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A Combinatorial Approach to Singularities of Normal Surfaces

SANDRO MANFREDINI

Abstract. In this paper we study generic coverings of C
2 branched over a curve

s.t. the total space is a normal analytic surface, in terms of a graph representing the
monodromy of the covering, called monodromy graph. A complete description of
the monodromy graphs and of the local fundamental groups is found in case the
branch curve is {xn = ym} (with n ≤ m) and the degree of the cover is equal to n
or n − 1.

Mathematics Subject Classification (2000): 32S25 (primary), 32S05 (secondary).

1. – Introduction

In this paper we introduce a combinatorial approach to study normal sin-
gularities of complex analytic surfaces. In particular, since a normal surface has
only isolated singularities (see, e.g., [Na]), we restrict our attention to germs
(S, s) where S is a connected normal surface, s ∈ S and S \ s is non-singular.
We begin by setting some standard notation.

A normal generic covering (S, π) (ngc in the sequel) is a finite holomorphic
map π : S −→ C

2 from a connected normal surface S to the complex plane
C

2, which is an analytic covering branched over a curve B ⊂ C
2, such that the

fiber over a smooth point of B is supported on degπ − 1 distinct points. An
ngc is called smooth if S is non-singular.

Two ngc’s (S1, π1), (S2, π2) are called (analytically) equivalent if there
exists an isomorphism φ : S1 → S2 such that π1 = π2 ◦ φ. In the sequel, we
will consider equivalent ngc’s to be the same covering. For instance, when we
say “π is unique”, we mean “π is unique up to equivalence”.

The main interest in ngc’s comes from the well-known fact that, by the
Weierstrass preparation theorem, given an analytic surface S ⊂ C

n , a generic
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projection S
π→ C

2 is (at least locally, in order to insure degπ < ∞) an ngc
branched over a curve (see [GR]). Moreover, since over a non-singular point of
B π is locally (in S) equivalent to the map of the complex plane to itself which
takes (x, y) to (xa, y) with a = 1, 2, we can restrict to the case in which the
branch locus B has only one singular point (which we may assume to be the
origin O). Namely, given a germ (S, s) as above, there exists an ngc (S, π)

whose branch curve B is non-singular away from π(s) = O .
For a fixed curve B there are three natural problems related to ngc’s: the

existence problem (does there exist an ngc branched over B?); the uniqueness
problem (under which hypothesis is the covering unique?); and the smoothness
problem (does there exist a smooth ngc branched over B?). Moreover, if we
allow the branch curve to vary, we have the classification problem, i.e. to find
all pairs (B, d) for which there exists an ngc of degree d branched over B and
find which couples correspond to smooth ngc’s. Notice that for degπ = 2 the
problem is trivial, since there always exists a (unique) ngc of degree 2 branched
over each curve B. Namely, if B has equation f (x, y) = 0, it is sufficient to
consider the projection on the x, y-plane of the surface in C

3 defined by the
equation z2 = f (x, y).

A standard way to study ngc’s is the following: given an ngc (S, π) with
branch curve B, one defines the monodromy homomorphism ρ : π1(C

2 \ B) →
Sdeg π as the action of this fundamental group on the fiber of π over a fixed
regular value. The “generic” condition means that for each geometric loop (i.e.
a simple loop in C

2 \ B around a smooth point of the curve B) its monodromy
is a transposition. We will call such a homomorphism a generic monodromy
for π1(C

2 \ B).
It is well-known that one can reconstruct the covering from the pair (B, ρ)

(cfr. [GrRe]). However, despite the explicit construction, understanding the
singularity of the covering in this way is very difficult (except in specific
cases). It is, for example, still an open problem to classify all the possible
pairs coming from smooth ngc’s. Observe that monodromies of equivalent
ngc’s differ only by an inner automorphism of the symmetric group, so we will
say that two monodromies ρ1, ρ2 : π1(C

2 \ B) → Sd are equivalent if there
exists σ ∈ Sd such that ρ1(γ ) = σρ2(γ )σ−1 for all γ ∈ π1(C

2 \ B) and we have
the bijection { ngc’s branched over B}/equivalence ↔ { generic monodromies
for π1(C

2 \ B)}/equivalence.
In this paper we restrict to the case where the branch curve has (up to

analytic equivalence) the equation {xn = ym}. Let us point out that, according
to the Puisieux classification (see [BK]), this class of singularities is a natural
first step for a complete classification and that much is known in the non-generic
case (see [T1], T2]).

Our aim is to translate the problem into a combinatorial one by representing
the equivalence class of the monodromy ρ of an ngc of degree d branched on the
curve Bn,m = {xn = ym} by a connected graph � ∈ Grd,n called the monodromy
graph, where Grd,n is the set of (isomorphism classes of) graphs with d vertices
and n labeled edges: if γ1, . . . , γn are geometric loops that generate π1(C

2 \ B),
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after identifying Sd with the set of permutations of the vertices of the graph,
then in � the edge labeled i connects the vertices exchanged by the transposition
ρ(γi ). Observe that the monodromy graph does not carry all the information
needed to reconstruct the covering: � has n edges, but we have lost m. For
a connected � ∈ Grd,n , we say that m is compatible with � if � defines
an ngc branched over Bn,m = {xn = ym}. Given a connected graph � ∈
Grd,n and a compatible integer m, we can uniquely reconstruct the monodromy
homomorphism, and hence, an ngc which has � as monodromy graph. We
then have the bijection {ngc’s of degree d branched over Bn,m}/equivalence ↔
{(�, m) ∈ Grd,n × N such that � is connected and m is compatible with �}.

In order to translate the problem into a combinatorial one we define some
actions of the free group Fn on n generators on Grd,n in terms of which we
can decide if a given integer m is compatible with a given graph �. Exploiting
this action, in [MP] we were able to give a complete classification of the
ngc’s branched over irreducible curves of type {xn = ym} in terms of the
monodromy graphs:

Theorem 1.1. The monodromy graphs of ngc’s (S, π) of degree d ≥ 3 branched
over the curve {xn = ym}, with (n, m) = 1, are the following:

1. “Polygons” with d vertices, valence n
d (or m

d ) and increment j, with ( j, d) = 1,

j < d
2 , j (d − j)|m (resp. j (d − j)|n). Moreover, d must divide n (resp. m).

2. “Double stars” of type ( j, d − j) and valence n
j (d− j) (or m

j (d− j) ), with ( j, d) =
1, j < d

2 , j (d − j)|n (resp. j (d − j)|m). Moreover, d must divide m (resp. n).

Duality induced by fiber product with the map ψ(x, y) = (y, x) takes graphs
of type (i) to graphs of type (i i), and vice-versa.

(For the definition of polygons and double stars see [MP].)
In this paper we change the point of view: rather than imposing restrictions

on the branch curve, we fix the degree of the covering and we classify all
monodromy graphs associated to ngc’s branched over Bn,m of degrees n and
n − 1 (see below for exact statements). Using monodromy graphs and the
Reidemeister-Shreier method, we are also able to compute a presentation of
the local fundamental group of the total space of these ngc’s, thus giving a
complete answer to the smoothness problem in these cases.

