
Aalto University

School of Science

Degree Programme in Computer, Communication, and Information Science

Albert Merlin Arockiasamy

A combinatorial approach to role dis-
covery

Master’s Thesis
Espoo, December 8, 2016

Supervisor: Professor Aristides Gionis, Aalto University
Advisor: Prof. Aristides Gionis

Nikolaj Tatti, D.Sc.

Aalto University
School of Science
Degree Programme in Computer, Communication, and Infor-
mation Science

ABSTRACT OF
MASTER’S THESIS

Author: Albert Merlin Arockiasamy

Title:
A combinatorial approach to role discovery

Date: December 8, 2016 Pages: v + 48

Major: Computer Science Code: SCI3042

Supervisor: Professor Aristides Gionis

Advisor: Prof. Aristides Gionis
Nikolaj Tatti, D.Sc.

We provide a new formulation for the problem of role discovery in graphs. Our
definition is structural and recursive: two vertices should be assigned to the same
role if the roles of their neighbors, when viewed as multi-sets, are similar enough.
An attractive characteristic of our approach is that it is based on optimizing a
well-defined objective function, and thus, contrary to previous approaches, the
role-discovery task can be studied with the tools of combinatorial optimization.

We demonstrate that, when fixing the number of roles to be used, the proposed
role-discovery problem isNP-hard, while another (seemingly easier) version of the
problem is NP-hard to approximate. On the positive side, despite the recursive
nature of our objective function, we can show that finding a perfect (zero-cost)
role assignment with the minimum number of roles can be solved in polynomial
time. We do this by connecting the zero-cost role assignment with the notion
of equitable partition. For the more practical version of the problem with fixed
number of roles we present two natural heuristic methods, and discuss how to
make them scalable in large graphs.

Keywords: role detection, graph mining, social-network analysis, data
mining

Language: English

ii

Acknowledgements

I take this opportunity to show my gratitude to Data Mining group at ICS
department. It was a great opportunity to be part of the group and share mo-
ments with them. This thesis was made possible only by supportive guidance
of Prof. Aristides Gionis, the head of Data Mining group. I am also grate-
ful to Dr. Nikolaj Tatti for his enormous help and patience. He was always
encouraging and guiding me with interest. I would like to thank my friends
from Fadco program with whom I shared my academic space and learned a
lot. Finally, I would like to express my deep gratitude to my parents and
family members for their love, support and patience.

Espoo, December 8, 2016

Albert Merlin Arockiasamy

iii

Contents

1 Introduction 1
1.1 Problem statement . 2
1.2 Structure of the Thesis . 4
1.3 Additional References . 5

2 Background 6
2.1 Graph-based role discovery . 7

2.1.1 Structural equivalence 8
2.1.2 Automorphic equivalence 8
2.1.3 Regular equivalence . 8
2.1.4 Stochastic equivalence 8
2.1.5 Methods for graph-based role discovery 9

2.2 Feature-based role discovery 9
2.2.1 Feature-based roles framework 10

2.3 Hybrid approaches for role discovery 13
2.4 RolX: Structural role extraction in large graphs 13

3 Role Discovery Preliminaries 15
3.1 Preliminaries and notation . 15
3.2 Problem formulation and complexity 16

4 Algorithms for discovering roles 22
4.1 A polynomial algorithm for perfect role assignment 22
4.2 Hill-climbing algorithm . 24
4.3 Iterative algorithm . 27

5 Experimental evaluation 28
5.1 Experimental setup: . 28

5.1.1 Synthetic data . 28
5.1.2 Real-world data . 28
5.1.3 Evaluation measures 31

iv

5.2 Synthetic data performance 32
5.3 Perfect assignments performance 33
5.4 Performance of greedy and iterative algorithms 34
5.5 Case study of the collaboration network 38
5.6 Case study of hen dominance network 39
5.7 Comparison with RolX . 41

6 Conclusions 43

v

Chapter 1

Introduction

I recently read a quote attributed to many people as authors: “If you’re not
networking, you’re not working”. The quizzical quote aptly defines our daily
life. Being social beings, we are always striving to better our social networks,
thereby making society a better place. With the advancement in technology,
the networks have spanned across continents and ’It’s a small world’ has
become true. The term social network is now attributed to network one has
on the internet. Social network analysis, a research area that focuses on
analysing the structures and patterns of the social network, has become an
important method in modern sociology as well as in consumer tool.

Social network analysis has attracted considerable interest and attention
from researchers of social and behavioural science. Many of them believe
that the network perspective allows new leverage for answering standard so-
cial and behavioural questions by giving precise formal definitions. Network
analysis is performed by developing models of the network and analysing
them. In order to develop the model without losing any information, graphs
are utilized.

Modeling interconnected entities as graphs (or networks) allows us to
study the global structure and function of a system, instead of looking at
single entities in isolation. Often, the role of each actor is expected to be
identified such that the relational ties can be defined or analysed.

The understanding of the structure of a network in a holistic way can
be further supported by our ability to understand the role of a single vertex
with respect to its local neighborhood, or with respect to the whole net-
work. Accordingly, role discovery has emerged as an important graph-mining
task [11, 15, 17, 37, 39, 44, 45], together with other standard graph-mining
problems, such as community detection, link prediction, etc.

Role discovery can be a valuable tool for exploratory graph mining. For
instance, identifying the role of a person in a social network may provide

1

CHAPTER 1. INTRODUCTION 2

cues for understanding the social behavior of the person in relation to his/her
peers. Similarly, identifying the role of a vertex in a technological network
may give useful information about the function of the vertex in the network,
or it may be used to detect anomalies [35]. In fact, Rossi and Ahmed [37]
provide an extensive and well-documented list of graph-mining tasks that
can be facilitated by role discovery. The list includes applications such as
classification, active learning, graph visualization, transfer learning, graph
compression, entity resolution, and more.

Problem statement

Role discovery can be seen as a process that partitions the vertices of a
graph into equivalence classes. Equivalence classes are typically aiming at
capturing the structural relation between the vertices and their neighbors.
In this way, roles can represent structural patterns in the graph, such as star
centers, bridges, peripheral vertices, vertices in near-cliques, etc. [17].

Many different approaches have been proposed for defining when two
vertices should be considered equivalent and, thus, should be assigned to the
same role. Some of the first methods proposed in mathematical sociology rely
on identifying structural or automorphic equivalence classes [13, 26], while
newer methods represent vertices by feature vectors and assign to the same
role vertices with similar feature vectors [17, 37, 38, 45].

An attractive definition for discovering roles in networks is based on the
concept of regular equivalence [13, 43]: According to regular equivalence,
two vertices should be assigned to the same role only if their neighbors have
the same roles, ignoring multiplicities. For example, for the collaboration
network of a company we may discover that vertices with role A (“project
manager”) are connected to vertices with the role B (“business analyst”)
and C (“s/w developer”), while vertices with roles B and C are typically not
connected to each other.

In this paper, we present a new approach to role discovery, inspired by
the definition of regular equivalence. As the original definition is too strict
to be of use in real-world datasets, we provide a relaxation that provides
robustness and can tolerate noise in the data. In particular, we define an
objective function that quantifies the degree to which a given role assignment
satisfies regular equivalence. Given a target number of roles k we then ask
to find the role assignment that minimizes our objective function. We also
take multiplicities into account: a vertex with 100 neighbors having role A
is treated differently than a vertex with a single neighbor having role A.

The proposed objective function is based on creating a profile for each

CHAPTER 1. INTRODUCTION 3

0

1

4

3
5

9
12

1726

2
13

20

6

78

18

25

31

11

23

28

32

29

19

14

22

15

24

16
10

30

33

34

35

27

21

1 2 3

1
2
3

5

7
8
9

12

15

1

2

4

1

1

1
10

1

role

d
eg

re
e

Centroids

:

:

:

0 0.93 0.54

3 3.5 0.75

7 3 0

Figure 1.1: Groom network of Rhesus Macaques [3]. 3 roles are assigned
using Greedy initialized by deg. The scatter plot shows the degree of a
vertex as a function of its role.

vertex, which represents the number of neighbor vertices for each other role.
Thus, vertices with the same role should have similar profiles. This require-
ment is expressed as a k-means-type squared-error function. The approach
resembles feature-based methods, however, the important difference is the re-
cursive nature of our definition: roles depend on profiles and profiles depend
on roles.

An example of the roles discovered in a grooming network of monkeys,
Rhesus Macaques, is shown in Figure 1.1. In this example, we search for
k = 3 roles. The role assignment is depicted with different colors, and the
profile centroids for each role are shown in the bottom-right subplot. We
see that the first role (purple) corresponds to relatively isolated individuals,
while the other two roles (green and orange) correspond to more central
ones. Observe that the green role is indeed different than the orange role,
as the individuals of the orange role are connected to more individuals of the
purple role, and they are not connected to each other. In the upper-right
subplot, we show a scatter-plot of role vs. degree. We see that one of the two
vertices with orange role has smaller no larger degree than five of the vertices
with green role, indicating that the role assignment we discover cannot be
explained solely by degree.

Our technical contributions are as follows: we formulate the optimization
problem and demonstrate that this problem is NP-hard. Furthermore, we
show that if we fix the profile centroids, the problem still remains NP-hard,
and cannot be approximated. On the positive side, we show that discovering
a perfect role assignment, that is, a role assignment with 0 cost, with the
smallest number of roles k can be done efficiently in polynomial time. We
further propose two natural heuristic algorithms for minimizing the cost func-

CHAPTER 1. INTRODUCTION 4

tion when k is fixed: (i) the first method is a greedy hill-climbing algorithm,
where we optimize a role for a single vertex while keeping the remaining
vertex roles constant, (ii) in the second approach, we first fix the profiles,
transforming the problem into a standard clustering problem, that we solve
using k-means algorithm, and compute the new profiles from the obtained
clustering.

We have benchmarked the proposed methods on eight different real-world
datasets of varying size. With respect to optimization score the greedy hill-
climbing algorithm is found to perform better than the iterative (k-means-
like) algorithm. This is consistent with many different initialization strate-
gies, but interestingly enough, the best performance is achieved when greedy
is initialized with the solution found by the iterative.

We have also contrasted our methods with RolX [17], a representative
feature-based algorithm. Direct comparison is not easy, as there is no avail-
able ground truth for the role-discovery problem, and as the RolX algo-
rithm does not provide an optimization criterion. Nevertheless, we find that,
when measured with our objective function, RolX obtains high-cost solu-
tions. Compared to a neutral classification task, where the aim is to predict
the discovered roles by the corresponding features, the iterative algorithm
achieves the highest accuracy.

