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Tomaž Hočevar* and Janez Demšar
Faculty of Computer and Information Science, University of Ljubljana, SI-1000 Ljubljana, Slovenia

Associate Editor: Igor Jurisica

ABSTRACT

Motivation: Small-induced subgraphs called graphlets are emerging

as a possible tool for exploration of global and local structure of net-

works and for analysis of roles of individual nodes. One of the obs-

tacles to their wider use is the computational complexity of algorithms

for their discovery and counting.

Results: We propose a new combinatorial method for counting graph-

lets and orbit signatures of network nodes. The algorithm builds a

system of equations that connect counts of orbits from graphlets

with up to five nodes, which allows to compute all orbit counts by

enumerating just a single one. This reduces its practical time complex-

ity in sparse graphs by an order of magnitude as compared with the

existing pure enumeration-based algorithms.

Availability and implementation: Source code is available freely at

http://www.biolab.si/supp/orca/orca.html.
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Supplementary information: Supplementary data are available at
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1 INTRODUCTION

Following the advent of high-throughput methods more than a

decade ago, analysis of complex network data has assumed the

central role among computational methods in bioinformatics.

The huge size of such networks on one hand and the computa-
tional intractability of the related methods on the other have

spawned a number of innovative analytic approaches.
Pržulj et al. (2004) described an approach focused on small

induced subgraphs called graphlets. Owing to combinatorial ex-

plosion, such analysis is usually limited to the 30 graphlets with

2–5 nodes (Fig. 1). The number of appearances of graphlets in

the network provides a description of the network’s structural
properties. On a local level, counting how many times a particu-

lar node participates in each kind of graphlet induced in the

network gives a topological signature of the node’s neighbour-

hood represented as a 30-dimensional vector.
For a finer description, the nodes of every graphlet are parti-

tioned into a set of automorphism groups called orbits (Pržulj,

2007). Two nodes belong to the same orbit if they map to each
other in some isomorphic projection of the graphlet onto itself.

Nodes of graphlets on 2–5 points are grouped into 73 orbits

shown by numbers and node colors in Figure 1. For instance,

the five nodes from G14 belong to three different orbits, marked

with different colors and numbers; the black (as well as the grey)

nodes have symmetric positions in the graphlet and thus belong

to the same orbit (31 for the black, 32 for the grey), and the white

node belongs to the orbit 33. By counting the number of times a

node of a graph appears in each orbit, the node can be described

by a 73-dimensional vector of orbit counts, which reflects its

position with respect to the local structure and gives insight

into its role in the network.

Existing methods for counting the graphlets and orbits are

based on direct enumeration: to count them, they need to find

all their embeddings in the network. We propose a new method,

Orbit Counting Algorithm (Orca), which reduces the time com-

plexity by an order of magnitude by computing the orbit counts

using the relations between them and directly enumerating only

smaller graphlets.

1.1 Motivation

Graphlets are used for different kinds of analyses in bioinfor-

matics. Milenković and Pržulj (2008) designed a method for

comparing node neighbourhoods based on graphlets and demon-

strated that clusters of nodes in protein–protein interaction (PPI)

networks, obtained with their graphlet-based distance measure,

share common protein properties. They showed how to use this

approach to predict functions of proteins and their memberships

in protein complexes, subcellular compartments and tissue ex-

pressions. Milenković et al. (2010b) studied the relation between

cancer genes and their network topology. They examined several

clustering methods based on a graphlet similarity measure and

found a difference between the PPI network structure around the

cancer and non-cancer genes. Around 80% of the predicted

cancer gene candidates have been validated in the literature.

Similarly, cost functions for network alignment that are based

on graphlet degree vectors show superior results in comparison

with other state-of-the-art methods. In particular, Milenković

et al. (2013) showed how alignment between the PPI networks

of Saccharomyces cerevisiae, Drosophila melanogaster and

Caenorhabditis elegans with the human PPI network can be

used for identification of genes related to aging, which are diffi-

cult to observe directly for humans due to our long lifespans.

