
A Combinatorial Approach to Content-based Music Selection

François Pachet Pierre Roy Daniel Cazaly
Sony CSL-Paris,

6, rue Amyot,
75005 Paris, France

E-mail: pachet@csl.sony.fr

LIP6
University of Paris 6,

Paris, France
E-mail: roy@poleia.lip6.fr

Sony Music France
Paris, France

Abstract
Advances in networking and transmission of digital
multimedia data will bring soon huge catalogues of
music to users. Accessing these catalogues raises a
problem for users and content providers, that we define
as the music selection problem. We introduce three
main goals to be satisfied in music selection: match
user preferences, provide users with new music, and
exploit the catalogue in an optimal fashion. We
propose a novel approach to music selection, based on
computing coherent sequences of music titles, and
show that this amounts to solving a combinatorial
pattern generation problem. We propose constraint
satisfaction techniques to solve it. The resulting system
is an enabling technology to build better music
delivery services.

1. Music Delivery and Selection

Music delivery concerns the transportation of music
in a digital format to users. Music delivery has recently
benefited from technological progress in networking
and signal processing. In particular, progress in
networking transmission, compression of audio, and
protection of digital data [7] allow now or in the near
future to deliver quickly and safely music to users in a
digital format through networks, either internet, or
digital audio broadcasting. Additionally, digitalization
of data makes it possible today to transport information
on content, and not only data itself, as exempli fied by
the Mpeg-7 project [9]. All these techniques give users,
at home, access to huge catalogues of annotated music.

These techniques address the distribution problem,
but also raise the problem of choosing among these
catalogues. In the case of music, a typical database of
titles contains about 500.000 titles ([1, 10]). A database
containing all tonal music recordings would probably
reach 4 milli ons titles. Ethnic music and less “standard”
types of music would probably double or triple this
number. Every month, about 4000 CDs are created in
western countries.

2. Goals of Music Selection

We define in this section the music selection problem
according to the goals of the user and the content provider.

2.1 The user’s viewpoint

The problem of choosing items is general in western
societies, in which there is an ever increasing number of
products available. For entertainment and specially music,
however, the choosing problem is specific, because the
underlying goals - personal enjoyment and excitement - do not
fall i n the usual categories of rational decision making.
Although modeling a user’s goals in accessing music is very
complex, we identify two basic ingredients: desire of
repetition, and desire of surprise.

The desire of repetition is well known in music theory and
experimental psychology [8, 12]. At the melodic or rhythmic
levels of music “repetition breeds content” . For instance,
sequences of repeating notes create expectations of the same
note to occur. At a higher level, tonal music is based on
structures that create strong expectations on the next events to
come (e.g. dominant seventh chord in tonal music are
expected to resolve). At the global level of music selection,
this desire of repetition tends to have people wanting to listen
to music they know already (and like) or that is similar to
music they already know: a Beatles fan will probably be
interested in listening to the latest Beatles bootleg containing
hitherto unreleased versions of his favorite hits.

On the other hand, the desire for surprise is a key to
understanding music, at all l evels of perception. The very
theories that emphasize the role of expectation in music also
show that listeners do not favor expectations that are always
fulfill ed, and enjoy surprises and untypical musical
progressions [20]. At a larger level, listeners want from time
to time to discover new music, new titles, new bands, or new
musical styles.

Of course, these two desires are contradictory, and the
issue in music selection is precisely to find the right
compromise: provide users with items they already know, and
also items they do not know, but will probably like.

2.2 The content’s provider viewpoint

From the viewpoint of record companies, the goal
of music delivery is to achieve a better exploitation of
the catalogue. Indeed, record companies have problems
with the exploitation of their catalogue using standard
distribution schemes. For technical reasons, only a
small part of the catalogue is actually “active”, i.e.
proposed to users, in the form of easily available
products. More importantly, the analysis of music sales
shows clearly decreases in the sales of albums, and
short-term policies based on selli ng lots of copies of a
limited number of items (hits) are no longer eff icient.
Additionally, the sales of general-purpose “samplers”
(e.g. “Best of love songs”) are no longer profitable,
because users already have the hits, and do not want to
buy CDs in which they like only a fraction of the titles.
Instead of proposing a small number of hits to a large
audience, a natural solution is to increase diversity, by
proposing more customized albums to users.