We now describe the content of each section. In Section 2 we give the basic
definitions of the combinatorial and algebraic setting. In Section 3 we define
the monodromy graph associated to an ngc, we prove that the set of integers
compatible with a given connected graph � is always non-empty –since there is
one, called standard, which we can compute from � itself– and that this set is
the positive part of an ideal in Z, (hence, there is a minimum integer compatible
with �). This implies that among all ngc’s that have � as monodromy graph,
there is a “minimal” one, and we give a way to construct all the others out of
the minimal one. In Section 4 we give a complete classification of monodromy
graphs in Grn+1,n which define minimal non-standard coverings. The result is
the following:
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Theorem 1.2. A tree � ∈ Grn+1,n defines a minimal non-standard ngc ⇐⇒
∃ α : α|n and � is a coherently labeled α-centered graph. In this case, the minimum
integer compatible with � is m = n

α
(n + 1) with α maximal (for the fixed labeling

of �).

For the definition of a coherently labeled α-centered graph see Defini-
tion 4.2. In Section 5 we give a complete classification of monodromy graphs
in Grn,n which define minimal non-standard coverings. The result is the fol-
lowing:

Theorem 1.3. A connected graph � ∈ Grn,n defines a minimal non-standard
ngc ⇐⇒ ∃ α, s : α|n, (s, α) = 1 and � is a s-coherently labeled α-ring. In this
case, the minimum integer compatible with � is m = hk

(h,k)
n
α

with α maximal (for the
fixed labeling of �).

For the definition of an s-coherently labeled α-ring, h and k, see Section 5.
In Section 6 we compute the local fundamental group of the surfaces associated
to the graphs constructed in Sections 4 and 5, obtaining:

Theorem 1.4. Let (S, π) be an ngc branched over Bn,m and � be its monodromy
graph. If � is a tree then S is smooth. If � is a coherently labeled α-ring then the
fundamental group of S \ π−1(O) is cyclic of order m

hk .

(Here h and k have the same meaning as in Theorem 1.3.)

Acknowledgements. I would like to thank Prof. Fabrizio Catanese, who
was the first to address me to the subject, and Prof. Mina Teicher who partially
supported this research hosting me at Bar Ilan University (Israel).

2. – Graphs and homomorphisms to symmetric groups

In this section we introduce the basic definitions and notation that we will
use throughout the paper.

Let V be a set with d elements. We denote by GrV,n the set of graphs
with n labeled edges, labeled 1, . . . , n, and whose set of vertices is V , and by
Grd,n the set of isomorphism classes of graphs with d vertices and n labeled
edges, labeled 1, . . . , n. If � ∈ GrV,n , we denote its isomorphism class by
�∗ ∈ Grd,n . Observe that if �∗ = �′

∗ then the isomorphism between � and �′
is given by τ ∈ S(V ), a permutation of the set V .

In what follows we will make no difference between an edge and its label
and we will say “the edge a” for “the edge labeled a”. For instance, if the edge
l with the label i has vertices p and q we will write l = p, q = i indifferently.
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Given a graph �, p a vertex of � and l an edge of �, let the degree or
valence of p be the number of edges of � having p as an end point, and let
the valence of l be the number of edges of � with the same end points as l.
Call an end a vertex of valence 1, and a leaf an edge with an end as vertex.

If �′ is a subgraph of � we set ∂�′ = {v vertex of �′|∃ l edge of �, l �⊂
�′ : v ∈ l} and � − �′ = (� \ �′) ∪ ∂�′, that is, we delete from � all edges
in �′ and all vertices in �′ \ ∂�′. If p is a vertex of � of degree i , we denote
by � − p the graph obtained from � \ {p} by adding i new vertices, one to
each edge with p as end point.

A sequence c = ( ji )i=1,... ,l of distinct edges of � such that the edge ji
intersects the edge ji+1 only in one vertex is called a chain in � of length l. If
l ≥ 2, we say that the vertex of j1 (resp. jl) not in common with j2 (resp. jl−1)
is the starting vertex (resp. ending vertex) of c. If l = 1, then both vertices of
j1 are considered either starting or ending vertices of c. We also consider a
single vertex as a trivial chain of length l = 0. A p-chain is a chain with p
as starting vertex, while a p, q-chain is a p-chain with q as ending vertex.

Definition 2.1. For a fixed index 1 ≤ i ≤ n, we define the i-th action of
S(V ) on GrV,n in the following way: for σ ∈ S(V ) and � ∈ GrV,n , σ(i)(�) is
the graph obtained from � by deleting the edge i = p, q and adding an edge
with label i between the vertices σ(p) and σ(q).

It is easy to see that if �∗ = �′
∗ and if the isomorphism from � to �′ is

given by τ ∈ S(V ), then σ(i)(�) and τ−1στ(i)(�
′) are again isomorphic via τ .

Let Fn be the free group on n generators γ 1, . . . , γ n , then GrV,n is in one–
to–one correspondence with the set of homomorphisms ϕ : Fn −→ S(V ) such
that ϕ(γ i ) is a transposition for all i = 1, . . . , n. To see this, let � ∈ GrV,n and
define Hom(�) : Fn −→ S(V ) by setting Hom(�)(γ i ) = (p, q) if the edge i of
� has vertices i = p, q. Conversely, given a homomorphism ϕ : Fn −→ S(V )

such that ϕ(γ i ) is a transposition for all i , we define Graph(ϕ) ∈ GrV,n by
taking for each i = 1, . . . , n an edge labeled i of vertices i = p, q where p and
q are the points of V exchanged by the transposition ϕ(γ i ). It is immediate
to verify that Graph(Hom(�)) = � and Hom(Graph(ϕ)) = ϕ. For the sake
of simplicity, we will denote Hom(�)(γ ) by γ �; so, if p ∈ V, we will write
γ �(p) or simply γ (p) if no confusion arises.

Remark. Since the only transitive subgroup of S(V ) generated by trans-
positions is S(V ) itself, then ϕ is surjective if and only if the associated graph
Graph(ϕ) is connected. Also, observe that (Graph(ϕ))∗ represents the conjugacy
class of ϕ modulo inner automorphisms of S(V ), since for τ ∈ S(V ), the graph
isomorphic to Graph(ϕ) obtained by permuting the vertices by τ corresponds
to the homomorphism ϕ′ : Fn → S(V ) such that ϕ′(γ ) = τ−1ϕ(γ )τ, for every
γ ∈ Fn .