Milenković et al. (2011) also applied graphlets to estimate node’s

topological centrality. Their graphlet degree centrality measure is

based on graphlet degree vectors and captures density and com-

plexity of a node’s extended neighbourhood. They showed that

the genes participating in key biological processes also reside in

complex and dense parts of networks.

Hayes et al. (2013) argue that to understand the biological

networks, we need to find the mathematical models describing

their structure, even though this may not be of direct predictive

use. Pržulj et al. (2004) used graphlet distributions to show that*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 559

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/4/559/205331 by U
.S. D

epartm
ent of Justice user on 16 August 2022

http://www.biolab.si/supp/orca/orca.html
mailto:tomaz.hocevar@fri.uni-lj.si
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt717/-/DC1
,
,
Due
a
a
in order 
-
indeed 
.
.
C.
in order 


geometric graphs match the structure of PPI networks better

than Erdo00 s–Rényi and scale-free graph models. Using a

number of large PPI networks, Hayes et al. (2013) further

showed that although the network structure may be unstable

in regions with low edge-density, high-density regions are suit-
able for network comparison using graphlet degree distributions.

Graphlets can also assist in other analytic methods, such

as global network alignment. GRAph ALigner (GRAAL)
(Kuchaiev et al., 2010) is an algorithm for aligning arbitrary

networks based solely on their topology, which uses a local top-

ology similarity measure based on graphlet degree vectors. The

technique was used to show the large amount of shared network

topology between yeast and human PPI networks, which can be

used to predict biological functions of aligned proteins or recon-
struct phylogenetic trees. H-GRAAL (Milenković et al., 2010a)

aligns networks by reducing the problem to a weighted bipartite

matching that can be solved with Hungarian algorithm. Finally,

MI-GRAAL (Kuchaiev and Pržulj, 2011) integrates multiple

sources of node similarity information, including the graphlet

degree vectors.
Solava et al. (2012) extended the use of graphlets by defining

the orbits for graphlet edges and demonstrated their use with a

new clustering method that is not limited to locally similar edges
and allows some overlap between clusters. As a practical result,

they predicted new pathogen-interacting proteins from clusters in

the human PPI network that represent drug target candidates.
Therefore, graphlet analysis is a useful tool for bioinformatics,

and with the increase of available data there is also a growing

need for fast graphlet counting tools.

1.2 Related work

We will denote the explored graph as G ¼ ðV,EÞ. Let ¼ jVj and
e ¼ jEj be the number of vertices and edges, and let d denote the

maximal node degree. LetN(u) denote the set of vertices adjacent

to vertex u. In numbering the graphlets and orbits, we follow

Pržulj (2007); we refer to the j-th graphlet and i-th orbit by Gj

and Oi, respectively.

Counting subgraphs is a computationally intensive task.

Common approaches to speed it up include sampling (Kashtan

et al., 2004; Pržulj et al., 2006; Wernicke, 2006), exploiting pat-

tern symmetries (Stoica and Prieur, 2009) or using reconfigurable

hardware accelerators based on Field-Programmable Gate Array

(FPGA) chips (Betkaoui et al., 2011).
The method described in this article is related to the approach

developed by Kloks et al. (2000), who constructed a system of

equations that allows computing the number of occurrences of

all six induced four-node subgraphs by knowing the count of any

of them. The time complexity of setting up the system equals the

time complexity of multiplying two square matrices of size n. We

extend this approach to counting how many times each node

participates in each orbit. Our method also works on five-node

graphlets and scales better on sparse graphs. Kowaluk et al.

(2011) generalized the result by Kloks et al. (2000) to count

subgraph patterns of arbitrary size.
There are several programs for graphlet counting and motif

detection that are used in bioinformatics. Fast Network Motif

Detection (FANMOD) (Wernicke andRasche, 2006) is a network

motif detection tool based on sampling random subgraphs and

comparing their counts with those from random network models.