The approaches to music selection can be examined
according to these three goals: repetition, surprise, and
exploitation of catalogues. We show in the next Section
that current approaches only achieve partially the goals.

3. Approaches in Music Selection

Current approaches in music selection can be split
up in two categories: query systems and
recommendation systems. In both cases, these
approaches provide sets of items to the user, which
he/she has still to choose from.

3.1 The database approach

Query systems address database issues for storing
and representing musical data. They propose means of
accessing musical items using some sort of semantic
information. Various kinds of queries can be issued by
users, either very specific (e.g. the title of the Beatles
song which contains the word “pepper”), or largely
under specified (e.g. “Jazz” titles). In all cases the
database approach, however sophisticated, satisfies the
goal of repetition, since it provides users with exactly
what they ask for, so no novelty is achieved.

3.2 Collaborative filtering approaches

Collaborative Filtering (CF) Systems [19] address
the “surprise” goal, i.e. issue personalized
recommendations to users. CF has had some success in
the field of music selection [1, 5, 6, 11] as well as in
other domains such as books and news.

CF is based on the idea that there are patterns in
tastes: tastes are not distributed uniformly. These
patterns can be exploited very simply by managing a
profile for each user connected to the service. The
profile is typically a set of associations of items to

grades. In the recommendation phase, the system looks for all
the agents having a similar profile the user’s; will l ook for
items liked by these similar agents, which are not known by
the user, and will recommend these items to him/her.

Experimental results show that the recommendations, at
least for simple profiles, are of good quality, once a suff icient
amount of initial ratings is given by the user [19]. However,
there are limitations to this approach, which appear by
studying quantitative simulations of CF systems, using work
on the dissemination of cultural tastes [4, 2]. The first one is
the inclination to “cluster formation” , which is induced by the
very dynamics of the system. CF systems produce interesting
recommendations for naïve profiles, but get stuck when the
profiles get bigger: eclectic profiles are disadvantaged.
Another problem, shown experimentally, is that the dynamics
favors the creation of hits, i.e. items which are liked by a huge
fraction of the population. If hits are not a bad thing in
themselves, they nevertheless limit the possibilit y of other
items to “survive” in a world dominated by weight sums.

CF addresses the goal of surprise in a safe way by
proposing users items which are similar to known items.
However, cluster formation and uneven distribution of
chances for items (e.g. hits) are the main drawbacks of the
approach, both from the user viewpoint (clusters from which it
is diff icult to escape), and the content provider viewpoint (no
systematic exploitation of the catalogue).

4. On-the-fly Music Program Generation

Instead of proposing users sets of individual titl es, we
propose to build full -fledged music programs, i.e. sequences
of music titles, satisfying particular properties.

4.1 General idea

There are several motivations for proposing music
programs rather than unordered collections of titles. One is
simply based on the recognition that music titles are rarely
listened to in isolation: CD, radio programs, concerts are all
made up of temporal sequences of pieces, in a certain order.
This order is most of the time significant: different orders do
not produce the same impressions on listeners. The craft of
music programming is precisely to build coherent sequences,
rather than just select individual titles.

The second motivation is that properties of sequences play
an important role in the perception of music: for instance,
several music titles in a similar style convey a particular
atmosphere, and create expectations for the next coming titles.
As a consequence, an individual titl e may not be particularly
enjoyed by a listener in abstracto, but may be the right piece
at the right time within a sequence.