For a fixed � ∈ GrV,n we can make Fn act on V via the representation
given by Hom(�) and composing the map Hom: GrV,n −→Hom(Fn,S(V )) with
the i-th action of S(V ) we are able to define the i-th action of Fn on GrV,n .
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Observe that if �∗ = �′
∗ and the isomorphism from � to �′ is given by

τ ∈ S(V ), then γ � = τγ �′τ−1, so that the i-th action of γ � on � is isomorphic
via τ to the i-th action of τ−1γ �τ = γ �′ on �′. Thus both actions pass to
Grd,n: we can make Fn act on the set of vertices of a fixed graph in Grd,n

and have:

Definition 2.2. For γ ∈ Fn and � ∈ GrV,n the formula

γ (i)(�∗) = ((γ �)(i)(�))∗

defines the i-th action of Fn on Grd,n . If in γ (i)(�∗) the edge i has the same
vertices as the edge j we say that γ sends the edge i of �∗ to the edge j
of �∗ and we write γ [i] = j . Observe that, if i = p, q and j = p′, q ′ are
edges of �, then γ [i] = j if and only if {γ (p), γ (q)} = {p′, q ′}.

Let G be a group which admits a presentation of the following type:

(2.3) G =< γ1, . . . , γn| γkj = Tjγhj T −1
j j = 1, . . . , m >

and fix such a presentation. Let g : Fn → G be the (generator) map such that
g(γ i ) = γi for i = 1, . . . , n and, if ω = γr1 . . . γrs is a word in the γ ’s, then
set ω = γ r1

. . . γ rs . We call ω the verbal lifting of ω.

Definition 2.4. A generic monodromy for (the fixed presentation of) G
is a homomorphism ϕ : G −→ S(V ) such that ϕ(γi ) is a transposition for
each i = 1, . . . , n. We say that two homomorphisms ϕ1, ϕ2 : G → S(V ) are
equivalent if there exists τ ∈ S(V ) such that ϕ1(γ ) = τϕ2(γ )τ−1 for all γ ∈ G.
Given a generic monodromy ϕ for G, the monodromy graph associated to ϕ

is the graph Graph(ϕ), where ϕ = ϕ ◦ g is the lifting of ϕ to Fn under the
map g. Observe that the monodromy graph depends on the presentation of G
(more specifically on the chosen set of generators).

Conversely, given a graph � ∈ GrV,n , it defines a generic monodromy
ϕ =Hom(�) for Fn . ϕ factors through g if and only if, setting σj = ϕ(T j ),
ϕ(γkj ) = σjϕ(γhj )σ

−1
j for all j , that is, σj sends the vertices of the edge kj of �

to the vertices of the edge hj for all j . This is exactly the condition for T j , the
verbal lifting of Tj , to send the edge kj of �∗ to the edge hj for all j . Remark
also that the monodromy graphs of two equivalent generic monodromies for G
are in the same isomorphism class in Grd,n , thus we have proved:

Proposition 2.5. A graph �∗ ∈ Grd,n represents the equivalence class of a
generic monodromy ϕ : G −→ S(V ) for G ⇐⇒ T j [kj ] = hj for all j = 1, . . . , m.

In case Tj = T does not depend on j , we have that T sends the edge
kj to the edge hj for all j and if moreover {k1, . . . , km} = {h1, . . . , hm} then
we can think of T (actually T ) as acting on the set of edges {k1, . . . , km}
of the associated graph � (or of its isomorphism class �∗). Observe that this
action respects incidence relation, i.e. if the edges ki and kj do not intersect
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(resp. have one vertex in common, resp. have the same end points) then the
edges hi and hj do the same. In particular, all edges of the same T -orbit have
the same valence and if l is a leaf of �, then all edges in the same T -orbit
are leaves.

We end this section with a definition which will be used later. Let T =
γ i1

. . . γ ir ∈ Fn and let p be a vertex of the graph � ∈ GrV,n . Let pj =
γ i1

. . . γ i j
(p), (p0 = p). If pj �= pj+1, then the edge i j+1 = pj , pj+1.

Definition 2.6. We define the motion of p under the action of T to be
the sequence of edges (l1, l2, . . . ) where lj = ik for k =min{h | ph �= pj−1},
(l0 = 0).

We also identify the motion of p with the oriented path described by the
(ordered) union of the edges in the sequence. A similar definition may be given
if p is a vertex of a graph in Grd,n . We will mainly use this definition in case
T = T h,k = γ h . . . γ h+k−1 ∈ Fn , where the indices in the γ i are taken to be
cyclical modn.

3. – Normal generic coverings and monodromy graphs

Let B ⊂ C
2 be an algebraic curve and let P be a point not in B. It is

well-known that the fundamental group π1(C
2 \ B, P) of the complement of B

admits a presentation in the form (2.3) where the γ ’s are geometric generators,
i.e. simple loops around a smooth point of B (see [Mo]). If B is the branch curve
of an ngc (S, π) of degree d, then π1(C

2 \ B, P) acts on the fiber V = π−1(P)

giving a surjective generic monodromy ϕ for π1(C
2 \ B, P). Changing the base

point or taking an equivalent ngc produces equivalent generic monodromies, so,
by the bijection {ngc’s branched over B}/equivalence ↔ {generic monodromies
for π1(C

2 \ B)}/equivalence (see introduction), in order to classify ngc’s (S, π)

of degree d branched over a curve B, we can classify the connected graphs in
Grd,n associated to their monodromies. Since we are interested in equivalence
classes of generic monodromies, we can get rid of the base point and fix
a bijection of V with the set D = {1, 2, . . . , d} to obtain a homomorphism
ϕ : π1(C

2 \ B) → Sd = S(D), well defined up to conjugation. Observe that
if B has equation { f (x, y) = 0}, then the projection on the x, y plane of the
surface S given in C

3 by the equation z2 = f (x, y) exhibits S as an ngc of
degree 2 branched over B, which corresponds to the unique homomorphism
ϕ : π1(C

2 \ B) −→ S2 (such that ϕ(γ ) = (1, 2) for each geometric generator
γ ), or to the unique graph in Gr2,n . So, in what follows suppose d ≥ 3.

Let Gn,m be the group presented by

(3.1) Gn,m =< γ1, . . . , γn| γj = T γj+m T −1 j = 1, . . . , n >
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where T = γ1 · · · γm and all indices are taken to be cyclical mod n. If B = Bn,m

is the curve of equation {xn = ym} then (see [O], [MP])

π1(C
2 \ B) ∼= Gn,m

where we have taken as generators the free basis of π1({y = 1} \ B) shown in
the picture, called horizontal standard generators. Indeed, we could also choose
as generators the vertical standard generators in the plane x = 1 obtaining
π1(C

2 \ B) ∼= Gm,n. Notice that standard generators are geometric generators.

(1 −ε, 1)

(1, 1)

(0, 1)

(ω, 1)(ωi, 1)
γ2

γ1

γi . . .

��
��

��
��

��
��

��
�������

�����> >

>

�

�

�

��
ω = ei 2π

n

Unless explicitly stated otherwise, we will always use the presentation
π1(C

2 \ Bn,m) ∼= Gn,m in terms of horizontal standard generators.

Definition 3.2. Given an ngc (S, π) of degree d branched over the curve
Bn,m , let ϕ : π1(C

2 \ Bn,m) → Sd be its monodromy. We define the monodromy
graph associated to π to be the isomorphism class in Grd,n of the monodromy
graph associated to ϕ considered as a generic monodromy for Gn,m .