Structure of the Thesis

The remaining chapters are organized as follows. In Chapter 2, we give a brief
overview of roles discovery, focusing on different methods used in discovering
roles and the general framework used feature based role discovery. We also
present the model RolX which is used for discovering roles in a large graph.
We describe RolX since we use it as a benchmark to compare our model
RolePro.

In Chapter 3, we discuss some basic graph theory concepts focusing on
roles and the formal definition of role discovery problem. The chapter is
continued with formal proofs showing that the role discovery process is an
NP-hard problem.

In Chapter 4, we provide in detail our model RolePro and algorithms
used for role discovery in our model. We initially provide the polynomial
algorithm for perfect role assignment and continue by defining a local search
algorithm and conclude by defining an iterative algorithm. While discussing
each algorithm, their complexities are also discussed.

In Chapter 5, all the algorithms mentioned in Chapter 4 are put into test
by experimenting with a number of datasets. Most of the datasets are well-

CHAPTER 1. INTRODUCTION 5

known to Data Mining community. We also used a collaboration network
based on our university research institute, HIIT. The experiments were per-
formed using variations of each algorithm, mainly by having different initial
results. Finally, we compare the results of the RolePro model with the
results of the RolX model.

In Chapter 6, we review our results and make some concluding remarks.

Additional References

Part of this thesis will appear as a research paper in International Conference
on Data Mining, 2016. The algorithms were developed jointly with Nikolaj
Tatti and Aristides Gionis, while the proof of NP-hardness was given by
Nikolaj Tatti.

Chapter 2

Background

We are social beings and society is vital to our survival. In order to have a
healthy relationship in the society, every one of us has a social role through
which we interact with others. For instance, parents play the role of guardian
to their children. Very often the actions performed by us define our roles and
vice versa. One example can be the role of a teacher: to help students in
gaining knowledge. The teacher will interact with all the students in a class
and make sure that they have learned what was intended for the day. If
a person looking at the class from outside can easily identify the teacher.
Hence our actions define The notion of action and role interaction has been
drawn from the field of ”Role Theory” [5] in sociology, which states that
people behave in predictable ways based on their social roles.

Role discovery is the process of identifying the actions of people and
classifying the people using their actions. These days people interact in
virtual social networks such as Facebook, Twitter. The same process of
role discovery can be applied to such social networks as well to identify
roles of each person interacting in the network. In order to perform role
discovery, a snapshot of the social network is captured and converted to a
graph where nodes are the persons and edges are the interaction between
person. People with similar features are grouped. So role discovery is a
process that categorizes nodes into different classes of equivalent nodes and
each class is labeled with a role.

Two nodes are equivalent, they are interchangeable without loss of infor-
mation if they interact with other nodes in the network in identical ways.
There have been many simpler, relaxed versions of equivalence in recent
times, e.g., structural equivalence [43], stochastic equivalence [19]. Based on
this relaxation, role discovery can be defined as a process that takes a net-
work graph as input, identifies the equivalent nodes, clusters sets of nodes
with similar structural patterns and assigns a role. Two nodes are assigned

6

CHAPTER 2. BACKGROUND 7

to the same role if they have similar structures.
Role-discovery methods can be broadly classified into three categories [37]:

• graph-based role discovery

• feature-based role discovery

• hybrid-based role discovery

Figure 2.1: Toy example to reveal the differences between the role equiva-
lences.

Graph-based role discovery

Graph-based methods compute roles directly from the graph representation.
A number of different definitions have been suggested for quantifying when
two nodes are equivalent and should be assigned to the same role. We first
look at some of the important equivalences that are used in graph-based role
discovery.

CHAPTER 2. BACKGROUND 8

Structural equivalence

Structural equivalence states that any two nodes are equivalent nodes if they
have same connection pattern to the same set of neighbors. Therefore, two
nodes vi and vj are structurally equivalent if they have the same neighbors,
i.e., N(vi) = N(vj). In Figure 2.1, the nodes in red color are structurally
equivalent as they have the same (identical) neighbor. There have been many
relaxations of structural equivalences [43], [19] that are based on the fact
that structurally equivalent nodes are two links away.

Automorphic equivalence

Isomorphism is a mapping from a graph to another graph such that the
properties of mapped one are preserved in the mapping one. An automor-
phism is an isomorphism from one graph to itself thereby preserving sym-
metries. In formal notation, a node u is automorphically equivalent to node
v if there exists an automorphism p such that u = p(v) [19]. Moreover, any
set of structural equivalences is also automorphic. In other words, structural
equivalences ask whether a node can be exchanged with another node while
preserving the relationships of that node, whereas automorphic equivalence
focuses on a set of nodes that are exchangeable as subgraphs. In Figure 2.1,
the nodes with colors red and green are automorphic and can be clustered
into a single class (also known as a role). Similarly, nodes v1 and v2 form
another role.

Regular equivalence

In order to preserve the social concepts, roles definitions are relaxed into regu-
lar equivalences. It is based on an idea that nodes play the same role if they
are connected to role-equivalent nodes as opposed to structural equivalent
nodes where the nodes are to be connected to identical nodes. Intuitively,
nodes with same roles are not forced to have a connection to the same neigh-
bors or even the same number of neighbors. From Figure 2.1,nodes in red
and green colors are regularly equivalent, while v1 and v2 form another class
of regularly equivalent nodes. Furthermore, v3 and v4 represent the third
role and the last three nodes form the fourth roles.

Stochastic equivalence

Stochastic equivalence was introduced since regular equivalence is strict where
each node is assigned to one role, not more. Nodes are assigned to roles such

CHAPTER 2. BACKGROUND 9

that the probability of linking a node with other nodes are the same for all
the nodes within the role.

Methods for graph-based role discovery

Graph-based roles are composed of the graph, often represented as an ad-
jacency matrix. Though our focus is on feature-based roles, we present a
synopsis of some of the known methods for graph-based role discovery.

Blockmodels Blockmodels is one of the most popular role discovery
techniques in social network analysis. A network is represented as a role-
interaction graph where roles are nodes and interaction between the roles are
the edges.

One of the first methods based on blockmodels that emerged was CON-
COR (convergence of iterated correlations), proposed by Breiger et al. [8].
The method computes the correlation of the adjacency matrix of the graph.
Using the correlation, it computes a correlation matrix and so on. The pro-
cess is continued until all entries become either 1 or -1.

The main disadvantage of blockmodels is that they are significantly slow
for large graphs that are present in social networks. For example, one re-
cent model, mixed-membership stochastic blockmodels for dynamic networks
(dMMSB) [2], takes around 24 hours to compute for 1,000 nodes. This is
because the model has quadratic complexity.

Row/column similarity of adjacency matrix Besides the block
models, there are other methods that utilize variants of similarity [9]. These
methods are made of two steps: For each pair of tuples in the adjacency
matrix, distance (similarity) is calculated using any of the traditional meth-
ods such as euclidean distance or correlation. Using the calculated distance
values, the nodes are clustered. Simple clustering methods (e.g., hierarchical
clustering or multi-dimensional scaling (MDS) [22]) can be used.

This method can be faster than block models methods if properly con-
figured [7] but the results are harder to interpret. For instance, we get two
clusters as final results, and it is difficult to identify one of them as a cluster
of teachers and the other as a cluster of students.

Feature-based role discovery

Feature-based role discovery is a more modern approach that relies on repre-
senting each node in the graph by a feature vector and assigning them to the

CHAPTER 2. BACKGROUND 10

same roles if they have a similar feature vectors [15, 17, 37, 38, 45]. Features
can be extracted from graph-based properties of each node, such as, degree,
clustering coefficient, centrality, etc., or combined with other information
that may be available for the graph nodes, such as dynamic behaviour or
node attributes. The set of features derived are based on some transforma-
tion of the graph f(G) = X where G is a graph, X is the set of features and
f(.) is a collection of transformation functions over the graph. A transfor-
mation can be any operations on the graph. Some of the operators used in
transformation are shown in Table2.1.

Table 2.1: Graph transformation operators that can be used for feature
derivation from a graph.

Operators Examples

Relational Aggreators[30] Mean, Median, Mode, Count
Set Operators[28] Union, Intersection, Multiset
Subgraph Pattern[34] k-star, k-clique, k-motif
Dimensionality Reduction[40] SVD, NMF, PCA
Similarity[6] Cosine Similarity,

Mutual Information
Paths/walks[25] random-walks, k-walks
Text Analysis[10][36] Latent Ditichlet Allocation (LDA),

Probabilistic latent semantic analysis

Once feature vectors are constructed, the assignment the problem can be
viewed as a traditional clustering problem, and thus can be approached with
classic clustering techniques. From technical point of view, our setting differs
fundamentally since our features, namely the roles of neighbors depend on
the clustering.

Feature-based roles framework

Feature-based roles framework consists of two main parts:

• Feature construction: Transform a given graph to a set of graph fea-
tures, often represented as feature vectors.

• Role assignment: Assign nodes that have similar feature vectors to
same roles.

CHAPTER 2. BACKGROUND 11

The basic framework of feature-based role discovery is shown in Figure 2.2.
When a graph is provided for role assignment, feature construction oper-
ation is performed on the graph to generate features based on the graph
structure and attributes. Initially, the graph G and some initial nodes or
edge attributes are provided, but along the way of feature construction, ad-
ditional features may be added to the feature set X. Once the feature set X
is constructed for each node, the node-feature vector is passed as input to
role assignment operation. Role assignment operation uses some of the well-
known clustering or approximation algorithms to group nodes with similar
features and assign them same roles.

Figure 2.2: The basic framework for feature-based roles discovery. It consists
of feature construction and role assignment operations. Graph information
is the input and the roles for each node is the output. Node-feature vector
is the intermediate output.

CHAPTER 2. BACKGROUND 12

Feature construction mainly consists of four steps for constructing node-
features vector:

1. Feature classes selection. Select the types of features that need to
be constructed using the graph data. Some of the feature classes are
structural features (degree, betweeness, clustering a coefficient number
of 2-star patterns, triangles, etc.), link-value features (paths), node-
value features (mode of adjacent node values), non-relational features
(attributes).

2. Feature operators selection. The operations to be performed on the
selected graph values to gain the required features. These operators
define the search space of features that is to be used to construct a
feature set. Some of the feature operators are already mentioned in
Table 2.1. Most of these operators are suitable to be used for computing
feature values for nodes and edges of a graph. However, some of these
operators cannot be used for constructing structural features as they
rely on non-relational data.

3. Feature search strategy. Select a strategy to search over the feature
space. The strategy may be exhaustive (looking at all features in the
feature space), random (using only a fraction of the space by sampling),
or guided (using heuristics to select features from the feature space).