Rather than focusing on similarity of individual titl es, we
can exploit properties of sequences to satisfy the three goals of
music selection. The proposal is therefore the following. First
we build a database of titles, with content information for each
title. Then we specify music programs by giving the properties
or patterns we want the program to have. These properties are

represented as constraints, in the sense of constraint
satisfaction techniques. Finally, a constraint solver
computes the solutions of the corresponding
combinatorial pattern generation problem.

4.2 Working example

The problem is therefore to build music programs
seen as temporal sequences that satisfy the three goals
of music selection: repetition, surprise, and exploitation
of catalogues. As an example, we will t ake a music
program for which we specify the desired properties. In
the next sections, we will focus on the format of the
database and the nature of constraints.

Here is a “ liner-note” description of a typical music
program. The properties of the sequence are grouped in
three categories: user preferences, properties on the
coherence of sequences, and constraints on the
exploitation of the catalogue. This example describes a
music program called “Driving a Car” , ideally suited
for car music:
User preferences
• No slow/very slow tempos
• At least 30% female-type voice
• At least 30% purely instrumental pieces
• At least 40% brass
• At most 20% “Country Pop” style
• One song by “Harry Connick Jr”.

Constraints on the coherence of the sequence
• Styles of titles are close to their neighbors

(successor and predecessor). This is to ensure some
continuity in the sequence, style-wise.

• Authors are all different

Constraints on the exploitation of the catalogue
• Contains twelve different pieces. This is to fit on a

typical CD or minidisk format.
• Contains at least 5 titles from the label “Epic/Sony

Music”. This is a bias to exploit the catalogue in a
particular region.

5. Database of Music Titles

The database of music titles contains content
information needed for specifying the constraints.

5.1 Format of the database

Each item is described attributes which take their
value in a predefined taxonomy. The attributes are of
two sorts: technical attributes and content attributes.
Technical attributes include the name of the title (e.g.
“Learn to love you”), the name of the author (e.g.
“Connick Harry Jr.”), the duration (e.g. “279 sec”), and
the recording label (e.g. “Epic/Sony Music”). Content
attribute describe musical properties of individual titl es.

The attributes are the following: style (e.g. “Jazz Crooner”),
type of voice (e.g. “muff led”), music setup (e.g.
“ instrumental”), type of instruments (e.g. “brass”), tempo (e.g.
“slow-fast”), and other optional attributes such as the type of
melody (e.g. “consonant”), or the main theme of the lyrics
(e.g. “love”).

In the current state of our project, the database is created
by hand, by experts (including the third author). However, it
should be noted that 1) some attributes could be extracted
automatically from the signal, such as the tempo, see e.g. [18]
and 2) all the attributes are simple, i.e. do not require
sophisticated musical analysis.

5.2 Taxonomies of values and similarity relations

An important aspect of the database is that the values of
content attributes are linked to each other by similarity
relations. These similarity relations are used for specifying
constraints on the continuity of the sequence (e.g., the
preceding example contains a constraint on the continuity of
styles). More generally, the taxonomies on attributes values
establish links of partial similarity between items, according to
a specific dimension of musical content.

Some of these relations are simple ordering relations. For
instance tempos take their value in the ordered list (fast, fast-
slow, slow-fast, slow). Other attributes such as style, take their
value in full -fledged taxonomies. The taxonomy of styles is
particularly worth mentioning, because it embodies a global
knowledge on music that the system is able to exploit.

Various classifications of musical styles have been
designed, particularly by internet music retailers [1, 10].
These classifications are mainly designed for a query-based
approach. For instance, the taxonomy of Amazon is a tree-like
classification which embodies a relation of “generalization /
specialization” between styles: “Blues” is more general than
“Memphis Blues” . As such, it is well suited for navigating in
the catalogue to find under-specified items, but it does not
represent similarities between styles, for instance, having a
common origin, like, say, “Soul-Blues” and “Jazz-Crooner”.