Observe that, in Gn,m , T acts by conjugation on the set {γ1, . . . , γn} and
we have (m, n) orbits, each with n

(m,n)
elements. Given a generic monodromy

for Gn,m , ϕ : Gn,m → Sd , we have that (cfr. 2.5) T acts on the whole set of
edges of the associated graph �, by sending the edge j to the edge j + m.
Since the action of T on the edges of � respects incidence relations, if an edge
j has end points of degree a and b, then each edge of the same orbit also has
end points of degree a and b. More precisely, if the edge j intersects the edge
i then the edge j + km intersects the edge i + km for each k.

Definition 3.3. For a fixed � in Grd,n , we say that h ∈ N\{0} is compatible
with � if T 1,h[i] = i + h for each i = 1, . . . , n.

Since all geometric generators of π1(C
2 \ Bn,m) are conjugated to one of

the γi ’s, we have the following:

Proposition 3.4. Given a graph � ∈ Grd,n and an integer h compatible with �,

then � defines a homomorphism ϕ : π1(C
2 \ Bn,h) → Sd which maps geometric

generators to transpositions. ϕ is unique up to conjugation.

This proposition together with 2.5 gives that the pair (�, h), where � ∈
Grd,n is connected and h is compatible with �, uniquely determines (up to
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equivalence) an ngc (S, π) of degree d branched over Bn,h which has � as
monodromy graph.

In case n|m the presentation in 3.1 reduces to the unique condition that T
is central. Then for each generic monodromy ϕ : Gn,m → Sd (d ≥ 3), we
must have ϕ(T ) = 1 and a homomorphism ϕ : Fn → Sd factors through Gn,m

if and only if ϕ(T ) = 1. This allows us to remark that for every connected
graph � ∈ Grd,n the set of integers compatible with � is non-empty: indeed,
t = n · o(σ ) is compatible with �, where σ =Hom(�)(γ 1 · · · γ n). We call the
ngc associated to the pair (�, t) the standard ngc associated to �.

Consider now the map f : C
2 → C

2, f (x, y) = (ωx, y), where ω = ei 2π
n .

Since f (Bn,m) = Bn,m , f induces an isomorphism

f∗ : π1(C
2 \ Bn,m) → π1(C

2 \ Bn,m)

which acts on the horizontal standard generators as a cyclical permutation.
Cyclically permuting the γi does not change the presentation of Gn,m , so, if
we compose ϕ with f∗, we obtain another generic monodromy for Gn,m . So
we will say that

Definition 3.5. Two ngc’s (S, π), (S′, π ′) branched over Bn,m are cyclically
equivalent if (S′, π ′) is (analytically) equivalent to the fiber product S ×

C2 C
2

obtained from (S, π) by base change with a power of f .

The monodromy homomorphisms ϕ, ϕ′ : π1(C
2 \ Bn,m) −→ Sd of two

cyclically equivalent ngc’s are obtained one from the other by composing with
a power of f∗ (and an inner automorphism of Sd ) and the cyclical equivalence
class of an ngc branched over Bn,m contains at most (n, m) elements. Summing
up we have:

Proposition 3.6. Let (S, π), (S′, π ′) be ngc’s with the same branch curve
Bn,m, and �, �′ ∈ Grd,n their monodromy graphs. (S, π), (S′, π ′) are cyclically
equivalent ⇒ �, �′ differ for a cyclical permutation of the labels of the edges.
Conversely, given two graphs �, �′ ∈ Grd,n which differ for a cyclical permutation
of the labels of the edges ⇒ they have the same set of compatible integers and
the ngc’s defined by (�, m) and (�′, m) (with the same compatible integer) are
cyclically equivalent.

Since we know how to produce all the ngc’s of a cyclical equivalence
class provided we know one of them, given a graph � ∈ Grd,n , we can always
suppose that a given edge of � has the label 1.

Let (S, π) be an ngc branched over Bn,m . In [MP] we proved that base
change via the map fa,b : C

2 −→ C
2 such that fa,b(x, y) = (xa, yb), gives

π ′ : S′ −→ C
2 which is an ngc branched over the curve {xan = ybm} and

this defines a partial order on the set of ngc’s branched over curves of type
{xn = ym}. Call an ngc minimal if it cannot be induced by other coverings via
one of these base changes. Moreover, if � ∈ Grd,n is the monodromy graph
associated to π , the graph �′ ∈ Grd,an associated to π ′ is obtained from � by
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adding a − 1 edges labeled i + n, . . . , i + (a − 1)n with the same end points
as the edge i , for all i = 1, . . . , n. We call �′ the a-pullback of �. Summing
up we have:

Proposition 3.7. Let (S, π), (S′, π ′) be ngc’s as above and �, �′ ∈ Grd,n their
monodromy graphs. S′ is obtained from S by base change via the map fa,b ⇒ �′ is
the a-pullback of �. Conversely, �′ is the a-pullback of � ⇒ they have the same set
of compatible integers and each ngc defined by �′ is obtained from a ngc defined by
� by base change with the map fa,1.

Notice that using base changes with the maps f1,b we immediately get that
if m is compatible with �, then also bm is compatible with � for each b ≥ 1.

Proposition 3.8. The set of integers compatible with a graph is the positive
part of an ideal in Z.

Proof. Let suppose that m, m ′ are compatible with the graph �∗ ∈ Grd,n

with m ≤ m ′. Let ϕ : Gn,m → S(V ) and ϕ′ : Gn,m′ → S(V ) be the generic
monodromies associated to the couples (�, m), (�, m ′) respectively. Then, if
γ1, . . . , γn and γ ′

1, . . . , γ ′
n are the (horizontal standard) generators for the groups

Gn,m and Gn,m′ respectively, we have ϕ(γj ) = ϕ′(γ ′
j ) = σj for all j .

Alternative defining relations for Gn,m are the following (see [MP])

γi . . . γi+m−1 = γi+1 . . . γi+m

and so, the transpositions σj satisfy

σi . . . σi+m−1 = σi+1 . . . σi+m

and
σi . . . σi+m′−1 = σi+1 . . . σi+m′

for all i . We have that

σi . . . σi+m′+m−1 = σi . . . σi+m′−1(σi+m′ . . . σi+m′+m−1) = σi+1 . . . σi+m′+m

and

σi . . . σi+m′−m−1 = σi . . . σi+m′−1(σi+m′−m . . . σi+m′−1)
−1 = σi+1 . . . σi+m′−m

for all i . So, both m ′ + m and m ′ − m are compatible with �∗ and hence, it is
easy to see that (n, m) is compatible with �∗.

Combining this with Proposition 3.6 we have

Corollariy 3.9. Up to cyclical equivalence, each graph � ∈ Grd,n defines a
unique minimal ngc among all coverings that have � as monodromy graph, corre-
sponding to the minimum integer compatible with �. All other ngc’s defined by �

are obtained from the minimal one by base change with the maps f1,b (again, up to
cyclical equivalence).

