table 1 gives RMSD for AVDPM, SciClone and Rec-BTP

built from these clusters. Specifically, we provide the RMSDs

when AVDPM or SciClone give (i) the same and (ii) less than

the correct number of subpopulations. For some tree topologies,

there is no sample in which both Rec-BTP and AVDPM/

SciClone give the same number of subpopulations equal to the

true number of subpopulations, which we denote by N/A.
In cases where both methods (Rec-BTP and a clustering algo-

rithm) return the same number of subpopulations, they have

similar performance in estimating the subpopulation frequencies.

Also, as mentioned earlier, these results are for the simulated

input data in which the variant allele frequencies deviate

from their true value with standard deviation �=2. When

�=1 Rec-BTP performs even better.

6.2 Comparison with Phylosub

As noted in the introduction, Jiao et al. (2014) is a recent method

that clusters VAF frequencies using a tree constraint. In particu-

lar, Jiao et al. (2014) replace the Dirichlet process mixture for

clustering with a Bayesian non-parametric prior over trees sat-

isfying a weak form of the CSP constraint. We compared our

Rec-BTP algorithm with PhyloSub.
We generated VAF data from a collection of 400 random

complete binary trees with three, five, seven and nine nodes

with fixed topologies. For each tree, we generated 100 random

instances. In contrast to the simulations in the previous section,

here we used only one of the two topologies for trees with seven

nodes and only one of the three possible topologies for trees with

nine nodes. We converted each random simulated VAF data to a

(a)

(b)

(b)

Fig. 3. Estimating the number of subpopulations using different algorithms. (a) Each entry in the table represents the fraction of random trees obtained

from AVDPM (columns) and Rec-BTP on AVDPM clusters (rows). (b) Results for SciClone versus Rec-BTP on SciClone clusters. (c) Interpretation of

each entry: the reported number of subpopulations by each method compared with the true number of subpopulations

Fig. 2. Percentage of trees where each algorithm finds the correct number

of subpopulations. Light blue/red bars are AVDPM and SciClone, re-

spectively. Dark blue/red bars are Rec-BTP results using AVDPM and

SciClone clusters, respectively, as input
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PhyloSub input identical to the procedure performed for the

simulations in the PhyloSub paper. In creating PhyloSub

inputs, we assumed the total read counts for every single nucleo-

tide variants (SNV) position is 10000 (i.e. an ideal uniform

coverage of 10000� for the PhyloSub input) and assumed

every SNV is heterozygous. On each dataset, we ran the

Markov chain Monte Carlo (MCMC) method of PhyloSub

100 times, each with 5000 MCMC iterations as per Jiao et al.

(2014), and used the reported top trees (i.e. those trees with best

log likelihood) in our comparison.
We found that PhyloSub produced trees with many more

nodes than the simulated value, and significantly more than

Rec-BTP or SciClone (Fig. 4 and Supplementary Appendix D.

9]). Because PhyloSub usually tends to report trees with a higher

number of nodes, we also considered the size of the smallest tree

reported by PhyloSub in their provided list of top trees for each

input. While this value was smaller, it was still much larger than

the true value or the values from the other approaches.
The large number of clusters produced by PhyloSub might

result from the fact that the method does not assume that the

trees are binary. The output trees contain many different topol-

ogies. Nevertheless, it is surprising that PhyloSub does not find

binary trees when the data are produced from this topology. As

PhyloSub reports a higher number of nodes than Rec-BTP, we

were unable to directly compare the provided frequencies of the

clusters of each method.

6.3 Acute myeloid leukemia sequencing data

We tested our algorithm on VAFs obtained from deep read

counts information for SNVs from an acute myeloid leukemia

sample (AML1/UPN933124) using data from Ding et al. (2012).

We used the 386 SNVs reported in the primary AML sample,

obtaining the tumor VAF data directly from Supplementary

Table S5a in Ding et al. (2012). Note that Ding et al. (2012)

also report data from a relapse sample following chemotherapy.

As the relapse-specific mutations form only one cluster, we do

not analyze the BTP problem for this sample in our study.

Nevertheless, the generalization of the "-BTP problem for the

case where the input data contains two types of VAFs (e.g.

both tumor- and relapse-specific mutations) is an interesting

open problem. We first ran SciClone on the VAF data, obtaining

four distinct VAF clusters with means of 47.17, 33.17, 22.42,

3.65%. We then ran Rec-BTP on these clusters, fixing the root

of the BTP as an additional node with frequency 100%, reflect-

ing the fact that the tumor sample was pure and started from a

single founder clone (Ding et al., 2012).