Besides implementing a novel sampling algorithm (Wernicke,

2006), it also provides a full enumeration procedure for graphlets

on 2–8 nodes. Whelan and Sönmez (2012) developed

GraphletCounter, which works as a Cytoscape plugin and

merges graphlet analysis with visual inspection of the network.
GraphCrunch (Milenković et al., 2008) is a tool for large net-

work analysis. It includes a function for computing orbit signa-

tures of every graph node for graphlets of up to five nodes using

an enumeration procedure with correction for over-counting

some of the graphlets. A well-organized enumeration method

imposes constraints that eliminate the need for isomorphism test-

ing except for distinguishing between a few different graphlets;

this is further accelerated by comparing the number of edges and

individual node degrees. GraphCrunch has been extended with

a new method for topological network alignment and with

Fig. 1. Graphlets with 2–5 nodes and automorphism orbits. Notation follows (Pržulj, 2007). Colors are chosen arbitrarily; nodes of the same color

belong to the same orbit within that graphlet, e.g. both black nodes in G14 belong to orbit 31
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comparison of the networks with some additional mathematical
models (Kuchaiev et al., 2011). The graphlet counting procedure

in the new version remained essentially the same.

Rapid graphlet enumerator (RAGE) (Marcus and Shavitt,
2012) takes a different approach to counting four-node graph-

lets. Instead of counting the induced subgraphs directly, it recon-

structs them from counts of non-induced subgraphs. For

computing the latter, it uses specifically crafted methods for

each of the six possible subgraphs (G3 to G8 in Fig. 1). The

time complexity of counting non-induced cycles and complete

graphs is Oðe � dþ e2Þ, whereas counting other subgraphs re-
quires Oðe � dÞ. Another bound, which is also more suitable for

comparison with our method, is Oðe � d2Þ ¼ Oðn � d3Þ. Unlike

FANMOD and GraphCrunch, RAGE works only for up to

four-node graphlets.

2 METHODS

Let x represent a certain node of interest in graph G. Our task is to

compute the number of times, oi, that x appears in each orbit Oi across

all graphlets induced in G. We will present an approach based on a system

of linear equations that relate the orbit counts oi. The rank of the system

is smaller than the number of orbits by one, so we can compute all values

of oi from directly enumerating only a single one. The algorithm allows to

compute the orbits for all points x in a graph in time that is smaller than

the existing direct enumeration approaches by an order of magnitude.

We will first show how to construct a system of equations for four-

node graphlets. As for the single orbit that must be enumerated, we chose

O14, which represents nodes of the complete graph, K4 (or G8); we show

an efficient way to enumerate it. The approach used for four-node graph-

lets is less suitable for larger graphlets, so we present a different technique

for five-node graphlets.

2.1 Orbits in four-node graphlets

Right sides of equations we are about to construct contain terms that are

computed from the graph G. Let cðu, vÞ ¼ jNðuÞ \NðvÞj denote the

number of common neighbours of nodes u and v. Let pðu, vÞ denote the

number of paths on three nodes that start at node u, continue with v and

end with some node t, which is not connected to u. We can compute

pðu, vÞ as pðu, vÞ ¼ degðvÞ � 1� cðu, vÞ.

If some node x participates in a k-node graphlet Gi, it also participates

in some ðk� 1Þ-node graphlet Gj. This can be seen by removing one of

the graphlet’s nodes that are the farthest away from x. The subgraph

induced by the remaining nodes is connected (any disconnected node

would have to be farther from x than the removed node), so it is iso-

morphic to some ðk� 1Þ-node graphlet Gj.

We will use this observation in reverse: every four-node graphlet can be

constructed by adding a node to some three-node graphlets. To find the

relations between counts of orbits in four-node graphlets for a certain

node x, we enumerate all three-node graphlets touching the node and

count their possible extensions with the fourth node.