When in the sequel we will refer to “the” minimal ngc defined by a graph,
we will refer to one of the elements in its cyclical equivalence class. Notice
that if (n, m) = 1 then the minimal covering will actually be unique. In this
case, a complete classification of monodromy graphs corresponding to ngc’s
branched over irreducible curves of type {xn = ym} was achieved in [MP] (see
the introduction for the statement of the results).
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4. – Normal generic coverings branched over xn = ym of degree d = n + 1

The aim of this section is to classify all graphs in Grd,n associated to an
ngc (S, π) branched over Bn,m of degree n + 1 for n ≥ 2. Such a graph �

is a tree and it is easy to see that, in this case (cfr. 6.2), the surface S is
smooth. Observe that, since � is a tree, the edges of the same T = T 1,m-orbit
have at most one common point. Also, it is well-known that the permutation
Hom(�)(γ 1 · · · γ n) is a n + 1-cycle, and we have:

Proposition 4.1. The branch curve of the standard ngc defined by a tree
� ∈ Grn+1,n is Bn,n(n+1) = {xn = yn(n+1)}.

Definition 4.2. Given α ≥ 2, a vertex p of a connected graph � is called
an α-center if � − p is given by α (possibly disconnected) forests �1, . . . , �α

each isomorphic to the others via isomorphisms which respect the distance of
the vertices from p (where the distance is calculated in � and the new vertices
have distance 0 from p).

The α-center of a graph, if it exists, is obviously unique and if p is the
α-center of γ and β|α, β ≥ 2, then p is also the β-center of �. If � has a
α-center, it is said to be α-centered. An α-centered graph � ∈ Grd,n (notice
that α|n) is called coherently labeled if for each edge j in �1 the corresponding
edge in �i is j + n

α
(i − 1).
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Fig. 1. A coherently labeled 4-centered tree (edges labeled in boldface form �1).

Theorem 4.3. Let � be a tree in Grn+1,n and let m be the minimum integer
compatible with �. (�, m) defines a non-standard minimal ngc branched over
Bn,m ⇐⇒ ∃ α|n such that � is a coherently labeled α-centered graph. In this
case, m = n

α
(n + 1) with α maximal (for the fixed labeling of �).

Proof. Suppose � ∈ Grn+1,n is a tree associated to a non-standard minimal
ngc branched over Bn,m with monodromy ϕ : Gn,m → Sn+1. Since the covering
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is non-standard, then, considering the action of T on the edges of �, there are
β �= n orbits, each containing α = n

β
�= 1 elements.

Let a be a leaf of �. T [a] is another leaf of � and, since � is connected,
there exists a unique chain c = ( ji )i=1,... ,l which connects a to T [a], i.e.,
j1 = a and jl = T [a]. We claim that T [ ji ] = jl−i+1 for 1 ≤ i ≤ l

2 , which
implies that c has even length l = 2k, since no edge is fixed under the action
of T (α �= 1). Indeed, if we assume by induction that T [ ji ] = jl−i+1 for
1 ≤ i ≤ h − 1, if it were T [ jh] �= jl−h+1, then T [ jh] and jl−h+1 would have
only one common vertex, But then, if ch is the subchain of c starting by jh
and ending by jl−h+1, the chain ch ∪ T [ch]∪ . . .∪ T

α
[ch] would be a non-trivial

loop in � (see figure below).

a = j1

��

T̄ [a] = j6

T̄ [j3]
��

�
�

�
�

�
�

�
�

�
�

���
���j2 j5 = T̄ [j2]j3 j4

T̄ [j6] = T̄ 2[a]

T̄ [j5] = T̄ 2[j2]
T̄ 2[j3]

Fig. 2. T̄ [ j3] �= j4 is not possible (boldface edges form the chain c).

So, considering the edge jk , we have that there exists an edge a of � such
that a and T [a] have a common vertex p, hence p is a fixed point for the
action of T , that is, if an edge has p as vertex, then all edges in the same
T -orbit have p as vertex. Let A be a subset of all edges with p as vertex
made up of one edge for each T -orbit. Let �1 be the sub-graph of � given by
the union of all p-chains c such that the first edge of c is an element of A.
Then, �i = T

i
[�1], for i = 1, . . . , α − 1, intersects �1 in p and is isomorphic

to �1 via T
i
. Hence, p is a α-center of � and � is coherently labeled.

Suppose now that � is a coherently labeled α-centered graph in Grn+1,n

with α maximal for the fixed labeling. Write n = αβ and let p be the α-center
of �. Let �1, . . . , �α be the graphs in � − p as in Definition 4.2, and let
�i, j 1 ≤ j ≤ l be the connected components of �i , where the enumeration is
such that �i, j is isomorphic to �i ′, j ; let nj be the number of edges of �i, j

(
∑l

j=1 nj = β). Let m be the minimum integer compatible with �. Then T 1,m

acts on the edges of � sending the edge i to the edge i + m. Observe that
p must be a fixed point for the action of T 1,m , and that, since α is maximal,
T 1,m must take �i, j to an isomorphic �i ′, j . Moreover, m ≡ kβ mod n, i.e.
T 1,m[i] = i + kβ. Since we can cyclically permute the edges, suppose 1 is the
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edge of �1,1 having the center p as end point and let q be its other end point.
We can also suppose that the edges of the other components �1, j of �1 having
p as end point have labels hj such that 1 < h2 < . . . < hl < 1 + β and that
�2,1 has the edge 1 + β.

Now, the motion of p under the action of T 1,N for N � 1 is of the
following type

(1, . . . , 1, h2, . . . , h2, h3, . . . , h3, h4, . . . , )

i.e. p enters first �1,1, then enters �1,2 and so on, and its motion contains all
edges of �1, j twice. This is because each �1, j is a tree and the permutation
given by the product of its edges is a nj + 1 cycle. Moreover, T 1, j fixes p if
n1n + 1 ≤ j < n1n + h2, (n1 + n2)n + h2 ≤ j < (n1 + n2)n + h3, and so on.

The motion of q is similar: it leaves �1,1 and enters �1,2, �1,3 and so on,
eventually entering �2,1; so, if q is sent by T 1, j to its corresponding point in
�2,1 then j < βn + β + 1 (recall that we want to find the minimum integer
compatible with �).

Thus, for the edge 1 to be sent by T 1, j to the edge 1 + β it must be
βn + hl ≤ j ≤ β(n + 1). We claim that, since β|m, m = β(n + 1).

We have to show that each vertex qi ∈ �i is sent by T 1,β(n+1) to its
corresponding vertex qi+1 ∈ �i+1 (we already know that this happens for q).
By the symmetry of � we have that T 1,n acts on �1 in the same way as
T 1+(i−1)β,n acts on �i and in particular that T 1,sβ(n+1)(p) = p for each s. Let
k be the minimum integer such that T 1,kn(p) = qi . We have that

T 1+(i−1)β,kn−(i−1)β(n+1)(p) = qi

and

T 1,iβ(n+1)−kn(qi ) = p .

But then,

T 1+iβ,kn−(i−1)β(n+1)(p) = qi+1

and T 1,l(qi ) = qi+1 for l = kn − (i − 1)β(n + 1) + (iβ(n + 1) − kn) = β(n + 1)

as we claimed.