Figure 5 shows the resulting "-BTP with corresponding multi-

set of population frequencies: LRec�BTP= {100, 53.75, 46.25,

42.86, 32.25, 21.5, 3.39}. Ding et al. (2012) present a history

of clonal expansions that implies an "-BTP for the multiset

100; 53:12; 12:74; 29:04; 5:1f g with two auxiliary nodes

(Fig. 4b). There are two such "-BTP, depending on the relative

order of two clonal expansions (Fig. 4), one with subpopulation

frequencies: L1 ={100, 53.12, 46.88, 12.74, 34.14, 29.04, 5.1} and

another with frequencies L2= {100, 34.14, 65.86, 53.12, 12.74,

29.04, 5.10}. However, because the frequencies reported in Ding

et al. (2012) are scaled according to the estimated 93.72% purity

of their sample, it is necessary to multiply the frequencies in L1
and L2 by 0.9372 before comparing with the clusters obtained

from the VAF data.

We compare these different subpopulation frequencies esti-

mates by computing the average ‘1 norm between the VAF for

each mutation and the closest subpopulation. Table 2 shows this

measure for each of the subpopulation multisets. We see that the

Table 1. Mean and standard deviation of RMSD over 1000 trees for each method

Tree Rec-BTP=AVDPM Rec-BTP4AVDPM Rec-BTP=SciClone Rec-BTP4SciClone

Rec-BTP AVDPM Rec-BTP AVDPM Rec-BTP SciClone Rec-BTP SciClone

T3 0.9� 0.8 0.7� 1.1 1.3� 0.6 45.1� 11.3 1.2� 0.4 1.5� 0.4 2.6� 1.1 43.7� 11

T5 6.9� 5.6 7.5� 5.2 9� 12.8 17.4� 14.1 1� 0.5 1.2� 0.4 4.2� 6.4 15.7� 9.2

T7A 8.6� 4.8 8.2� 4.5 9.2� 5.9 10.1� 6.5 N/A N/A 6.9� 7.7 12.8� 7.5

T7B 8.4� 2.8 8.1� 2.4 8.8� 6.2 11.7� 7.1 N/A N/A 6.2� 6.9 13.2� 6.8

V 9A N/A N/A 8.9� 4.7 8� 4.6 N/A N/A 6.4� 5.4 10.8� 5.5

V 9B 2� 0 2.2� 0 8.1� 4.5 8.3� 4.4 N/A N/A 5.6� 4.9 11.4� 5.2

V 9C N/A N/A 7.5� 4.5 9.9� 4.4 N/A N/A 6.1� 5.1 10.1� 4.5

Note: Bold face text indicates best performance.

Fig. 4. A violin plot for the number of clusters output by Rec-BTP,

SciClone, PhyloSub where the top tree is considered, and PhyloSub

where the tree, among the top ones, with the minimum number of

nodes is considered. The y-axis shows the number of nodes in each

tree, while the histogram in each violin plot corresponds to tree sizes of

different experiments
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Rec-BTP gives a better fit to the VAF data than both estimates

L1 and L2 given in Ding et al. (2012). This shows that using the

tree constraint in the BTP provides additional information that is

useful for clustering real VAF data.
Note that calculation of ‘1 and ‘2 norms for the SciClone

cluster means would result in 2.4816 and 0.1823, respectively.

However, because the number of SciClone clusters is only 4,

these numbers cannot be reasonably compared with the ones

calculated for the trees in Figure 5.

7 DISCUSSION

In this article, we provide the first rigorous combinatorial for-

mulation of the problem of inferring the composition of tumor

subpopulations constrained by a tree in a single tumor sample

from the variant allele frequencies (VAFs) of somatic mutations.

In our formulation, we introduced a novel definition of the BTP

and the "-BTP. We showed that the problem of finding a BTP

(and hence an "-BTP) is in general NP-complete; however, we

derived an approximation algorithm for a related problem, max -

BTP. We developed a recursive algorithm for the "-BTP that

works well in practice and showed the advantages on this algo-

rithm on simulated and real sequencing data.
These results show the utility of the BTP, but also suggest

additional areas of further investigation. In particular, it would

be interesting to combine the clustering of VAFs and the con-

struction of the BTP into a single model. While there has been

some work to combine these two steps using a machine learning

approach (Jiao et al., 2014), the complexity of the corresponding

inference problem is unknown. In our tests, we were unable to

obtain satisfactory results using this model, suggesting there is

room for additional improvements. One possible direction is to

use MCMC or other sampling approaches over the space of

BTPs, perhaps combining this inference into a graphical model

that better models the features of real sequencing data [e.g. as

used in pyClone (Shah et al., 2012; Roth et al., 2014)]. Finally,

the extension of the BTP and related approaches to multiple

samples from the same tumor (taken at the same or different

times) will be increasingly useful as such data become available.
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