Soul-Jazz
Latino-Jazz

Jazz-Swing

Soul-Crooner

Jazz-Crooner

Soul-Funk

Pop-Soul

Soul-Blues

World Reggae

Soul Funk

Pop-Song Pop-Rock

Country Pop

Pop CaliforniaSoul-Crooner

...
...

...

...

Jazz-Crooner Country-Crooner

Figure 1. Our taxonomy of musical styles. L inks indicate a
similar ity relation between styles. “Jazz-Crooner” is
represented as similar with “Soul-Blues”.

Our taxonomy of styles represents explicitly relations of
similarity between styles as a non-directed graph in which
vertices are styles and edges express similarity. It currently
includes 120 different styles, covering most of western music
(see Figure 1).

6. CSP for Building Music Programs

Building music programs that satisfy sets of
constraints is a combinatorial pattern generation
problem. The problem is the opposite of pattern
matching: in pattern matching, one looks for patterns in
given sequences. Here, we want to create sequences
with given patterns.

Constraint Satisfaction Programming (CSP) is a
paradigm for solving hard combinatorial problems,
particularly in the finite domain. In this paradigm,
problems are represented by variables, having a finite
set of possible values, and constraints represent
properties that the values of variables should have in
solutions. CSP is a powerful paradigm because it
allows to state declaratively the properties of solutions,
and use general purpose algorithms to find them. These
algorithms are based on the notion of constraint
filtering: each constraint is taken individually to reduce
the search space; this reduction - filtering - depends
heavily on the constraint [17]. The whole issue of CSP
is to identify general purpose constraints that can be
used to specify particular classes of problems (so-called
“global constraints”), and design eff icient filtering
procedures for these global constraints.

In the next section, we formulate the music program
problem as a finite domain CSP. In the following
section we propose a small set of global constraints to
specify most of music programs. The resulting system,
RecitalComposer is composed of a constraint solver, a
database and associated taxonomies of attribute values.

6.1 CSP for building sequences

A music program satisfying constraints can be seen
as a solution of a finite domain CSP: the sequence is
composed of successive items represented as variables
v1, v2, … vi. Each variable vi represents the i th item in
the sequence. The domain of the variables vi is the -
finite - catalogue to look from. Constraints establishing
properties of the sequence are expressed in the CSP
paradigm, and hold on the variables vi, and their
attributes vi

j (see 5.1). This formulation yields a hard
combinatorial problem. To give an idea, finding a
sequence of 20 items, with 100,000 possible values for
each item (about the size of a catalogue of a major
label) represents a search space of 10100. Eff icient
filtering procedures have to be designed in order to find
solutions in a reasonable time.

Constraints on sequence have been studied in the
community of constraint programming. For instance,
the Sequence Constraint of CHIP [3] is designed to
enable the expression of complex regulation rules. This
constraint is used to control the occurrences of some
patterns in a sequence. Specific filtering techniques are
designed to handle this sequence constraint eff iciently.
This constraint is typically used for complex timetable

problems to specify regulations rules (e.g. any employee has at
least twice a month a two-day rest). Another kind of sequence
constraint is the Global Sequencing Constraint [15] of
IlogSolver [13]. This constraint is used to specify the number
of successive items having their values in a given set. This
constraint is a generalization of the global cardinality
constraint [16] and is filtered by the same method.

Our problem is different because we need to constrain not
only the value of each item, but also the value of item’s
attributes (e.g. style, tempo, etc). For instance, we want to
have five Jazz music titles and 3 slow motion titles in a raw.
These requirements cannot be expressed neither in terms of
the Sequence Constraint of CHIP nor of the Global
Sequencing Constraint. They are stated by a set of individual
cardinality constraints. This approach raises eff iciency issues
that led us to develop specific filtering techniques, not
described in this paper for reasons of space.

6.2 Similarity, difference and cardinality

The constraints needed to specify music programs (user
preferences, program coherence, and exploitation of the
catalogue) can be expressed using a small number of global
constraints: similarity constraints, difference constraints, and
cardinality constraints. We describe below these constraints,
with examples of use.