4. Feature selection. Determine how features are evaluated or scored and
pruned in the iteration. All the searched features are not selected for
final representation. The goal is set of features that are minimal. Hence
correlation and log binning methods are used to remove redundant and
noise features.

Once a node-feature vector is constructed, feature-based roles are discov-
ered by assigning nodes with similar features to the same role. There are two
main classes of methods for assigning roles to nodes: role clustering methods
or low-rank approximation methods. In role clustering methods, clustering
algorithms are used to cluster nodes with similar features and assign the same
roles to all the nodes within a cluster. The two major clustering types are hi-
erarchical (agglomerative and divisive clustering) and partitioning algorithms
(k-means, k-medoids, and self-organizing maps). The above-mentioned al-
gorithms are hard-clustering algorithms: they assign a node to a single role.
There are also algorithms that are soft-clustering as they assign multiple roles
to a node. Some of them are fuzzy C-means [4] and Gaussian mixture mod-
els [32]. Low-rank approximation methods select a relatively small number r

CHAPTER 2. BACKGROUND 13

and compute a low-rank matrix that best approximates the original feature
matrix X. This is done using dimensionality reduction methods such as SVD
[16], PCA [1], Kernel-PCA [41], MDS [23], NMF [42].

Hybrid approaches for role discovery

Hybrid approaches utilize both the graph and feature representation to gen-
erate roles. The hybrid methods are categorised into two classes based on
the method used first. The first class uses a graph-based approach initially,
may be a block model to extract roles directly from the graph, and uses the
resultant roles as initial attributes in a relational feature based learning sys-
tem. The refined output features are then used to determine the number of
roles to be derived and roles for each node. The main disadvantage of this
methods is its scalability since block models are slow for large datasets.

The second class of hybrid methods utilizes multiple data sources for
role assignment. Initially a feature representation X is generated and graph
based role assignment is performed based on X. Some of the known hybrid
approaches are based on tensor factorization methods [12], [14] or collective
matrix-tensor factorization (CMTF) methods [27].

RolX: Structural role extraction in large graphs

Henderson et al. have proposed RolX, a non-negative matrix factorization-
based (NMF) approach to decompose a node-feature matrix into node-role
and role-feature matrices [17]. RolX follows three steps similar to the general
framework of feature-based roles: feature extraction, feature grouping and
model selection.

In feature extraction, RolX uses a recursive feature extraction method
(ReFeX) [18] which is based on constructing node-role matrix using NMF.
ReFeX is scalable to large graphs. It extracts local and egonet features
based on counts of links adjacent to a node and aggregates egonet-based
features in recursion until no informative features can be added. In feature
grouping step, RolX groups nodes with similar features using low-ranking
approximation method. The node-feature matrix is decomposed into two
non-negative node-role and role-feature matrices. The number of roles to be
used is derived by model selection method. It is done by using Minimum
Description Length criterion [33].

In order to make sense of roles assigned by RolX, two measures were used
known as node sense and neighbor sense. Node sense takes a node-role matrix

CHAPTER 2. BACKGROUND 14

of RolX and a matrix of node measurements (degree, page rank etc) as input
and calculates the contribution of role to node measurements. Neighbor sense
is similar to node sense except that it uses neighbor node-role matrix instead
of node measurements. The research shows that RolX is able to find roles
with distinct characteristics, and the derived roles are transferrable from one
network to another. We will be using RolX to compare the results obtained
by our combinatorial profile based method.

Chapter 3

Role Discovery Preliminaries

Graph theory is a powerful tool to study various types of networks such
as road networks, telephone networks, social networks and the World Wide
Web. In order to discover roles in a social network, we need to understand
the preliminaries of graphs. Let us now look at the basic graph theory terms
that are useful in role discovery. We will be focusing on terms that are used
in this thesis.

Preliminaries and notation

A graph G is a pair (V,E), where V is a set of vertices (also called nodes)
and E is a multiset of unordered pairs of vertices called edges. We denote an
edge e ∈ E as a pair u, v, where u, v ∈ V and u and v are endpoints of e and
|V | = n, |E| = m. We consider both directed and undirected edges. Often
vertices and edges can have attributes attached to them. One attribute which
is used often in graph theory is the weighted values on edges that define the
importance of the edge. We say two edges are parallel if they have the same
end points. We call a graph simple if it does not contain multiple edges.

A vertex is incident on an edge if it one end of the edge. A vertex u is
adjacent to vertex v if u, v is an edge in the graph. Neighbors of a vertex v
are set of vertices that are adjacent to the vertex. The degree deg(v) of a
vertex is the number of edges incident to v in the graph.

A role assignment r : V → [1, k] is a function mapping each vertex v to
an integer between 1 and k, which is interpreted as a role id and the total
number of roles k is given. Given a role assignment r, the profile of a vertex
v for that role assignment is a k-dimensional vector p(v; r) = x, where xi,
the i-th coordinate of p(v; r), is the number of vertices with role i that are

15

CHAPTER 3. ROLE DISCOVERY PRELIMINARIES 16

adjacent to v,
xi = |{(v, w) ∈ E | r(w) = i}|.

Problem formulation and complexity

Our goal is to assign roles to the vertices of the graph G. Our guiding
principle for assigning roles to the graph vertices is that vertices assigned
to the same role should have more similar profiles than vertices assigned to
different roles.

As vertex profiles are k-dimensional vectors, we quantify the similarity
between them using the Euclidean distance

d(x,y) = ||x− y||2 = (
k
∑

i=1

|xi − yi|
2)1/2

where x and y are vertex profiles.
Furthermore, each role i ∈ [1, k] is represented by a k-dimensional vector

ci, which is selected as a representative of the profile vectors of all vertices as-
signed to role i. We use the Euclidean distance to define the distance between
a vertex profile p(v; r) and a role representative vector c. For simplicity of
notation we write

d(v, c; r) = d(p(v; r) , c) = ‖p(v; r)− c‖2 .

The role-mining problem we consider can now be formulated as follows.

Proposition 1. (Roles) Given a graph G = (V,E) and an integer k, find
a role assignment r : V → [1, k] and k representative role vectors c1, . . . , ck
that minimize the cost

c(r, c1, . . . , ck) =
∑

v∈V

d
(

v, cr(v); r
)2

.

We can show that the Roles problem is NP-hard. The proof of the
following proposition is obtained by a reduction from the 3D-Matching

problem.

Proposition 2. Roles is NP-hard.

Proof. We will prove the hardness from 3D-Matching: aNP-hard problem
where we are given a universe U and family M of sets of size 3, and we are
asked to find a maximum disjoint cover.

CHAPTER 3. ROLE DISCOVERY PRELIMINARIES 17

Assume that we are given an instance (U,M) of 3D-Matching. Let
n = |U | and m = |M |. We can safely assume that n is divisible by 3.

Define h =
(

n
3

)

the number of possible sets of size 3 over U . Let ℓ =
(

n−1
2

)

be the number of possible sets of size 3 containing a fixed vertex in U . Let
us define t = 8m and s = 2t.

Graph construction: The graph consists of two major parts.
The first part entails 7 vertex sets: we start with A1 and A2 with |A1| = 3

and |A2| = ℓ−1. A single vertex, say v, is connected to an additional vertex,
say w. We write A3 = {v} and A4 = {w}. Futhermore, w is connected to
a biclique of A5 = K(s, s). Each vertex u ∈ A1 and v ∈ A2 is connected
with a fat edge: t copies of a path u–x–v, where x is a vertex unique to the
path. These vertices form A6. Similarly, each vertex u ∈ A1 and v ∈ A3

is connected with a fat edge; the intermediate vertices form A7. The final
graph consists of t copies of the first part. We redefine Ai to be the union of
the corresponding groups in each copy.

The second part is very similar to the first. It entails the vertex sets B1,
B2, and B3 with |B1| = n, |B2| = h − m |B3| = m. Here B1 corresponds
to the universe U , and B2 and B3 correspond to triplets of elements in U .
Each vertex in B3 is connected to its own vertex. These vertices form B4.
Each vertex in B4 is also connected to its own dedicated biclique K(s, s).
The vertices in bicliques form B5. A vertex in B2 is connected to the corre-
sponding vertices in B1 with a fat edge of size t. The intermediate vertices
form B6. Similarly, a vertex in B3 is connected to the corresponding vertices
in B1 with a fat edge of size t. The intermediate vertices form B7.

Role assignment: Let us now define a role assignment, later this will turn
out to be the optimal assignment. Let W , not necessarily a subset of M , be
a matching covering completely U .

Let C3 be the vertices in B2 ∪ B3 corresponding to W . Let C1 = B1,
C2 = (B2 ∪ B3) \ C3 C4 = B4, C5 = B5. Let C6 be the vertices in B6 ∪ B7

adjacent to C3, and set C7 = (B6 ∪ B7) \ C6. We define r(v) = i, where
v ∈ Ai ∪ Ci. Let us write rW = r.

Let us compute the cost of r. To that end, write cij to be the cost incurred
by the jth component of the ith role. The only non-zero costs are c24, c42,
c34, and c43. Define ni = |{v; r(v) = i}|, and let α = |A3 ∪ (B3 ∩ C3)| and
β = |B3 ∩ C2|. We can express the cost as

c24 + c34 + c42 + c43 = f(β, n2) + f(α, n3) + 2f(α, n4),

where f(x, y) = x(y − x)/y. The counts ni do not depend on W . Since
α+β = n4, so the cost of depends on W only via α. We have 2α ≥ 2t ≥ n3, n4

and 2β ≤ 2m ≤ t ≤ n2. Since f(x, y) is a parabola peaking at x = y/2, the
cost decreases as α increases.

CHAPTER 3. ROLE DISCOVERY PRELIMINARIES 18

Since f(x, y) ≤ min(x, y/2 − x), we can upper-bound the cost by n3 +
2n4 − 3α + β < 4m.

Role r is optimal: Let r∗ be the optimal role assignment with a cost of σ.
Consider that if instead of selecting optimal centroids for r∗, we select the
optimal centroids—we denote them by µ′—among the profiles of the vertices
in the cluster. We know that the cost of r∗ w.r.t. µ′, say τ , is at most 2σ.
If τ ≥ 8m, then σ ≥ 4m, the cost of r, which violates the optimality of r∗.
Consequently, τ < 8m = t.

Note that µ′ are all integral. We can safely assume that the copies of
the first part of the graph have the same role assignment. This immediately
implies that the profiles of r∗ should match exactly the centroids µ′.