Hence, the branch locus of the minimal ngc defined by a coherently labeled
α-centered graph � ∈ Grn+1,n is the curve xn = y

n
α (n+1). Observe that in this

case, the uniqueness problem has a negative solution since we can arbitrarily
label one of the forests in the definition of an α-centered graph � (using labels
which form a complete set of representatives for Zβ) and label the other forests
in such a way that � is coherently labeled, to obtain different ngc’s branched
over the same curve (even in different cyclical equivalent classes).
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5. – Normal generic coverings branched over xn = ym of degree d = n

The aim of this section is to classify all graphs in Grd,n associated to an
ngc (S, π) branched over Bn,m of degree n for n ≥ 2. Such a graph � ∈ Grn,n

is connected and has a unique simple loop c. If p is a vertex of c, we denote
by �p the (possibly empty) tree consisting of all p-chains in � having no edges
in common with c.

Lemma 5.1. Given �∗ ∈ Grn,n, let c be its only simple loop and let p be a
vertex of c. The action of T 1,n = γ 1 · · · γ n on the vertices of �∗ has two orbits. All
vertices of �∗ which belong to a fixed component of �p − p are in the same orbit.

Proof. Since for every σ, τ ∈ Sd , στ and τσ have the same cyclical decom-
position, a cyclical permutation of the edges of � will not affect the number of
elements in the orbits of Hom(�)(T 1,n). Then, by a cyclical permutation of the
edges, we can assume that 1 is an edge of the cycle c of �. In this case, �−{1}
is a maximal sub-tree of � and so, Hom(�)(γ 2 . . . γ n) is a n-cycle. Thus, the
permutation Hom(�)(γ 1 · · · γ n), is the product of two cycles of lengths, say, h
and k with h + k = n.

Notice that acting on �p − p by T 1,n is the same as acting on it by the
ordered product of its edges. So, the second assertion again follows from the
fact that the permutation associated to the ordered product of the edges of a
tree is a cyclical permutation of all its vertices.

Observe that, looking at the motion of a vertex a of � under the action
of T 1,N , a goes around c in a fixed direction (independent on N ), which is
shared with all h vertices in its T 1,n-orbit, and that it makes a complete loop
under the action of T 1, j only if (h − 1)n < j < (h + 1)n.

If c is oriented, we call the two T 1,n-orbits the positive and negative orbits:
a vertex of � belongs to the positive orbit if and only if the two orientations
induced on some (and so all) edges of the motion of a under the action of
T 1,N for N � 1 which belong also to c, are the same. We immediately have:

Proposition 5.2. Let h and k be the cardinality of the two T 1,n-orbits of a
graph � ∈ Grn,n, then n = h + k and the standard covering defined by � has for
branch locus the curve Bn,m with m = hk

(h,k)
n.

Definition 5.3. For three indices i, j, k we will say that i < j < k
cyclically if either i < j < k, or j < k < i , or k < i < j .

Definition 5.4. In the notation of Lemma 5.1, fix an orientation of c and
let a (resp. b) be a vertex of � in the positive (resp. negative) orbit. We say
that a (resp. b) enters the component �′ of �p − p if, cyclically i < l < j
(resp. cyclically i < j < l), where l is the edge of �′ with p as vertex and i and
j are the edges of c with p as vertex such that j follows i (resp. i follows j)
in the orientation of c. Alternatively, a (resp. b) enters �′ if the motion of
a (resp. b) under the action of T1,N for N �1 contains all the edges of �′.

We first fix our attention on a particular class of graphs.
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Definition 5.5. A graph � ∈ Grd,2n̄ is said to be a symmetric graph if
it is the union of two isomorphic sub-trees �1 and �2 which intersect (in �)
in vertices which correspond under the isomorphism. Moreover, if the edge i
is in �1, then the corresponding edge in �2 is the edge i + n̄. �1 and �2 are
called the two halves of �.

Notice that if there are t vertices of � belonging both to �1 and �2, then
π1(�) is free of rank t − 1, and that a 2-centered graph is symmetric.

As we will see, the minimal ngc defined by a symmetric graph is the
standard one, so this class of graphs is not interesting for the purpose of this
section. We start with a lemma.
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Fig. 3. A symmetric graph with 14 edges and 14 vertices.

Lemma 5.6. Each T 1,2n̄ -orbit of a symmetric graph � ∈ Gr2n̄,2n̄ contains
n̄ elements.

Proof. Let �1 and �2 be the two halves of � as in Definition 5.5. Since �

has the same number of edges and vertices, then there are exactly two vertices
of �, p and q, which belong to both �1 and �2 and which divide the only
simple loop c in � into two isomorphic parts. Give c the orientation that makes
p belong to the positive T 1,2n̄-orbit.

Since if the edge i has p (resp. q) as vertex, then the edge i + n̄ also
has p (resp. q) as vertex, then if p enters a component �′ of �p − p (resp. of
�q − q) it will not enter the corresponding component in the other half of �.

Let a �= p, q be a vertex of �1 ∩ c (if any), i and j the edges of c which
have a as vertex with j that follows i in the orientation of c, and α1, . . . , αha ,
β1, . . . , βka , δ1, . . . , δla the other edges of � which have p as vertex, such that
α1 < . . . < αha < min{i, j} < β1 < . . . < βka < max{i, j} < δ1 < . . . < δla .
Number the components �′

τ of �a − a by the edge which has a as vertex. If
i < j , then p will enter the component �′

τ of �a − a ⇐⇒ τ = β1, . . . , βka ,

while if j < i , then p will enter the component �′
τ of �a − a ⇐⇒ τ =

α1, . . . , αha or τ = δ1, . . . , δla .
Let b be the vertex of �2 which corresponds to a, then the edges of c

which have b as vertex are i + n̄ and j + n̄ and the other edges of � which have
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b as vertex are α1 + n̄, . . . , αha + n̄, β1 + n̄, . . . , βka + n̄, δ1 + n̄, . . . , δla + n̄.
Then, if i < j , p will enter the component of �b − b corresponding to �τ if
and only if τ = α1, . . . , αha or τ = δ1, . . . , δla , while if j < i , p will enter the
component of �b − b corresponding to �τ if and only if τ = β1, . . . , βka . By
Lemma 5.11, p belongs to the same T 1,2n̄-orbit as exactly half of the vertices
of � not in c.

Notice that a belongs to the same orbit as p if and only if i > j and
that b belongs to the same orbit as p if and only if [ j + n̄] > [i + n̄] where
[t] ≡ t mod 2n̄ and 0 < [t] ≤ 2n̄. Thus, if each edge of �1 ∩ c has a lesser
label than the corresponding edge in �2, q is not in the same orbit as p and
if a �= p, q is (resp. is not) in the same orbit as p, then b is not (resp. is) in
the same orbit as p, and the result follows.