6.2.1 Similarity constraints.
This constraint states that within a given range, the items

are successively “similar” to each other. The similarity is
defined by a binary predicate holding on one given attribute j.
The general formulation is :

S(a, b, j, similar(,)) =
For every vi, i ∈ [a, b-1], similar(vi

j, vi+1
j)

Where a and b are integers representing indexes, j is an
attribute, and similar(,) is a binary predicate. Each variable of
the predicate denotes an item’s jth attribute. For instance, this
constraint allows to state that the 10 first pieces should have
“close” styles, in the sense of the similarity relation of the
classification of styles.

6.2.2 Difference constraints
This constraint enforces difference of attributes on a set of

contiguous items. Its general formulation is:
D(I, j) meaning that:

All it ems vi, i ∈ I, have pairwise different values for
attribute j. Here, I is a set of item indexes, j is an attribute
index. This constraint allows to state that, e.g. the 10 first
pieces should have different authors, or different styles. This
constraint is an extension of the well -known all-different
constraint, for which eff icient filtering procedures have
already been proposed in the literature [14].

6.2.3 Cardinality constraints
These constraints allow to impose properties on sets of

items. They are the most diff icult from a combinatorial point
of view, because they state properties on the whole sequence.

In our context, we identified two such cardinality
constraints: cardinality on items and cardinality on
attributes.

6.2.3.1 Cardinality on items

This constraint states that the number of items
whose attribute j belongs to a given set E is within [a,
b]. The general formulation is :

CI(I, j, a, b, E) = | {i ∈ I; vi
j ∈ E} | ∈ [a, b]

Where I is a set of item indexes, j is an attribute
index, a and b are integers and E is a subset of the
possible values of attribute j. For instance, this
constraint can be used to state that there should be
between 4 and 6 pieces within a the first 10, whose
style is “Rock”.

6.2.3.2 Cardinality on attribute values

This constraint states that the number of different
values for some attribute is within [a, b]:

CA(I, j, a, b) = | {vi
j; i ∈ I} | ∈ [a, b]

Where I is a set of item indexes, j is an attribute
index, a and b are integers. This constraint can be used
for instance to state that among a sequence of five
pieces, there should be pieces from at least three
different labels.

6.2.4 Example
We can now express the example of Section 4.2 as

a CSP on sequences, by instantiating the global
constraints defined above.
• No slow/very slow tempos: simple unary constraints

on each variable.
• At least 30% female-type voice: cardinality

constraint on attribute “voice-type”.
• At least 30% purely instrumental pieces: cardinality

constraint on attribute “music setup”.
• At least 40% brass: cardinality constraint on

attribute “instrument”.
• At most 20% “Country Pop” style: cardinality

constraint on attribute “style”.
• One song by “Harry Connick Jr” : cardinality

constraint on attribute “author”.
• Styles of titles are close to their neighbors

(successor and predecessor): similarity constraint
on attribute “style”.

• • Authors are all different: difference constraint on
attribute author.

• Contains twelve different pieces: standard all -diff
constraint on variables.

• Contains at least 5 titles from the label “Epic/Sony
Music”: cardinality constraint on attribute “label”.

A solution of this problem is listed in Figure 2. The
solution is computed within a few seconds by our Java
prototype, an extension of the framework described in

[17] with sequence constraints, and a sample catalogue
containing 200 titles.