There are 6 groups with distinct degrees in the first part: deg(u) = tℓ for
u ∈ A1, deg(u) = 3t for u ∈ A2, deg(u) = 1 + 3t for u ∈ A3, deg(u) = 2s+ 1
for u ∈ A4, deg(u) = s+1 for u ∈ A5, deg(u) = 2 for u ∈ A6 ∪A7. Since the
vertices from different groups have different degrees, r∗ must be a refinement
of this partition. Moreover, A6 connects to A2 and A7 connects to A3. Thus
they cannot have the same role. This gives us 7 groups, and r∗ must be a
refinement of this partition. Since we have only 7 roles, this must be the role
assignment.

Let us now consider the second part of the graph. Let u ∈ B1. The only
integral centroid that matches deg(u) is µ′

1, and the remaining centroids
differ in degree by at least of t, consequently d(u, µ′

i) ≥ t for i 6= 3. This
forces, r∗(u) = 1. Similarly, r∗(u) = 4, for u ∈ B4, r

∗(u) = 5, for u ∈ B5,
r∗(u) = 6, 7, for u ∈ B6 ∪ B7.

Let u ∈ B2 ∪ B3. If r∗(u) 6= 2, 3, then each vertex in a fat edge will
introduce a cost of at least 1, when compared to the integral centroids µ′.
Since there are t of these vertices, we must have r∗(u) = 2, 3. Using a similar
argument, among the vertices in B2∪B3 adjacent (by a fat edge) to a vertex
v ∈ B1, only one has the role 3, the remaining adjacent vertices have the role
2.

This shows that r∗ = rW , where W are the sets corresponding to the
vertices with role 3. We saw earlier that the cost is minimized when α =
t+ |W ∩M | is maximized.

Intuitively, problem Roles resembles the k-means clustering problem.
However, a careful reader should immediately realize that we are dealing
with a much harder problem than k-means clustering. To see this, notice
that in the k-means problem we aim to cluster vectors whose coordinates
are fixed. In the Roles problem, however, we aim to cluster vertex profiles,
which are vectors whose coordinates depend on the role assignment. Thus, we
are working with a clustering problem in which the data recursively depend

CHAPTER 3. ROLE DISCOVERY PRELIMINARIES 19

on the output of the clustering problem itself.
To emphasize the difference between Roles and k-means clustering, con-

sider the standard property of k-means algorithm: for a fixed cluster mem-
bership it is easy to compute optimal representative vectors (centroids), and
for fixed centroids, it is easy to compute optimal cluster membership.

We can show that for the Roles problem only the first part of the cor-
responding property holds. Indeed, for a fixed role assignment r the profiles
of all vertices are also fixed. The representative vector of a role can then be
easily computed as the centroid of the profiles of all vertices that are assigned
to that role.

On the other hand, when the role centroids c1, . . . , ck are fixed it is not
easy to compute the optimal role assignment r. We refer to this problem as
Roles-FixedCentroids.

Proposition 3. (Roles-FixedCentroids) Assume a graph G = (V,E)
and k centroids c1, . . . , ck. Find a role assignment r : V → [1, k] that mini-
mizes the cost function

c(r) =
∑

v∈V

d
(

v, cr(v); r
)2

.

Proposition 4. Deciding whether an instance of Roles-FixedCentroids

has a zero-cost solution is an NP-complete problem.

To prove Proposition 4, we need to introduce the following NP-complete
problem.

Proposition 5 (Tuples). Assume a universe U and a set S of 5-tuples
over U , such that each u ∈ U occurs in at least 3 tuples. Is there a subset
B ⊆ U such that each exactly 2 entries in each S ∈ S belong to B.

Proposition 6. Tuples is NP-complete.

Proof. Tuples is obviously in NP. We prove the hardness by reduction from
3-Sat.

Assume that we are given m clauses C1, . . . , Cm using n variables, in
total. We can safely assume that each clause contains exactly 3 variables by
allowing the repetition of a variable.

We define the universe U to contain 2n+2+2m variables, which we will
denote by t, f , x1, . . . , xn, y1, . . . , yn, d1, . . . , dm, and e1, . . . , em. To simplify
notation, we will identify xi with the ith positive literal and yi with the ith
negative literal.

CHAPTER 3. ROLE DISCOVERY PRELIMINARIES 20

We introduce the following clauses: (1) (t, t, f, f, f), (2) (xi,¬xi, t, f, f),
where i = 1, . . . , n, (3) (¬c1,¬c2,¬c3, dj, ej), where Cj = c1 ∨ c2 ∨ c3 is the
jth clause.

To make sure that each variable occurs in at least 3 tuples, we copy each
tuple 3 times.

Assume there is B solving Tuples. Set the ith variable to be true if xi ∈
B, and false otherwise. At most 2 variables ¬ci are in B, for Cj = c1∨c2∨c3.
Assume that 6= c1 =/∈ B. Since either xi ∈ B or ¬xi ∈ B, this forces c1 ∈ B,
making Cj satisfied.

Now assume that we can satisfy each clause. First set B = {t}. Add
xi into B if the ith variable is true, otherwise insert ¬xi. Since a clause
Cj = c1∨c2∨c3 is satisfied, we have at most 2 entries in B among ¬ci. Insert
dj and/or ej to B so that (¬c1,¬c2,¬c3, dj, ej) contains exactly 2 entries in
B. The resulting B solves Tuples.

Proof of Proposition 4. The problem is in NP. We will prove the hardness
from Tuples. Assume that we are given an instance (U,S) of Tuples. Let
n = |U | and m = |S |. Let ℓu be the total number of occurrences, counting
multiplicities, of u in S .

Define the graph as follows: For each u ∈ U , add a cycle of length ℓu.
Note that the cycle is simple since ℓu ≥ 3. Denote this cycle by Du.

For each tuple Cj add a vertex wj, and connect it to a vertex in Du, where
u ∈ Cj. The connection can and should be done such that each vertex in
each cycle is connected to exactly one wj.

Set the number of roles k = 3, and define the following centroids µ1 =
(2, 0, 1), µ2 = (0, 2, 1), and µ3 = (2, 3, 0).

Let r be the optimal role assignment for the defined centroids. The cost
of is 0 if and only if (i) every vertex in v ∈ Du has the same role, r(v) = 1, 2,
(ii) r(wj) = 3, (iii) for each wj there are two adjacent vertices with role 1
and three adjacent vertices with role 2.

Consequently, B in Tuples corresponds to the vertices with role 1.

Not only does Proposition 4 imply that Roles-FixedCentroids is an
NP-hard problem, but it also establishes that Roles-FixedCentroids

cannot be approximated to any multiplicative factor, no matter how large.

Corollary 7. Unless P = NP, there is no polynomial algorithm that pro-
vides an approximation guarantee to the Roles-FixedCentroids problem.

Note that even though intuitively Roles is a more difficult problem than
Roles-FixedCentroids, the hardness result obtained for Roles-Fixed-

Centroids is much stronger than the one obtained forRoles. This could be

CHAPTER 3. ROLE DISCOVERY PRELIMINARIES 21

just an artifact of our proof techniques and it may be the case that Roles is
also a hard problem to approximate. As we do not provide an approximation
algorithm for Roles in this paper, its approximability is left as an open
problem.

Chapter 4

Algorithms for discovering roles

A polynomial algorithm for perfect role assign-

ment

Before presenting our proposed algorithms for the Roles problem, we first
present a polynomial algorithm for finding a perfect role assignment—a so-
lution with cost zero. We will do this by arguing that the perfect role as-
signment is equivalent to the notion of equitable partition [29], which can be
solved exactly.

In the light of the previous NP-hardness results, this polynomial algo-
rithm appears somewhat surprising. Note, however, that this polynomial
algorithm guarantees to find the minimum number of roles for which there is
a solution of cost zero. This is a different question than the one posed by the
Roles problem, where we aim to find a minimum-cost solution for a given
number of roles.

Given a graph G = (V,E), a partition of vertices V1, . . . , Vk is said to be
equitable if the edges respect the partition, that is, (u1, v1) ∈ E if and only
(u2, v2) ∈ E for any u1, u2 ∈ Vi and v1, v2 ∈ Vj, i, j = 1, . . . k. Note that for
such a partition, the cost will always be 0, and vice versa. Naturally, there
are many possible partitions but there is only partition with the smallest k,
and this partition can be discovered with the algorithm that we will present
for the sake of completeness. The proof for this algorithm is given in [29].

The polynomial algorithm, named Perfect, works by first setting k = 1
and assigning all vertices to the same role. Then, it iteratively computes the
profile of each vertex, and groups together all vertices with the same profile.
For each new group, it then assigns a new role (and increases k), and the
iterative process continues as long as new roles are created. Pseudocode for
Perfect is given in Algorithm 1.

22

CHAPTER 4. ALGORITHMS FOR DISCOVERING ROLES 23

Algorithm 1: Perfect(G), computes a perfect assignment with
smallest number of roles.
1 r(v)← 1 for every v ∈ V ;
2 while number of roles increases do
3 compute profiles p(v; r);
4 group vertices with the same profiles;
5 assign a role to each group;

Note that in the first iteration of Perfect the profile of each vertex v is a
scalar (1-dimensional vector) equal to the degree of the vertex. Thus, during
this first iteration all vertices with the same degree will be grouped together
and will be assigned the same role. In subsequent iterations, the vertices with
the same degree will be potentially further subdivided into smaller groups,
and vertices within a group are assigned to the same role.

As the number of roles can only increase during the execution of Per-
fect, the previous observation implies that Perfect always returns a so-
lution in which the number of roles k is at least as large as the number of
distinct degrees in the graph. To verify this property, notice that it is not
possible to obtain a perfect role assignment with a smaller number of roles
than the number of distinct degrees.

Finally, note that the Perfect algorithm always terminates, in the worst
case when k = n and each vertex is assigned to a unique role.

The main claim characterizing the optimality of the Perfect algorithm
is formulated in the following proposition.

Finally, we analyze the running time of Perfect.

Proposition 8. The computational complexity of Perfect is O(mn log n).

Proof. At each iteration we increase the number of roles. Since the number
of roles is at most n, we can have at most O(n) iterations. Next, we analyze
the running time of each iteration.

Let us represent the profiles with sorted sparse lists. The size of a profile
of a vertex v is O(deg(v)). The total time of constructing the profiles is then

O

(

∑

v∈V

deg(v) log deg(v)

)

⊆ O(m log n) .

Grouping based on profiles can be done by sorting the profiles in lexico-
graphical order, and then comparing the consecutive profiles.

CHAPTER 4. ALGORITHMS FOR DISCOVERING ROLES 24

We next analyze the time needed to sort the profiles in lexicographical
order. Notice that comparing the profiles p(v) and p(w) of two vertices v and
w cannot be done in constant time; instead time O(min{deg(v) , deg(w)}) is
required.