To conclude the proof, we will show that exchanging the labels of two
corresponding edges of c yields a new symmetric graph with the same cardi-
nalities of the T 1,2n̄-orbits. If c has only two edges, then there is nothing to
prove, otherwise, let �̃ be the graph obtained from � exchanging the labels of
the edges a and a + n̄ of c. Notice that a cyclical permutation of the edges
will leave the graph symmetric and will not change the cyclical decomposition
of Hom(�)(T1,2n̄) and hence the number of elements in the T 1,2n̄-orbits. Then,
cyclically permuting the edges of �, we can suppose that l = 1 is an edge of
�1 ∩ c, in which case the two vertices of l belong to distinct orbits. Suppose
first that p or q is a vertex of 1. Then the two cases in figure below, where
1 < i < n̄ and in which we have marked the vertices of the positive orbit by a
solid dot, show that exchanging 1 with n̄ + 1 does not alter the cardinality of
the T 1,2n̄-orbits.
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If neither p nor q is a vertex of 1, the four cases in the figure below,
where 1 < i, j < n̄ and in which we again have marked the vertices of the
positive orbit by a solid dot, conclude the proof.
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Corollary 5.7. The standard ngc defined by a symmetric graph � ∈ Grn,n

has for branch locus the curve xn = ym with m = n2

2 .

We now state the main result concerning symmetric graphs.

Lemma 5.8. For a symmetric graph � ∈ Grn,n with n > 2, the standard ngc
is minimal.

Proof. Let p and q be the two vertices of � which belong to both halves
of � and let c be the only simple loop in �. Let xn = ym be the branch curve
of the minimal ngc defined by �, i.e. m is the minimum integer compatible

with � and suppose m < n2

2 . Then T 1,m acts on the edges of � sending the
edge i to the edge i + m and fixing c (as a set).

Since p and q are the only vertices of � with the property that the edge i
has p (resp. q) as vertex if and only if the edge i + n

2 has p (resp. q) as vertex
and the action of T 1,m preserves incidence relation, the set {p, q} is fixed for
the action of T 1,m on the vertices of �.

Suppose p is a fixed point for the action of T 1,m . Then, the action of T 1,m

must exchange the two edges of c which have p as vertex and this implies
that m ≡ n

2 mod n. Cyclically permuting the edges of � so that the edge 1 is
in c and has p as vertex, we have that if T 1, j fixes p then j = an + i with
1 + n

2 ≤ i ≤ n, so that it cannot be that T 1,m[1] = 1 + n
2 .

On the other hand, if T 1,m(p) = q, then T 1,m(q) = p and there are only
two possibilities: c has only two edges, i.e., after a cyclical permutation of the
edges, the edges 1 and 1 + n

2 have p and q as vertices and m ≡ n
2 mod n; or

n ≡ 0 mod 4, the two edges of c which have q as vertex are the edges 1 + n
4

and 1 + 3n
4 , and m ≡ n

4 mod n or m ≡ 3n
4 mod n.

In the first case, since n > 2, there is another edge a which has p as
vertex, but then, since � is symmetric, the edge a + n

2 must have p as vertex,
while, since T 1,m(p) = q, the edge a + n

2 should have q as end point, thus this
case cannot happen.

In the second case, consider the p, q-chain c′ = (li )i=1,... ,s in c such that
1 = l1 �= ls . We have that T

t
1,m[l1] = ls for some t , and then T

t
1,m[li ] = ls−i+1

if 1 ≤ i ≤ s
2 . This implies that s is even, since no edge is fixed under the

action of T
t
1,m , and that the middle vertex of c′ is fixed for the action of T

t
1,m .

This cannot happen since then the edges l s
2
, l s

2
+ n

4 , l s
2
+ n

2 , l s
2
+ 3n

4 will intersect
in the middle vertex of c′ which is different from p and q.

We now turn to another class of graphs (which includes polygons, see
the introduction).

Definition 5.9. Given α ≥ 2, an α-ring is a graph � ∈ Grn,n together
with an orientation of its only simple loop c with the property that the set of
r vertices of c may be partitioned into α sets each consisting of r

α
consecutive

vertices, Vj = {p1, j , . . . , p r
α , j } j = 1, . . . , α (where the enumeration is coherent
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with the orientation of c), in such a way that �pi,h is isomorphic to �pi,k for all
h and k, via an isomorphism which respects the distance of the vertices from
c. If β|α, β ≥ 2, then � is also a β-ring.

A block of a α-ring is the union of a chain c′ of length r
α

in c, whose
orientation is the same as that of c, and all �p as p varies among the non-
starting vertices of c′. The starting and ending vertices of c′ are called the
starting and ending vertices of the block.

A block decomposition of a α-ring is made by α isomorphic blocks which
are disjoint if we remove from each block its starting vertex. Observe that each
edge belongs to exactly one block in a block decomposition, thus, if a block
contains β edges, n = αβ. Notice also that each vertex of c may be the starting
vertex of a block.

Definition 5.10. A α-ring � is said to be s-coherently labeled if, given a
block decomposition B1, . . . , Bα of �, where the enumeration is coherent with
the orientation of c, for each edge in B1, say i , the corresponding edge in Bk

is i + (k − 1)βs (cyclical indices mod n). Notice that it must be (s, α) = 1 and
if we reverse the orientation of c, then � is (α − 1)s-coherently labeled.

We call a h-coherently labeled n-ring a polygon with n edges, valence 1
and increment h (see [MP] for a detailed definition of polygon).

14�
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Fig. 6. A 2-coherently labeled 3-ring whit a block of 5 edges.

From Lemma 5.1 we immediately get:

Corollary 5.11. Given a s-coherently labeled α-ring � ∈ Grn,n, let c be its
only loop and p a vertex of c, then all vertices of a component �′ of �p \ c and all
the corresponding vertices in the other blocks (for any block decomposition of �)

are in the same T 1,n-orbit.

Proof. Fix a block decomposition B1, . . . , Bα of � such that �′ is contained
in B1 and suppose there exists a vertex a in c in the positive T 1,n-orbit which
enters �′. Then, i < l < j cyclically, where l is the edge of �′ with p as
vertex and i and j are the edges of c with p as vertex such that j follows i in
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the orientation of c. Since � is s-coherently labeled, the edges corresponding
to i, j and l in the block Bk are i ′ = i + (k − 1)βs, j ′ = j + (k − 1)βs and
l ′ = l + (k − 1)βs, so again i ′ < l ′ < j ′ cyclically. Then a enters also all the
trees corresponding to �′ but in different blocks.

The same argument, with the appropriate modifications, may be applied in
case there exists a vertex b in c in the negative orbit which enters �′.

Before stating the main theorem of this section, we prove two lemmas
about s-coherently labeled α-rings. The first one gives some relations between
α, s and the numbers h and k of elements in the positive and negative orbits.
The second one will be used to compute the minimum compatible integer for
such graphs.

Lemma 5.12. For a s-coherently labeled α-ring � ∈ Grn,n we have:

(i) n = αβ = h + k;
(ii) h ≡ s mod α (and k ≡ −s mod α) or k ≡ s mod α (and h ≡ −s mod α);

(iii) (α, h) = (α, k) = 1;
(iv) (h, k) = (h, β) = (k, β) = (h, n) = (k, n).