 3 Sunrise
Atkins Chet Jazz Calif 250s slow fast
instrumental Instrumental jazz guitar strings

 21 Surrounded
Kreviazuk Chant Pop Calif 238s slow fast
powerful Woman piano strings

 6 Still is still moving to
Nelson Willie Country Calif 210s fast
nasal Man calif guitar calif guitar

 9 Not a moment too soon
Mac Graw Tim Country Calif 222s slow fast
hoarse Man calif guitar piano

 10 Lovin' all night
Crowell Rodney Country Pop 227s fast
normal Man calif guitar brass

 11 Hard way (the)
Carpenter Mary Country Pop 262s slow fast
normal Woman calif guitar piano

 17 Point of rescue (the)
Ketchum Hal Country Calif 265s fast
normal Man calif guitar calif guitar

 50 At seventeen
Ian Janis Pop Folk 281s slow fast
soft Woman acoustic guitar brass

 27 Dream on
Labounty Bill Pop Calif 298s slow fast
broken Man keyboard brass

 106 Another time another plac
Steely Dan Jazz Calif 245s fast slow
instrumental Instrumental piano keyboard

 112 Learn to love you
Connick Harry J Jazz Crooner 279s slow fast
muffled Man brass strings

 137 Heart of my heart
Elgart Les Jazz Swing 151s slow fast
instrumental Instrumental double bass brass

Figure 2. A Solution of the music program defined in
Section 4.2.

7. Evaluation

The comparison of RecitalComposer with other systems is
not possible, since we do not know any other attempt at
generating sequences of multimedia data. We give here
indications about the scale-up to large catalogues, and the
quality of results.

7.1 Technical evaluation of the CSP approach

The current prototype was used on sample database of
about 200 titles, using a Java prototype. Solutions are
computed within a few seconds. Because we do not have so
far a full database with more items, we did experiments on a
dummy database of 10,000 items consisting of the initial
database duplicated 50 times. These experiments show that
resolution times grow linearly with the database size, using a
non optimized Java prototype.

Experiments on databases larger by an order of magnitude
are in progress and not reported here, but we claim that such
an increase in size do not pose any problem for two reasons:
1) The database may be split up in smaller domains of interest
for the solver, using simple heuristics, and 2) the increase of
the number of “different” items is not related to the number of
backtracks: the only relevant parameter is the “density” of
solutions in the search space, which, in our case, is always
high.

7.2 Evaluation of resulting sequences

The solutions found by RecitalComposer satisfy two goals
of music selection: user preferences (repetition) are satisfied
by definition, and exploitation of the catalogue is systematic:
no clustering or bias is introduced, so the system searches the
entire database for solutions. As ill ustrated in the working
example, specific constraints can be added to force the system
to exploit particular regions of the catalogue.

Assessing the surprise goal is more diff icult. The basic
idea is that unknown titles may be inserted in music programs
with a high probabilit y of being accepted, because of the

properties of continuity in the sequence. Experiments
are currently conducted to compare programs produced
by RecitalComposer, and programs produced by human
experts (Sony Music) on the same sample database.
Preliminary results show that the solutions found by the
program are good, and yield unexpected items that
human experts would not have thought about.

8. Services

The technique presented here is an enabling
technology to build music delivery services. The
simplest application of RecitalComposer is a system
targeted at music professionals for building music
programs from a given database. In the application, the
user can specify the constraints using an interface, and
launch the system on a database. In this system, the
user has full control on all the constraints, so it is aimed
at professionals, who want to express all the properties
of the desired programs.

Aplications targeted at non professionals have also
been developed using RecitalComposer. PathBuilder is
an application in which the user can specify a starting
title and an ending title. The system contains hidden
constraints on continuity of styles, and tempos are
fixed. For instance, find a continuous path between
Céline Dion’s “All by myself” , and Michael Jackson’s
“Beat it” . Another similar application allows users to
specify only the stylistic structure of the program. This
may be used for instance for creating long programs for
parties, in which you know in advance the structure
(e.g. begin with Pop, then Rock, then Slows, etc.).