An example is shown in Figure 2. Nodes x, y and z induce graphlet G1,

a path on three nodes; we will observe its extensions to four-node graph-

lets with the fourth node, w, connected to y and z (dashed lines). The

number of such nodes w is cðy, zÞ. In our example, there are cðy, zÞ ¼ 3

such nodes, which we marked by w1, w2 and w3 (Fig. 2a). The edge ðx,wÞ

might exist in the graph G (as in the case of w3, the dotted line) or not (as

for w1 and w2). With no edge, nodes x, y, z and w form a paw (G6) with x

in orbit O9 (Fig. 2b). With an edge between x and w, they form a dia-

mond (G7) with x in orbit O12 (Fig. 2c). Because all cðy, zÞ nodes in

NðyÞ \NðzÞ must participate either in G6 or G7, which puts x in O9 or

O12, this gives o9 þ o12 ¼ cðy, zÞ for the particular triplet x, y and z.

We sum this over all possible three-node paths starting at x.

Summation must account for symmetries: each graphlet G6 appearing

in the graph is counted twice with roles of z and w reversed, and G7 is

counted twice with reversed roles of y and w. Accounting for this, we get

2o9 þ 2o12 ¼
X

y, z: x, z2NðyÞ
G½fx, y, zg�ffiG1

cðy, zÞ

where ffi denotes graph isomorphism (e.g. G½fx, y, zg�, a subgraph on

nodes x, y and z is isomorphic to G1, a path with three nodes).

For a different example, we will relate orbitsO6 andO9. We will extend

a path on nodes x, y and z with another path that starts with nodes x and

y; we denoted the number of such paths by pðx, yÞ (Fig. 3a). Depending

on whether the new node is adjacent to z, the extended graphlet is either a

claw (G4, Fig. 3b) or a paw (G6, Fig. 3c). After accounting for symmetries

and subtracting 1, as pðx, yÞ also covers the case when w¼ z, we get

2o6 þ 2o9 ¼
X

y, z: x, z2NðyÞ
G½fx, y, zg�ffiG1

p x, yð Þ � 1ð Þ

There are only two three-node graphlets and relatively few possible

extensions. Investigating all possibilities in a similar manner yields 10

linearly independent equations with 11 variables that correspond to

counts of 11 orbits in four-node graphlets (see the Supplementary

Material).

Right sides depend on the graph G and need to be computed for each

point x. To accelerate their computation, we precompute values of cðu, vÞ

and pðu, vÞ. In all equations, except for the last one, cðu, vÞ is computed on

pairs of nodes ðu, vÞ that are connected; in pðu, vÞ, they are connected by

the definition of p. Therefore, it suffices to precompute cðu, vÞ and pðu, vÞ

only for all pairs of connected nodes u and v, which requires O(e) space.

The last equation, in which the new node closes a cycle, is treated separ-

ately. Nodes x and z are not adjacent but we can precompute the number

of paths of length 2 that start at node x and end at node y. This requires

O(n) space for each point; because we compute orbits for one point at a

time, this memory can be recycled. Altogether, all lookups in the sums on

the right sides can be done in constant time by sacrificing the memory of

size Oðeþ nÞ for precomputed values cðx, yÞ and pðx, yÞ.

The total time complexity for computing all orbits for all nodes is

Oðe � dþ T4Þ, where OðT4Þ is the time needed to enumerate complete

graphlets on four nodes. Later in the text, we describe an algorithm

that does this in Oðn � d3Þ, yet the actual importance of this term depends

on the structure and density of the graph.

2.2 Counting complete graphlets

For every node, we still have to determine the count of one of the 11

orbits. Because graphs are usually sparse, a good candidate is the rare

orbit 14, which represents the nodes of the complete graphlet on four

(a) (b) (c)

Fig. 2. Relation between orbits O9 and O12. Solid lines are edges in the

three-node graphlet being extended. Dashed lines exist by definition: w

(or wi) are the common neighbours of y and z. Dotted lines are optional

edges that make the resulting four-node graphlet on x, y, z and wi iso-

morphic to G6 or G7
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nodes G8. Because of few occurrences of this graphlet and its symmetri-

city, we can efficiently restrict the enumeration.

A straightforward way to count the complete graphlets of size four

that touch a given node x1 is to start with that node and in every step add

a neighbour xi of the last added node xi�1, while checking that the new

node is also connected to all nodes before xi, xj5i�1. In this way, when we

add x4 as a neighbour of x3 we have to check whether it is connected to x1
and x2 (dotted lines in Fig. 4a), which is unlikely, especially in sparse

graphs.