Assume that merge sort is used for ordering the profiles lexicographi-
cally. Consider a counter ∆(v) defined as follows: initially, ∆(v) is set to
0. Consider, that we are merging two sorted vertex lists during the merge
sort. Assume that we are comparing vertex v from the first list and vertex
w from the second list, and assume that we determine p(v; r) ≤ p(w; r). In
such case, we increase ∆(v) by deg(v). If p(v; r) > p(w; r), then we increase
∆(w) by deg(w).

The increase of ∆(v) or ∆(w) is an upper bound for the time that is
required for each comparison, so it immediately follows that sorting can be
done in time O(

∑

u ∆(u)).
Note whenever we increase the counter, we always advance to the next

vertex in the list. That is, each counter ∆(v) can be increased only once
during a single merge, and each vertex participates only in O(log n) merges.
Consequently, ∆(v) ∈ O(deg(v) log n). This implies that sorting the profiles
using merge sort requires time O(

∑

v deg(v) log n) = O(m log n).

Hill-climbing algorithm

The algorithm discussed in the previous section returns a perfect (zero-cost)
role assignment but it does not put any constraint on the number of roles
to be used. In fact, as we will see in the experimental section, in most
cases, Perfect is forced to use a large number of roles. This is an expected
behavior, as the requirement for a perfect role assignment is too rigid.

In this section, we return to the Roles problem (defined in Problem 1)
and ask to find a minimum-cost role assignment for a given number of roles k.
As the Roles problem is NP-hard (Proposition 2) and as a simple variant
of the problem is NP-hard to approximate (Proposition 4), we present a hill-
climbing algorithm that iteratively improves the cost of the role-assignment
problem, until convergence. The algorithm is presented and analyzed below.

Assume a role assignment r with optimal centroids c. Let v be a vertex,
and let j be an integer. Define a new role assignment r′ obtained from r by
setting r′(v) = j. Let c′ be the optimal centroids with respect to r′.

We define the gain to be the difference of the value of the objective
function for the two role assignments

gain(v, j; r) =
∑

v∈V

d
(

v, cr(v); r
)

−
∑

v∈V

d
(

v, c′r′(v); r
′
)

.

CHAPTER 4. ALGORITHMS FOR DISCOVERING ROLES 25

Algorithm 2: Greedy(G, k, r0), hill-climbing algorithm.

1 initialize role assignment, r ← r0;
2 while changes do
3 foreach v ∈ V do
4 j∗ ← argmaxj gain(v, j);
5 if gain(v, j∗) > 0 then
6 update r;
7 update profiles and centroids;

A positive gain means that r′ produces a smaller cost, making it a better role
assignment.

The proposed hill-climbing algorithm, named Greedy, is illustrated as
Algorithm 2. The algorithm starts with an initial role assignment r0. Then
it sequentially tries to improve the score by changing the role of each vertex
in the graph. For each vertex v, it changes its assignment to the role j that
maximizes the gain gain(v, j). If there is no role that yields a positive gain,
the role of v remains unchanged.

For selecting the initial role assignment r0 we have experimented with a
number of different strategies. More details are given in the experimental
section.

As Greedy involves a number of nested loops, a näıve implementation
will make it prohibitively expensive for large networks. However, we show
that it is possible to implement Greedy in a much more efficient manner so
that the running time of the inner-most loop (foreach loop in Algorithm 2)
is linear in the size of the graph, and quadratic only in the number of roles
k, which in practice can be assumed to be a very small constant.

Proposition 9. Assume a role assignment r with optimal centroids c. Let v
be a vertex and j be an integer. Let i = r(v). Define nℓ = |{u ∈ V ; r(u) = ℓ}|
to be the number of vertices having role ℓ. Define dℓ = |{(v, w) ∈ E; r(w) = ℓ}|
to be the number of neighbors of v having role ℓ.

Define a new role assignment r′ obtained from r by setting r′(v) = j. Let
n′
ℓ = |{u ∈ V ; r′(u) = ℓ}|. Let c′ be the optimal centroids with respect to r′.

Let c∗ be the “intermediate” centroids, where we have moved v from i to j

CHAPTER 4. ALGORITHMS FOR DISCOVERING ROLES 26

but we have not updated the profiles of neighbors of v. Then

gain(v, j) =− ni ‖ci‖
2 + n′

i ‖c
∗
i ‖

2 − nj ‖cj‖
2 + n′

j

∥

∥c∗j
∥

∥

2

+
∑

(v,w)∈E

2p(w, r)i − 2p(w, r)j − 2

−

k
∑

ℓ=1

2dℓ [(c
∗
ℓ)j − (c∗ℓ)i − dℓ/n

′
ℓ] .

Proof. A known identity
∑

(xi − c)2 =
∑

(x2
i − c2) allows us to rewrite the

gain as

gain(v, j) =
∑

u∈V

‖p(u, r)‖2 − ‖p(u, r′)‖
2

−

k
∑

ℓ=1

nℓ ‖cℓ‖
2 − n′

ℓ ‖c
′
ℓ‖

2
.

Let us define B(w) to be a term in the first sum. Let us abbreviate p(w, r)
as p(w). Then B(w) 6= 0 if and only if (v, w) ∈ E, and in such a case it is
equal to

B(w) = p(w)2i − (p(w)i − 1)2 + p(w)2j − (p(w)j + 1)2

= 2p(w)i − 2p(w)j − 2.

We now consider the second sum, which we will rewrite as

k
∑

ℓ=1

nℓ ‖cℓ‖
2 − n′

ℓ ‖c
∗
ℓ‖

2 +
k
∑

ℓ=1

n′
ℓ ‖c

∗
ℓ‖

2 − n′
ℓ ‖c

′
ℓ‖

2
.

The first sum, which we will denote by A is equal to

A = ni ‖ci‖
2 − n′

i ‖c
∗
i ‖

2 + nj ‖cj‖
2 − n′

j

∥

∥c∗j
∥

∥

2
.

Let us write R(ℓ) to be a term in the second sum. We can express this
term as

R(ℓ) = n′
ℓ

[

(c∗ℓ)
2
i − ((c∗ℓ)i − γℓ)

2 + (c∗ℓ)
2
j − ((c∗ℓ)j + γℓ)

2
]

= 2dℓ [(c
∗
ℓ)i − (c∗ℓ)j − γℓ] , where γℓ = dℓ/n

′
ℓ.

To conclude, we have

gain(v, j) = −A+
∑

(v,w)∈E

B(w)−
k
∑

ℓ=1

R(ℓ),

which proves the identity.

CHAPTER 4. ALGORITHMS FOR DISCOVERING ROLES 27

Proposition 10. The inner loop of Greedy (foreach loop in Algorithm 2)
requires time O(k2n+ km).

Proof. According to Proposition 9, computing the gain can be done in time
O(k + deg(v)). Consequently, computing j∗ requires time O(k2 + kdeg(v)).
Updating the profiles, the centroids, and the role assignment r can be done
in time O(k + deg(v)). Summing over all the vertices gives us a total running
time of O(k2n+ km).

Iterative algorithm

Proposition 4 states that if we fix centroids, then the problem remains in-
tractable, even worse it cannot be approximated. This is a blowback to the
standard iterative heuristic, where one set of parameters is fixed while the
other set of parameters is optimized.

However, if we were to fix the profiles, then the optimization task trans-
forms into a traditional clustering problem. Once, we have discovered a role
assignment, we can recompute the profiles, and repeat until we converge into
a local minimum. This is exactly what we do in Algorithm 3.

Algorithm 3: Iterative(G, k), an iterative method for computing
roles. Cluster is a standard clustering method.

1 r0 ← Cluster(deg(·) , k) ;
2 i← 0;
3 while cost decreases do
4 ri+1 ← Cluster(p(·, ri) , k) ;
5 i← i+ 1;

We still have the task to solve the clustering problem. Here, we resort
to a standard k-means clustering algorithm. We will denote the resulting
algorithm by Iterative.

Note that computing profiles from the role assignment can be done ef-
ficiently in O(max{kn,m}) time, where n is the number of vertices and m
is the number of edges. The O(kn) time is needed to initialize n vectors
of length k. If the clustering algorithm allows to have sparse representation
of the profiles, the processing time can be further reduced to O(m) time.
Thus, the computational bottleneck is the clustering algorithm, as well as
how many iterations we typically need to converge.

Chapter 5

Experimental evaluation

Experimental setup:

Any model must be tested with real-world data to see its relevance, so we
use several datasets to evaluate our proposed methods: synthetic and real-
world social communication networks. We also use some result comparison
measures to evaluate the result of the model. We describe the datasets and
the measures in detail below.

Synthetic data

In order to study the nature of the proposed methods, we simulate multiple
communication networks varying in size and density. synth1 is a graph with
10 nodes, divided into two groups. synth2 is graph with three groups of
vertices, say V1, V2, V3, with |V1| = 40 and |V2| = |V3| = 30. We connect V1

and V3 to V2 and fully connect V3. After this we apply noise by adding or
removing an edge with a probability p. We vary p from 0 to 0.5.

Real-world data

We use eight datasets of real-world interaction. The characteristics of these
datasets are summarized in Table 5.1.

• karate: a social network of friendships between members of karate club
at a US university in 1970.

• dolphins: a social network of frequent associations between dolphins in
a community living off Doubtful Sound in New Zealand.

28

CHAPTER 5. EXPERIMENTAL EVALUATION 29

• lesmis: co-appearance of characters in Les Miserables novel by Victor
Hugo.

• facebook: friends list of Facebook users. The data was collected from
survey participants using an application developed by Stanford univer-
sity researchers. The dataset included node features (profiles), circles,
and ego networks. The data has been anonymized by replacing internal
ids by a new value.

• enron: a well-known dataset that contains email communication of the
senior management in a large company. The dataset contains twenty
years of emails from 1980.

• EUall: an e-mail network from an EU research institution.

• dblp: a co-authorship network among computer science researchers.

• youtube: Youtube users network.

• collab: A collaboration network within a research institute. We add an
edge between the researchers if they have a joint paper in DBLP.

• hen dominance: A hen dominance network1. The dataset contains the
network of 32 hens represented as nodes and edge represents dominance
of left hen over the right hen.

The first three datasets, karate, dolphins, and lesmis are obtained from
UCIrvine Network Data Repository2. The remaining datasets are obtained
from Standford SNAP Repository3.

Our emphasis is to compare the performance of Greedy and Iterative,
as well as to compare the results with RolX [17]4. All datasets and software
used in the experimental evaluation are publicly available5.