Finally, our approach can be used to produce music
programs in specific styles, by adding domain specific
constraints. A prototype application dedicated to
Baroque music has been designed and implemented in
our lab. The application allows to build various
“recitals” in the domain of Baroque harpsichord music.
Recitals of Baroque music (XVII th century) follow
rules identified by musicologists, while allowing a great
deal of freedom to performers. A typical rule
concerning the structure of recitals is the “continuity of
tempos” between consecutive pieces. More specific
rules are also in use, such as rules on the tonality: at
this period of musical history, recitals where allowed to
modulate - i.e. change tonality - only once. Other
constraints concern the structure of the recital
(introductory part with necessary piece types), as well
as necessary alternation of piece types.

Other applications are envisaged for set-top-boxes
services and digital audio broadcasting which we do
not detail here for reasons of space.

9. Conclusion

RecitalComposer is an enabling technology for
building high-level music delivery services. The system

is based on the idea of creating explicit sequences of items,
specified by their global properties, rather than computing sets
of items satisfying queries. One of its main advantages over
other approaches is that it produces ready-for-use music
programs which satisfy the goals of music selection:
repetition, surprise, and exploitation of catalogues.

Current work focuses on the semi-automatic creation and
maintenance of large databases of titles. Indeed, some of the
attributes can be extracted automatically from input signals;
others such as similarity relations between styles could be
extracted using collaborative filtering techniques.

10. References
[1] Amazon Music Store web site, http://www.amazon.com, 1998.
[2] Cavalli -Sforza, L. Feldman, M. Cultural Transmission and
Evolution: a Quantitative Approach, Princeton University Press,
1981.
[3] Dincbas, M. Simonis, H. and Van Hentenryck, P. “Solving Large
Combinatorial Problems in Logic Programming” Journal of Logic
Programming, vol. 7 (1), 1990.
[4] Epstein, Joshua M. Growing Artificial Societies: Social Science
from the Bottom Up, MIT Press, 1996.
[5] Firefly web site, http://www.firefly.com, 1998.
[6] Infoglide web site, http://www.infoglide.com, 1998.
[7] Memon, N, Wong, P. W. Protecting Digital Media Content.
Communications of the ACM, July 1998, pp. 34-43, 1998.
[8] Meyer, L. Emotions and meaning in Music. University of
Chicago Press, 1956.
[9] Mpeg-7, Context and objectives, International Organization for
Standardization, report ISO/IEC JTC1/SC29/WG11, Oct. 1998.
[10] MusicBoulevard web site, http://www.musicblvd.com, 1998.
[11] MyLaunch web site: www.mylaunch.com, 1998.
[12] Narmour, E. The analysis and cognition of melodic complexity.
University of Chicago Press, 1992.
[13] Puget, J.-F. and Leconte, M. “Beyond the Glass Box:
Constraints as Objects,” ILPS'95, Portland, Oregon, 1995.
[14] Régin, J.-C. A Filtering Algorithm for Constraints of Difference
in CSPs AAAI'94, Seattle, WA, pp. 362-367, 1994.
[15] Régin, J.-C. and Puget J-F. A filtering algorithm for global
sequencing constraints, proceedings Third International Conference
on Principles and Practice of Constraint Programming, 1997, pp. 32-
46.
[16] Régin, J.-C. “Generalized Arc Consistency for Global
Cardinality Constraints” AAAI’ 96, Seattle, WA, 1996.
[17] Roy, P. Pachet, F. Reifying Constraint Satisfaction in Smalltalk.
Journal of Object-Oriented Programming (JOOP), 10 (4), pp. 43-51,
July/August 1997.
[18] Scheirer, E. D. (1998). "Tempo and beat analysis of acoustic
musical signals." Journal of the Acoustical Society of America
103(1): 588-601.
[19] Shardanand, U. and Maes, P. Social Information Filtering:
Algorithms for Automating "Word of Mouth'' . Proceedings of the
1995 ACM Conference on Human Factors in Computing Systems,
pp. 210-217, 1995.
[20] Smith, D. Melara, R. Aesthetic preference and syntactic
prototypicality in music: ‘Tis the gift to be simple, Cognition, 34
(1990) pp. 279-298.