A better strategy is to find the common neighbours of x1 and x2,

Nðx1Þ \Nðx2Þ, which can be done in O(d). We then choose pairs

ðx3,x4Þ from this set and check whether they are connected (Fig. 4b).

Candidates generated in this way have to satisfy only one additional

condition, as opposed to two in the straightforward approach.

To avoid counting the same graphlet multiple times, we request that

x25x35x4 under some fixed arbitrary ordering of nodes. Although the

theoretical time complexity for finding all G8 that touch x using this

algorithm is the same for both approaches, Oðd3Þ, the latter is much

faster on sparse graphs.

This method can be generalized for efficient counting of larger com-

plete graphlets in sparse graphs. In every step, we maintain a list of can-

didate nodes Ci for xi that are adjacent to all previously added nodes. We

select one of these candidates and form a new candidate set Ciþ1 consist-

ing only of nodes in Ci that are adjacent to the selected node,

Ciþ1 ¼ Ci \NðxiÞ and C1 ¼ V. The time complexity of finding all com-

plete k-node graphlets that touch x using this algorithm is Oðdk�1Þ. Later

in the text, we use such procedure to enumerate complete subgraphs on

five nodes.

2.3 Orbits on five-node graphlets

For counting four-node graphlets, we constructed a list of equations by

adding nodes to three-node graphlets and observing the resulting four-

node graphlets. Extending the four-node graphlets to five-node graphlets

would yield a huge number of equations that are not linearly independ-

ent. We will use a different approach: for each orbit, we choose some

node y from the corresponding graphlet and observe the graphlets and

orbits in which the node of interest, x, appears if we add edges between y

and other nodes in the graphlet.

Let x be the node of interest, let y be the node whose edges we observe

and let x1, x2 and x3 be the other three nodes in that graphlet.

Figure 5 illustrates counting of appearances of x in O59, which belongs

to G24 (Fig. 5a). We will focus on the node marked by y, which is con-

nected to the nodes marked by x1 and x3. Removing y reduces G24 into a

diamond, G7, with x in orbit O12.

Now assume that we are computing orbits for a certain node x and

discover some induced subgraph H ffi G7 with x in O12. We assign labels

x1, x2 and x3 to the remaining nodes as shown in the figure. Altogether,

the graph G contains cðx1,x3Þ common neighbours of x1 and x3 (similar

to nodes marked with w in Fig. 3a). Although all these nodes are—by

definition of cðx1,x3Þ—connected to x1 and x3, some are also connected

to x2 or x, or both. Figure 5 shows all four possibilities, which give

graphlets G24, G26, G27 and G28 with x in orbits 59, 65, 68 and 70, re-

spectively. Therefore, o059 þ o065 þ o068 þ o070 ¼ cðx1,x3Þ � 1, where o0i
denote orbits of x with respect to H.

For the relation between o59, o65, o68 and o70 for the entire graph, we

sum this over all possible induced G7 with x in O12. After considering the

symmetries that cause counting the same graphlet multiple times with

different assignments of y, x1, x2 and x3, we get

o59 þ 4o65 þ 2o68 þ 6o70 ¼
X

x1, x2, x3 :
x15x2^x3=2NðxÞ,

G½fx, x1, x2, x3g�ffiG7

cðx1, x3Þ þ cðx2, x3Þ � 2

Condition x15x2 (under some arbitrary ordering of nodes) is needed to

consider each graphlet G7 just once. The other two conditions put x in

O12. The second term in the sum, cðx2,x3Þ, accounts for the case in which

the roles of x1 and x2 are exchanged.

Using a similar construction for other orbits, except for O72, gives 57

linear equations for 58 orbits (see the Supplementary Material). Like for

four-node graphlets, we directly enumerate the orbit O72, which belongs

to the complete graphlet. Equations are linearly independent due to the

way in which they were constructed: each equation is set up with one

orbit in mind (e.g. O59 in the aforementioned example), and the other

orbits that appear in the equation belong to graphlets with a larger

number of edges (the additional edges between y and the other nodes,

like the dotted edges in Fig. 5b–d). Additional nice consequence besides

independence is that the system is easy to solve, as orbit counts can be

computed from those belonging to graphlets with more edges towards

those with less.