For each dataset, except for synth1, synth2, collab, and hen dominance

we apply Perfect, Greedy, and Iterative. For the first 3 smallest
graphs, we mine with setting k = 4 roles. For datasets facebook, enron,
EUall, dblp, youtube, we set k = 10 since the datasets are large and often
have numerous types of people interacting in the graphs. When applying

1http://moreno.ss.uci.edu/data.html
2http://networkdata.ics.uci.edu/index.php
3http://snap.stanford.edu/data
4We use an implementation by Circulo project, https://github.com/lab41/

circulo.
5http://research.ics.aalto.fi/dmg/roles.zip

http://moreno.ss.uci.edu/data.html
http://networkdata.ics.uci.edu/index.php
http://snap.stanford.edu/data
https://github.com/lab41/circulo
https://github.com/lab41/circulo
http://research.ics.aalto.fi/dmg/roles.zip

CHAPTER 5. EXPERIMENTAL EVALUATION 30

Table 5.1: Basic characteristics of the datasets. The second last column
depicts the number of unique vertex degrees, the last column depicts the
average degree.

Name dir. |V | |E| #deg deg

karate no 34 78 11 4.59
dolphins no 62 159 12 5.13
lesmis no 77 254 18 6.59
facebook no 4 039 88 234 227 43.69
enron no 36 692 183 831 334 10.02
EUall yes 265 214 420 045 311 3.17
dblp no 317 080 1 049 866 199 6.62
youtube no 1 134 890 2 987 624 978 5.27
synth1 no 10 19 3 3.8
synth2 no 100 3270 2 32.70
collab no 132 237 14 3.59

Greedy, we need to provide a role assignment as a seed which is then uti-
lized by Greedy to improve the result. We consider 4 different variants,
mainly by setting an initial solution,

1. one: every vertex is assigned the same role, namely 0.

2. deg: vertices are sorted based on degree, and split into k nearly equal-
size clusters and assigned a role. If a node is in cluster i, then its role
is i.

3. rnd: each vertex is assigned a random role between 0 and k − 1.

4. i+g: The results of Iterative using k-means clustering after one
iteration is used as seed.

The experiments conducted on synth1, synth2 and collab are described
in the next section.

To speed-up the computation of Greedy, we implement the following
heuristic: if the role of a vertex has not changed for a threshold number of
iterations, say for 5 times, we no longer test the vertex, assuming that it will
not have a better role. However, when we have converged, we start all over
by testing every vertex again. We stop, when no gain is possible, even if we
consider every vertex.

CHAPTER 5. EXPERIMENTAL EVALUATION 31

Evaluation measures

The performance of any models is often evaluated using some standard mea-
sures. In our case, we use measures that compare results given by two models
and see how correlated the results are. Hence some result comparison mea-
sures are used. We will briefly describe them.

Adjusted Rand Index Rand index [31] is a measure in statistics, often
used in data clustering to measure the similarity between two clusters. Given
a set of n elements S = {o1, o2, . . . , on} and two paritions of S to compare, X
= {X1, X2, . . . , Xr}, a partition of S into r subsets and Y = {Y1, Y2, . . . , Ys},
a partition of S into s subsets, the rand index R is:

R =
a+ b

a+ b+ c+ d
=

a+ b
(

n
2

)

Here a is the number of pair of elements in S that are in the same set X and
in the same set Y , b is the number of pair of elements that are in different
sets in X and in different sets in Y , c is the number of pair of elements that
are in same set in X and in different sets in Y , and d is the number of pair of
elements that are in different sets in X and in same set in Y . In simple form,
a + b can be seen as the number of agreements and c + d as the number of
disagreements between X and Y . The rand index value lies between 0 and
1. When the partitions agree perfectly, the rand index value is 1. If they
totally disagree, the rand index value is 0.

Adjusted rand index [20] is a variant of rand index that adjusts the com-
parison of clusters to maximize the similarity as much as possible. The
formula is

AdjustedIndex =
Index− ExpectedIndex

MaxIndex− ExpectedIndex

Hungarian method Hungarian method [24] is a combinatorial opti-
mization algorithm that is used for solving assignment problem. It takes a
non-negative n∗n matrix, made by a combination of two assignment results,
and returns the best cluster combination results with minimal cost.Once the
best possible combination of clusters is calculated, the differences in the result
are calculated as hungarian distance value.

Kendall-τ distance The Kendall-τ [21] rank distance is a metric that
counts the number of disagreements between two lists. The greater the dis-
tance, the more dissimliar the two lists are. Let L1 and L2 be two lists, then

CHAPTER 5. EXPERIMENTAL EVALUATION 32

Kendall-τ K(τ1, τ2) is calculated as

|{(i, j) : i < j, (τ1(i) < τ1(j)∧τ2(i) > τ2(j))∨ (τ1(i) > τ1(j)∧τ2(i) < τ2(j))}|.

Here τ1(i) and τ2(i) are the result at position i in L1 and L2 respectively. For
example, the Kendall tau distance between 0, 3, 1, 6, 2, 5, 4 and 1, 0, 3, 6, 4,
2, 5 is 4 because the pairs 0-1, 3-1, 2-4, 5-4 are in different order in the two
lists, but all other pairs are in the same order. The value is then normalized
to be between 0 and 1.

All the above-mentioned measures are used in comparing the results ob-
tained from Perfect, Greedy, and Iterative and their variants.

Synthetic data performance

In order to test the effectiveness of Perfect, we use synth1, a perfect graph
with distinct roles, and we want to see whether all our methods discover the
same roles discovered by Perfect. Perfect identifies that there are 3
perfect role assignments which match with a unique degree. When other
methods are executed to assign 3 roles, the final score is 0, i.e., perfect
assignment. The resultant graph is shown in Figure 5.1.

We also testGreedy and Iterative on synth2 to study how well we can
discover the underlying structure. In Figure 5.2, we plot the adjusted Rand
index and hungarian distance for each method as a function of noise level.
The shown numbers are averages over 100 repetitions. As expected the Rand
index and hungarian distance generally decreases as the noise level increases:
at p = 0.5, the graph is completely random and there is no structure left
to discover. deg, i+g, and itr clearly outperforms one and rnd, this
implies that a good starting point is required for Greedy. Interestingly, itr
performs worse with small levels of noise but outperforms Greedy variants
once the noise level increase.

In Figure 5.3, we plot the adjusted Rand index for i+g with itr and
Ground truth initialization. We also use different samples such as 1, 10,
and 100. From the plot, we can see that ground truth initialization has
higher Rand index values. With more samples, the rand index score is better
for ground truth initialization. The reason for itr initialization to perform
poorly is because of results provided by itr. They tend to be far away
from the ground truth and reaches the local minima. Hence, with more
sampling, itr performs poorly as opposite to ground truth initialization. To
summarize, the methods need a good starting point to achieve better results.

CHAPTER 5. EXPERIMENTAL EVALUATION 33

Figure 5.1: Role assignment for synth1 data. There are 3 distinct roles,
denoted by color of the node, that correspond to distinct degrees.

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

noise level

a
d
ju
st
ed

R
a
n
d
in
d
ex

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

noise level

H
u
n
g
a
ri
a
n
D
is
ta
n
ce

deg

i+g

itr

one

rnd

Figure 5.2: Adjusted Rand index and Hungarian Distance between different
methods and the ground truth as a function of noise for the synthetic dataset.
Larger numbers indicate stronger agreement.

Perfect assignments performance

Next, we consider the assignments given by Perfect, given in Table 5.2.
We see that the number of roles needed to obtain a perfect solution is

typically large: with the exception of EUall, we need at least half of the

CHAPTER 5. EXPERIMENTAL EVALUATION 34

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

noise level

a
d
ju
st
ed

R
a
n
d
in
d
ex

KM 1

KM 10

KM 100

GT 1

GT 10

GT 100

Figure 5.3: Adjusted Rand index between different initializations, samples,
and the ground truth as a function of noise for the synthetic dataset. Larger
numbers indicate stronger agreement.

Table 5.2: Role assignments discovered by Perfect. k stands for the num-
ber of discovered roles while #deg stands for the number of distinct degrees.

Name k iter. time k/|V | k/#deg

karate 27 2 1ms 0.79 2.45
dolphins 60 3 2ms 0.96 5
lesmis 56 5 4ms 0.73 3.11
facebook 3 872 5 0.9s 0.96 17.06
enron 20 618 23 11s 0.56 61.73
EUall 20 138 4 9s 0.08 64.76
dblp 233 466 6 1m4s 0.74 1173.2
youtube 684 010 7 3m47s 0.61 699.39

number of vertices. The number of roles is higher than the number of unique
degrees, and the ratio increases for large graphs; these graphs have more
ways of forcing vertices to have unique roles. The algorithm is practical
even for large graphs as the computational complexity O(nm log n) given
by Proposition 8 is fairly pessimistic: only a few iterations are needed for
convergence, and each iteration requires only O(m log n) time.

Performance of greedy and iterative algorithms

Our next step is to compare the performance of Greedy and Iterative.
In Table 5.3 we present the costs obtained by each algorithm, normalized by
the cost of a trivial role assignment, where each vertex is assigned the same
role.

We see that the best scores are obtained by i+g, that is, Greedy initial-
ized by Iterative. Curiously enough, Iterative alone performs the worst.

CHAPTER 5. EXPERIMENTAL EVALUATION 35

Table 5.3: Costs of role assignments, normalized by c(r′), where r′(v) = 0 for
every v. Lower values are better. The parameter k stands for the number of
roles. itr depicts Iterative, while the remaining columns depicts Greedy

with different initializations.

Name k itr deg one rnd i+g

karate 4 0.103 0.097 0.141 0.125 0.089
dolphins 4 0.306 0.253 0.219 0.255 0.213
lesmis 4 0.142 0.124 0.121 0.133 0.118
facebook 10 0.056 0.043 0.043 0.043 0.039
enron 10 0.064 0.021 0.019 0.019 0.019
EUall 10 0.097 0.029 0.024 0.035 0.028
dblp 10 0.178 0.059 0.065 0.059 0.054
youtube 10 0.202 0.029 0.029 0.029 0.029

These results hint that the search space is highly non-trivial, containing a
plethora of local minima. This is further supported by Table 5.4, where we
report adjusted Rand index.6 The index implies that while the obtained re-
sults all correlate positively they do differ. This puts extra emphasis on a
good initialization of Greedy.

Table 5.4: Adjusted Rand indices between different initializations of
Greedy.