When constructing the equations, we choose y that allows for efficient

computation of the right sides: we will ensure that the right sides contain

only the node degrees and the numbers of common neighbours of pairs

and of connected triplets [cðu, vÞ, cðu, v, tÞ]. This will allow us to precom-

pute and store the values of cðu, vÞ and cðu, v, tÞ for all pairs and con-

nected triplets in G before computing the orbit counts for individual

nodes.

First, we choose the node y so that the remaining nodes constitute

a four-node graphlet, i.e. removing y does not break the graphlet

into disconnected components, which would require enumeration of

disconnected subgraphs. Second, the node y has to have at most three

connections to avoid the need to compute the number of common

(a) (b) (c)

Fig. 3. Relation between orbits O6 and O9. Edges are marked like in

Figure 2
(a) (b) (c) (d)

Fig. 5. Computing orbit count o59; figures show graphlets for different

edges between y and other nodes and the orbits of x

(a) (b)

Fig. 4. Enumerating G8 by adding one neighbour at a time or by check-

ing pairs of neighbours. Dashed edges are added by iterating through

neighbours, and dotted edges are checked in the last step
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neighbours of four points, cðu, v,w, tÞ. Besides, when y has three neigh-

bours, they need to be connected.

A node y that fulfils these criteria exists for all orbits except O72.

Precomputing the values cðu, v, tÞ for all connected triplets takes

Oðe � d2Þ time, and storing them in a hash table takes Oðe � dÞ space.

Computation of the right sides also requires enumerating all the four-

nodes graphlets, which again has a complexity of Oðe � d2Þ.

The total time required to compute all orbit counts for all x 2 V is then

Oðe � d2 þ T5Þ with Oðe � dÞ space, where OðT5Þ is the time required to

enumerate all complete five-node graphlets (G29). The algorithm thus has

the same upper bound complexity as the existing algorithms, Oðn � d4Þ.

However, experiments show that the bound is not tight: the contribution

of the OðT5Þ is negligible over the range of sensible graph densities, and

the actual running times are smaller by an order of magnitude.

We could use the same technique to construct systems of equations for

larger graphlets. However, we reduced the running times by imposing

some conditions to the selection of the node y. We have not researched

whether such nodes also exist for larger graphlets; although theoretically

interesting, this may be of little practical use in the context of

bioinformatics.

3 RESULTS AND DISCUSSION

We compared the speed of Orca with RAGE, GraphCrunch and

FANMOD. We ran all experiments on a modest desktop com-

puter (Intel Core 2, 2.67GHz). We have not experimented with

parallel execution; all four algorithms allow for trivial distribu-
tion of work on multiple cores, so the benefits of parallelization

should be the same for all.
We compared the performance of methods on the three largest

species-specific PPI networks from the July 2013 update of the

Database of Interacting Proteins (Salwinski et al., 2004) and the

human PPI network from the BioGRID (Chatr-Aryamontri

et al., 2013) 3.2.104 release. The sizes of individual datasets are

presented in Table 1.

All algorithms except the significantly slower FANMOD

counted orbits for four-node graphlets in the smaller graphs in

a few seconds (Table 2). Five-node graphlets present a more

difficult task: running GraphCrunch on the S.cerevisiae PPI

network took 49 min (as compared with 4.4 s for four-node

graphlets). FANMOD was almost 10 times slower, whereas

Orca finished the same task 80 times faster, in 6.6 s. RAGE is

limited to four-node graphlets. We got similar results for the

other two networks.
In the larger human network, Orca counted the four-node

graphlets 100 and 1800 times faster than Rage and

GraphCrunch, respectively; we aborted FANMOD after 24 h.

Orca was also the only algorithm capable of counting five-

node graphlets in a human PPI network in less than a day.

For comparison with RAGE, we included a test network of

Internet autonomous systems (http://www.netdimes.org/

PublicData/csv/ASEdges4_2012.csv.gz) that was used as the

benchmark for RAGE (Marcus and Shavitt, 2012). FANMOD

required49 h, GraphCrunch finished in 37 min, RAGE in 3 min

and Orca in 2.5 s. Orca finished the computation for five-node

graphlets in 49 min, whereas the other two algorithms were

stopped after 24 h.

The time that Orca needs for counting orbits in five-node

graphlets is comparable with those that GraphCrunch needs

for four-node graphlets. This is consistent with the way the

two algorithms are constructed: GraphCrunch enumerates

four-node graphlets to count them, whereas Orca enumerates

them to count five-node graphlets. As expected, the time

needed for enumeration of complete five-node graphlets is neg-

ligible at these network densities.
For more insight into time complexities of the compared al-

gorithms, we tested them on synthetic data using three different

random network models—Erdo00 s–Rényi, geometric and

Barabási–Albert, random graphs. Erdo00 s–Rényi graphs are con-

structed by randomly connecting e pairs of nodes. We generated

geometric graphs by randomly placing nodes in a 3D unit cube

and connecting the e closest pairs; geometric graphs show largest

resemblance to protein interaction networks (Pržulj et al., 2004).

Barabási–Albert preferential attachment model generates scale--

free networks that exhibit hubs and individual highly connected

nodes.

Table 2. Comparison of algorithms on real-world networks

Network Four-node graphlets Five-node graphlets

FANMOD GraphCrunch RAGE Orca FANMOD GraphCrunch Orca

S.cerevisiae 62 s 4.4 s 1.7 s 50.1 s 87min 9.5min 6.6 s

E.coli 34 s 1.8 s 1.0 s 50.1 s 38min 4.1min 4.8 s

D.melanogaster 21 s 3.1 s 1.6 s 50.1 s 18min 2.8min 2.3 s

Human / 183min 11.8min 6.1 s / / 269min

Internet autonomous systems 574min 37min 3.0min 2.5 s / / 49min

Note: We aborted the algorithms that took more than a day and marked the corresponding results with /.

Table 1. Statistics of benchmark real-world networks

Network Nodes Edges Maximum

degree

S.cerevisiae 5097 22 282 289

Escherichia coli 2984 11 626 178

D.melanogaster 7618 22 864 178

Human 18 170 1 37 775 9716

Internet autonomous systems 25 368 75 004 3781
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We explored the performance of GraphCrunch, RAGE and

Orca at different network densities. FANMOD was not included

as it consistently finished previous tests far behind

GraphCrunch. All graphs had 1000 nodes; for each method,

we increased the graph density until the method needed more

than a minute to complete the test. The corresponding graphs

were relatively dense, containing up to 40% of all possible edges

for test with four-node graphlets and �10% for five-node

graphlets.

RAGE counted the four-node graphlets slightly faster than

GraphCrunch, but they were both significantly outperformed

by Orca (Fig. 6 and Supplementary Tables S1–S6). We observed

similar results when counting five-node graphlets (Fig. 7). Orca

achieved the highest gain in comparison with other methods on

Barabási–Albert models, in which hubs present a large obstacle

for GraphCrunch and RAGE. This makes Orca more suitable

for real-world networks, which often display the small-world

property and contain hubs.

4 CONCLUSION

Graphlet-based network analysis is useful for various tasks in

bioinformatics, such as alignment of PPI networks and predic-

tion of protein functions based on topological similarities. Past

studies used these approaches to, for instance, identify genes

related to cancer (Milenković et al., 2010b) and aging

(Milenković et al., 2013).
We presented a new algorithm for counting graphlet orbits

that is based on derived relations between orbit counts. To

count the orbits for k-node graphlets, it enumerates ðk� 1Þ-

node graphlets and a single k-node graphlet. Empirical results

confirm that this decreases the time complexity by an order of

magnitude in comparison with other known methods. In

practical terms, the algorithm counts orbits in large PPI net-

works 50–100 times faster than other state-of-the-art algorithms.
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