Name deg/one deg/rnd deg/i+g one/rnd one/i+g rnd/i+g

karate 0.104 0.116 0.485 0.107 0.105 0.222
dolphins 0.419 0.134 0.441 0.181 0.374 0.163
lesmis 0.437 0.449 0.453 0.192 0.603 0.283
facebook 0.389 0.385 0.356 0.591 0.521 0.535
enron 0.224 0.135 0.301 0.157 0.232 0.135
EUall 0.421 0.272 0.282 0.305 0.365 0.218
dblp 0.291 0.411 0.427 0.226 0.219 0.307

The left plot in Figure 5.4 shows the cost as a function of k for facebook
dataset. Naturally, the cost decreases as we increase k. The change is more
rapid for small values of k, and evens out for large values.

6Value 1 corresponds to a complete agreement, while 0 implies that the assignments
are independent.

CHAPTER 5. EXPERIMENTAL EVALUATION 36

Let us now study how well the role assignment correlates with vertex
degree. Since the roles are symbolic, we sort the roles based on average
degree, and compared the roles and degrees using Kendall-τ .7 We see from
the results given in Table 5.5 that there is a significant correlation between
the degrees and the role assignment. Naturally, this is partly due to how we
sort the roles. However, there are some subtle differences. The coefficients
depend on the dataset, for example, EUall obtains one of the lowest values.
There is a clear difference between Iterative and Greedy: the former
producing ranks with weak or almost no correlation with the degree. This
advances further the notion that Iterative gets stuck in a local minimum,
and should not be used alone.

Table 5.5: Kendall-τ statistics between role assignments and vertex degree.
Roles are sorted based on their average degree. itr depicts Iterative, while
the remaining columns depict Greedy with different initializations.

Name itr deg one rnd i+g

karate 0.449 0.794 0.501 0.636 0.636
dolphins 0.123 0.661 0.672 0.598 0.744
lesmis 0.228 0.711 0.729 0.679 0.734
facebook 0.052 0.707 0.714 0.741 0.739
enron 0.007 0.467 0.474 0.459 0.467
EUall 0.003 0.327 0.203 0.275 0.352
dblp 0.008 0.596 0.559 0.564 0.536
youtube 0.004 0.467 0.454 0.404 0.465

Running time Let us now consider the computational complexity of the
algorithms. We present the number of iterations needed for convergence in
Table 5.6, and the running times in Table 5.7. The number of required iter-
ations is modest, especially when compared to the size of the input graph.
The running times are manageable: we should point out that we implemented
Greedy using Python, an implementation with a more efficient program-
ming platform should make the algorithm more user-friendly, especially for
large graphs. As expected, the running times increase as we increase the
number of roles; see the right plot in Figure 5.4.

7We use the b variant to accommodate the ties.

CHAPTER 5. EXPERIMENTAL EVALUATION 37

Table 5.6: Total number of iterations required for convergence. itr depicts
Iterative, while the remaining columns depicts Greedy with different
initializations.

Name itr deg one rnd i+g

karate 2 2 5 15 5
dolphins 2 3 5 12 5
lesmis 2 14 16 13 5
facebook 2 85 92 131 73
enron 3 180 220 215 124
EUall 3 719 404 2921 122
dblp 3 17 41 56 53
youtube 4 462 413 471 552

Table 5.7: Evaluation time of algorithms. itr depicts Iterative, while the
remaining columns depict Greedy with different initializations.

Name itr deg one rnd i+g

karate 2ms 5ms 14ms 19ms 14ms
dolphins 4ms 14ms 22ms 32ms 29ms
lesmis 5ms 46ms 48ms 29ms 36ms
facebook 0.4s 39s 41s 53s 39s
enron 1.9s 7m6s 9m4s 9m5s 7m40s
EUall 21s 49m3s 21m4s 1h45m 10m22s
dblp 21s 1h21m 22m3s 41m6s 29m57s
youtube 87s 12h10m 7h30m 16h10m 14h52m

2 8 14 20

0

0.1

0.2

0.3

0.4

number of roles k

c
(r
)
/
c
(r

′
) deg one

rnd i+g

itr

2 8 14 20

0

35

70

105

140

number of roles k

ti
m
e
(s
ec
o
n
d
s)

Figure 5.4: The normalized cost and the execution time for facebook dataset.
The cost is normalized by c(r′) such that r′(v) = 0, for every v, that is, r′

assigns the same role to every vertex.

CHAPTER 5. EXPERIMENTAL EVALUATION 38

1 2 3 1 2 3 1 2 3

0

2

4

6

8

r(v) = 1 r(v) = 2 r(v) = 3

p
ro
fi
le

o
f
v

Figure 5.5: Visualization of profiles for collab network, obtained using deg

with k = 3. Each line represents the number of neighbors of a vertex v as a
function of the neighbor role. The three groupings are based on the role of
v.

Case study of the collaboration network

Next, we consider collaboration network collab. Here we apply deg with
k = 3. The role assignments of the network, as well as ego networks of
some authors, is shown in Figure 5.6. The blue colored researchers have
collaboration with many researchers and the red colored researchers have few
collaborators. Finally, the green colored researchers have a higher number of
researchers than red colored ones but lower than blue colored researchers.

The obtained profiles are visualized in Figure 5.5. The obtained cen-
troids are c1 = (0.65, 0.76, 0.58), c2 = (2.06, 1.7, 1.55), c3 = (5.2, 5.1, 1.8),
that is, the researchers with the 3rd role have many co-authors while the
researchers with the 1st role have with limited number of co-authors. Fi-
nally, the researchers with the middle role are somewhere between the two
classes. To assess the results obtained on this dataset, we compare the roles
discovered by our algorithm with a partitioning obtained by the job title
of the researchers. We use three classes: professors, senior researchers and
staff, and Ph.D. students and junior post-docs. The adjusted Rand index
between the two partitions is 0.387.8 We should point that the seniority of a
researcher is not always reflected in the collaboration graph: there are many
senior researchers with few collaborators.

For understanding purpose, the snapshot of the network and egonets of
some the authors is shown in Figure 5.6. As mentioned earlier, the nodes
with blue colors are collaborating with many other authors. It is also visible
in egonet of Samuel Kaski. Though Nikolaj has fewer collaborators than
Aris, he is still assigned the role of Aris as their profiles are closer to each
other.

8Value 1 means complete agreement, while 0 means that the partitions are independent.

CHAPTER 5. EXPERIMENTAL EVALUATION 39

(a) HIIT network with roles (b) Egonet of Samuel Kaski

(c) Egonet of Aristides Gionis (d) Egonet of Nikolaj Tatti

Figure 5.6: HIIT Network and some highlighted authors’ network. The se-
lected author is the center of the egonet. Egonet of Samuel Kaski contains
authors from all three roles whereas that of Aris contains mostly mid and
low level researchers and Nikolaj’s egonet contains low level researchers as
collaborators. The profile plays vital role in role assignment, and Nikolaj has
less degree than Aris but is assigned same role.

Case study of hen dominance network

We are also interested in testing our model in other real world networks
that are interesting and unique. Hence, we use hen dominance for testing.
Upon executing RolePro on the dataset, the roles assigned were analysed.
The snapshots of the dominance network and some of the highlighted hens’

CHAPTER 5. EXPERIMENTAL EVALUATION 40

dominance is shown in Figure 5.7.

(a) Hen Dominance Network (b) Most Dominant hen

(c) Middle level hen (d) Least Dominant hen

Figure 5.7: Roles in Hen Dominance Network. Three roles are assigned to
the hens. Most dominant hens are assigned green color, least dominant ones
are assigned red ones, and middle level hens are assigned blue color. Hen
numbered 1 is most dominant in the group and hen numbered 32 is the least
dominant in the group.

Two colors are used on the edges for highlighting the dominance nature.
Red color denotes the selected center node dominates the adjacent nodes.
Blue color denotes the selected center is dominated by its adjacent nodes.
Moreover, nodes of dominant hens are assigned green color, and nodes of least
dominant hens are assigned red color and middle-level ones are assigned a
blue color. Hen numbered 1 is the most dominant hen as it dominates all
the other hens and hen numbered 32 is dominated by all hens. Middle-level

CHAPTER 5. EXPERIMENTAL EVALUATION 41

hens dominate some hens and are dominated by other hens. After assigning
roles to hens, one can save the least dominant hens from being targeted by
other hens by isolation.

Comparison with RolX

As a final step, we compare the obtained roles with RolX. In Table 5.8,
we present normalized costs of RolX and r+g: Greedy initialized with
RolX. We also present adjusted Rand indices of RolX versus the greedy
variants. The implementation we use forRolX is not able to process youtube
dataset due to memory consumption.

Table 5.8: Comparison of RolX andGreedy. Columns 2–3 depict obtained
costs, normalized by c(r′), where r′(v) = 0 for every v. The remaining
columns depict adjusted Rand index of RolX versus Greedy with different
initializations.

c(r) /c(r′) Adj. Rand vs. RolX

Name RolX r+g deg one rnd i+g

karate 0.217 0.124 0.292 0.068 0.129 0.259
dolphins 0.457 0.302 0.187 0.207 0.236 0.273
lesmis 0.305 0.161 0.298 0.358 0.135 0.336
facebook 0.285 0.056 0.079 0.108 0.111 0.073
enron 0.467 0.019 0.058 0.055 0.053 0.054
EUall 0.438 0.029 0.251 0.259 0.237 0.281
dblp 0.509 0.061 0.655 0.258 0.349 0.359

We first observe that role assignments returned by RolX have a high
cost. This is a natural result since RolX does not optimize our objective.
However, when we use RolX as a seed for Greedy, the obtained rankings
have a low score for large graphs. Positive Rand indices imply that the
assignments of RolX and Greedy do correlate, but also differ.

As a sanity check, we construct a classifier predicting the role of a vertex
based on its features. For Iterative and Greedy we use the profiles as
features, and for RolX we use the feature vectors. We use decision tree
classifier with 10-fold cross-validation, and the accuracy results are given in
Table 5.9. We see that all methods perform well, note that 10 classes for
large datasets and 4 classes for small datasets. We observe that the accuracy
is generally higher for Iterative and RolX than for Greedy.

CHAPTER 5. EXPERIMENTAL EVALUATION 42

Table 5.9: Classification accuracy statistics of RolX, Iterative, and
Greedy. itr depicts Iterative, while the remaining columns depicts
Greedy with different initializations.

Name RolX itr deg one rnd i+g

karate 0.735 0.912 0.647 0.676 0.412 0.823
dolphins 0.613 0.903 0.662 0.661 0.565 0.662
lesmis 0.714 0.948 0.779 0.741 0.831 0.741
facebook 0.887 0.884 0.656 0.691 0.673 0.675
enron 0.847 0.876 0.589 0.584 0.579 0.567
EUall 0.896 0.875 0.669 0.833 0.689 0.791
dblp 0.881 0.812 0.906 0.623 0.667 0.658

Chapter 6

Conclusions

In this thesis, we propose a new type of role discovery optimization problem.
We propose that the vertices should have the same role if their profiles, role
counts of neighbors, are similar.

From a technical point, our method is different than feature-based tech-
niques because our features are in fact roles of neighbors. Hence, a two-step
approach—(i) construct features and (ii) cluster roles from features—does
not work. This intricate dependency makes the optimization problem diffi-
cult: we show that the problem is NP-hard, and cannot be even approxi-
mated if we fix the centroids for the roles.

On the positive side, we show that we can discover the perfect, zero-
cost, solution with a minimal number of roles efficiently in polynomial time.
When the number of roles is fixed, we propose two simple natural heuristics:
iterative optimization and a hill-climbing algorithm.

Interestingly enough, we do not directly use any network-based feature
when comparing vertices. Instead, we are only interested in role counts. Our
logic is that fundamentally different ego-networks for vertices say, u and v,
should result in different role counts which should imply that u and v are
different. Nevertheless, combining our approach with other feature-based role
discovery methods provides a potentially fruitful direction for future work.

43

Bibliography

[1] Abdi, H., and Williams, L. J. Principal component analysis. Wiley
Interdisciplinary Reviews: Computational Statistics 2, 4 (2010), 433–
459.

[2] Airoldi, E. M., Blei, D. M., Fienberg, S. E., and Xing, E. P.

Mixed membership stochastic blockmodels. Journal of Machine Learn-
ing Research 9, Sep (2008), 1981–2014.

[3] Beisner, B. A., Jackson, M. E., Cameron, A. N., and Mc-

Cowan, B. Detecting instability in animal social networks: Genetic
fragmentation is associated with social instability in rhesus macaques.
PLoS ONE 6, 1 (2011), e16365.

[4] Bezdek, J. C., Ehrlich, R., and Full, W. Fcm: The fuzzy c-
means clustering algorithm. Computers & Geosciences 10, 2-3 (1984),
191–203.

[5] Biddle, B. J. Recent development in role theory. Annual review of
sociology (1986), 67–92.

[6] Boriah, S., Chandola, V., and Kumar, V. Similarity measures
for categorical data: A comparative evaluation. red 30, 2 (2008), 3.

[7] Brandes, U., and Lerner, J. Structural similarity: Spectral meth-
ods for relaxed blockmodeling. Journal of classification 27, 3 (2010),
279–306.

[8] Breiger, R. L., Boorman, S. A., and Arabie, P. An algorithm
for clustering relational data with applications to social network analysis
and comparison with multidimensional scaling. Journal of mathematical
psychology 12, 3 (1975), 328–383.

[9] Burt, R. S. Positions in networks. Social forces 55, 1 (1976), 93–122.

44

BIBLIOGRAPHY 45

[10] Chang, J., and Blei, D. M. Relational topic models for document
networks. In AIStats (2009), vol. 9, pp. 81–88.

[11] Danilevsky, M., Wang, C., Desai, N., and Han, J. Entity role
discovery in hierarchical topical communities. In ACM SIGKDD Inter-
national Workshop on Mining Data Semantics and Heterogeneous In-
formation Networks (2013), pp. 1–8.

[12] De Lathauwer, L. A survey of tensor methods. In 2009 IEEE Inter-
national Symposium on Circuits and Systems (2009), IEEE, pp. 2773–
2776.

[13] Everett, M. G., and Borgatti, S. P. Regular equivalence: General
theory. Journal of Mathematical Sociology 19, 1 (1994), 29–52.

[14] Friedlander, M. P., and Hatz, K. Computing non-negative tensor
factorizations. Optimisation Methods and Software 23, 4 (2008), 631–
647.

[15] Gilpin, S., Eliassi-Rad, T., and Davidson, I. Guided learning
for role discovery (GLRD): framework, algorithms, and applications.
In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining (2013), ACM, pp. 113–121.

[16] Golub, G. H., and Reinsch, C. Singular value decomposition and
least squares solutions. Numerische mathematik 14, 5 (1970), 403–420.

[17] Henderson, K., Gallagher, B., Eliassi-Rad, T., Tong, H.,

Basu, S., Akoglu, L., Koutra, D., Faloutsos, C., and Li, L.

Rolx: structural role extraction & mining in large graphs. In Proceed-
ings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining (2012), pp. 1231–1239.

[18] Henderson, K., Gallagher, B., Li, L., Akoglu, L., Eliassi-

Rad, T., Tong, H., and Faloutsos, C. It’s who you know: graph
mining using recursive structural features. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and
data mining (2011), ACM, pp. 663–671.

[19] Holland, P. W., and Leinhardt, S. An exponential family of
probability distributions for directed graphs. Journal of the american
Statistical association 76, 373 (1981), 33–50.

BIBLIOGRAPHY 46

[20] Hubert, L., and Arabie, P. Comparing partitions. Journal of clas-
sification 2, 1 (1985), 193–218.

[21] Kendall, M. G. A new measure of rank correlation. Biometrika 30,
1/2 (1938), 81–93.

[22] Kruskal, J. B. Multidimensional scaling by optimizing goodness of
fit to a nonmetric hypothesis. Psychometrika 29, 1 (1964), 1–27.

[23] Kruskal, J. B. Nonmetric multidimensional scaling: a numerical
method. Psychometrika 29, 2 (1964), 115–129.

[24] Kuhn, H. W. The hungarian method for the assignment problem.
Naval research logistics quarterly 2, 1-2 (1955), 83–97.

[25] Lichtenwalter, R. N., Lussier, J. T., and Chawla, N. V. New
perspectives and methods in link prediction. In Proceedings of the 16th
ACM SIGKDD international conference on Knowledge discovery and
data mining (2010), ACM, pp. 243–252.

[26] Lorrain, F., and White, H. C. Structural equivalence of individuals
in social networks. The Journal of Mathematical Sociology 1, 1 (1971),
49–80.

[27] Ma, H., Yang, H., Lyu, M. R., and King, I. Sorec: social rec-
ommendation using probabilistic matrix factorization. In Proceedings of
the 17th ACM conference on Information and knowledge management
(2008), ACM, pp. 931–940.

[28] McDowell, L. K., Gupta, K. M., and Aha, D. W. Cautious
collective classification. Journal of Machine Learning Research 10, Dec
(2009), 2777–2836.

[29] McKay, B. D. In Combinatorial Mathematics: Proceedings of the
International Conference on Combinatorial Theory (1978), D. A. Holton
and J. Seberry, Eds., pp. 223–232.

[30] Neville, J., and Jensen, D. Iterative classification in relational
data. In Proc. AAAI-2000 Workshop on Learning Statistical Models
from Relational Data (2000), pp. 13–20.

[31] Rand, W. M. Objective criteria for the evaluation of clustering meth-
ods. Journal of the American Statistical association 66, 336 (1971),
846–850.

BIBLIOGRAPHY 47

[32] Rasmussen, C. E. The infinite gaussian mixture model. In NIPS
(1999), vol. 12, pp. 554–560.

[33] Rissanen, J. Modeling by shortest data description. Automatica 14, 5
(1978), 465–471.

[34] Robins, G., Pattison, P., Kalish, Y., and Lusher, D. An intro-
duction to exponential random graph (p*) models for social networks.
Social networks 29, 2 (2007), 173–191.

[35] Rossi, R., Fahmy, S., and Talukder, N. A multi-level approach
for evaluating internet topology generators. In IFIP Networking Con-
ference, 2013 (2013), IEEE, pp. 1–9.

[36] Rossi, R., and Neville, J. Modeling the evolution of discussion
topics and communication to improve relational classification. In Pro-
ceedings of the First Workshop on Social Media Analytics (2010), ACM,
pp. 89–97.

[37] Rossi, R. A., and Ahmed, N. K. Role discovery in networks. Knowl-
edge and Data Engineering, IEEE Transactions on 27, 4 (2015), 1112–
1131.

[38] Rossi, R. A., Gallagher, B., Neville, J., and Henderson, K.

Modeling dynamic behavior in large evolving graphs. In Proceedings of
the 6th ACM International Conference on Web Search and Data Mining
(WSDM) (2013), pp. 667–676.

[39] Ruan, Y., and Parthasarathy, S. Simultaneous detection of com-
munities and roles from large networks. In Proceedings of the second
ACM conference on Online social networks (2014), ACM, pp. 203–214.

[40] Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. Application
of dimensionality reduction in recommender system-a case study. Tech.
rep., DTIC Document, 2000.

[41] Schölkopf, B., Smola, A., and Müller, K.-R. Kernel principal
component analysis. In International Conference on Artificial Neural
Networks (1997), Springer, pp. 583–588.

[42] Wang, Y.-X., and Zhang, Y.-J. Nonnegative matrix factorization:
A comprehensive review. IEEE Transactions on Knowledge and Data
Engineering 25, 6 (2013), 1336–1353.

BIBLIOGRAPHY 48

[43] White, D. R., and Reitz, K. P. Graph and semigroup homomor-
phisms on networks of relations. Social Networks 5, 2 (1983), 193–234.

[44] Yang, Y., and Pei, J. In-network neighborhood-based node similarity
measure: A unified parametric model. arXiv preprint arXiv:1510.03814
(2015).

[45] Zhao, Y., Wang, G., Yu, P. S., Liu, S., and Zhang, S. Inferring
social roles and statuses in social networks. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and
data mining (2013), ACM, pp. 695–703.

	Cover page
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Structure of the Thesis
	1.3 Additional References

	2 Background
	2.1 Graph-based role discovery
	2.1.1 Structural equivalence
	2.1.2 Automorphic equivalence
	2.1.3 Regular equivalence
	2.1.4 Stochastic equivalence
	2.1.5 Methods for graph-based role discovery

	2.2 Feature-based role discovery
	2.2.1 Feature-based roles framework

	2.3 Hybrid approaches for role discovery
	2.4 RolX: Structural role extraction in large graphs

	3 Role Discovery Preliminaries
	3.1 Preliminaries and notation
	3.2 Problem formulation and complexity

	4 Algorithms for discovering roles
	4.1 A polynomial algorithm for perfect role assignment
	4.2 Hill-climbing algorithm
	4.3 Iterative algorithm

	5 Experimental evaluation
	5.1 Experimental setup:
	5.1.1 Synthetic data
	5.1.2 Real-world data
	5.1.3 Evaluation measures

	5.2 Synthetic data performance
	5.3 Perfect assignments performance
	5.4 Performance of greedy and iterative algorithms
	5.5 Case study of the collaboration network
	5.6 Case study of hen dominance network
	5.7 Comparison with RolX

	6 Conclusions