Proof. Let n = αβ = h + k be as in the statement of Lemma 5.11. We
prove (ii) by induction on β. If β = 1 then � is a polygon with valence 1 and
increment s, and (ii) is trivial, since, in this case, α = n and h = s or k = s.

Suppose β ≥ 2. If we contract an edge of � together with all the other
corresponding edges in the other blocks, namely the edges a + jβs with j =
1, . . . , α − 1 for a fixed 1 ≤ a ≤ β, we obtain an α-ring with n′ = n − α =
α(β − 1) edges. If, moreover, we relabel the edges in such a way that the
original order (of the edges) is preserved, we obtain a s-coherently labeled
α-ring �′. Indeed, the edge i �≡ a mod β in � becomes the edge labeled
i − [ i−a

β
] + 1 in �′.

If a is a leaf of � and the T 1,n-orbit of its end has h elements, then by
the Lemma 5.11 for �′ we have that k ′ = k and h′ = h − α. If � has no
ends and a is an edge of the loop c, consider the two edges, i and j , which
have a vertex in common with a such that i precedes a in the orientation of c.
Contract the edge a: in case i < a < j cyclically, the cardinality of the positive
orbit does not change, while in case j < a < i cyclically, the cardinality of
the negative orbit does not change (see figure on the next page in which solid
dots represent vertices in the positive orbit).

Since � is s-coherently labeled, only one of the two cases above will
occur when contracting the edge a and all the other corresponding edges in the
other blocks, so, one T 1,n-orbit will not change, while the other will have α

elements less. By the inductive hypothesis, we have h − α ≡ s mod α (and
k ≡ −s mod α) or k ≡ s mod α (and h − α ≡ −s mod α) as we wanted.

Since (s, α) = 1, (iii) follows from (ii) and since (h, k) = (h, h + k) =
(h, αβ), (iv) follows from (iii).

Lemma 5.13. Let � ∈ Grn,n be an s-coherently labeled α-ring for which the
edge 1 belongs to c and fix a block decomposition B1, . . . , Bα of �, where the
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Fig. 7.

enumeration is coherent with the orientation of c and 1 is the starting edge of B1.
Let β = n

α
and let the positive orbit of vertices of � (containing the starting vertex

of B1) have h elements. Then, the action of T 1,ihβ takes the starting vertex of B1 to
the starting vertex of Bi+1.

Proof. First notice that, since � is s-coherently labeled, it is sufficient to
prove the lemma for i = 1, i.e. that T 1,hβ takes the starting vertex of B1 to the
starting vertex of B2. We prove this by induction on β.

If β = 1 then � is a polygon with valence 1 and increment s, and the
result is trivial.

If β ≥ 2, let a be a leaf of � with 1 < a ≤ β. Contracting a together
with all its corresponding edges in the other blocks and renumbering the edges
respecting the original order, we get a s-coherently labeled α-ring �′ with
n′ = α(β − 1) edges.

If the end of a belongs to the positive orbit, then h > α and by induction,
we have that the starting vertex of B ′

1 is sent by T 1,(β−1)(h−α) to the starting
vertex of B ′

2. Comparing the motion of the two points, we notice that the action
of T 1, j on the starting vertex of B ′

1 is the same as the action of T
1, j+[ j−a

β
]+1

on

the starting vertex of B1 for j = 1, . . . , j̄ −1, where j̄ is such that T
1, j̄+[ j̄−a

β
]+1

takes the starting vertex of B1 to the end of a ( j̄ + [ j̄−a
β

] + 1 ≡ a mod αβ).
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Observe that T
1, j̄+[ j̄−a

β
]+1+i

will again take the starting vertex of B1 to the end

of a if 1 ≤ i < αβ and that the action of T 1, j on the starting vertex of B ′
1 for

j̄ > j ≥ (β − 1)(h − α) is the same as the action of T
1, j+[ j−a

β
]+1+αβ

on the

starting vertex of B1. In particular if j = (β − 1)(h − α) we have

j +
[

j − a

β

]
+ 1 + αβ = hβ +

[
α − h − a

β

]
+ 1 ≤ hβ ,

thus, each T 1,hβ−i with [α−h−a
β

] + 1 ≤ i ≤ 0 takes the starting edge of B1 to
the starting edge of B2.

If the end of a belongs to the negative orbit in �, then the negative orbit
in �′ contains k − α = n − h − α elements and by induction, we have that the
starting vertex of B ′

1 is sent by T 1,(β−1)h to the starting vertex of B ′
2. Comparing

the motion of the two points, we notice that the action of T 1, j on the starting
vertex of B ′

1 is the same as the action of T
1, j+[ j−a

β
]+1

on the starting vertex

of B1 for j = 1, . . . , (β − 1)h. In particular if j = (β − 1)h we have

j +
[

j − a

β

]
+ 1 = hβ +

[−h − a

β

]
+ 1 ≤ hβ ,

thus, each T 1,hβ−i with [−h−a
β

] + 1 ≤ i ≤ 0 takes the starting edge of B1 to the
starting edge of B2.

In case � has no leaves, we can repeat the same argument taking an edge
a of the loop c and examining all cases as in the proof of the previous lemma.

We are ready to state the main theorem of this section.

Theorem 5.14. Let � be a graph in Grn,n and let m be the minimum integer
compatible with �. (�, m) defines a non-standard minimal ngc branched over
Bn,m ⇐⇒ ∃ α, s : α|n and (s, α) = 1 such that � is a s-coherently labeled
α-ring. In this case, m = hk

(h,k)
n
α

with α maximal (for the fixed labeling).

Proof. Suppose � ∈ Grn,n is a graph associated to a non-standard minimal
ngc branched over Bn,m with monodromy ϕ : Gn,m −→ Sn corresponding to
a non-standard ngc. Since the covering is non-standard, then, considering the
action of T = T 1,m on the edges of �, there are β �= n orbits, each containing
α = n

β
�= 1 elements.

Fix an orientation for the simple loop c in � and let a be an edge of c.
Since T [c] = c, T j [a] is again an edge of c for all j : let r = T j̄ [a] be the
one that immediately follows a in the orientation of c. Let c′ = (l ′i )i=1,... ,q′−1
be the chain in c, oriented as c, such that l ′1 = a and having only one vertex
in common with r . Let l ′q′ = r .

Suppose T j̄ [c′] intersects c′. Then it must be T j̄ [l ′i ] = l ′q′−i+1 and, since
no edge is fixed under the action of T , c′ must have odd length 2b − 1 and
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the common vertex p′ of l ′b and l ′b+1 must be fixed for the action of T . This
in turn implies that n

(n,m)
= 2, because no edge with p′ as vertex other then

l ′b+1 can be in the same T -orbit as l ′b since there is only one simple loop in �.
Write n = 2n̄. The same will be true for the chain c′′ = (l ′′i )i=1,... ,q′′−1 in c,
oriented as c, such that l ′′1 = r and having only one vertex in common with
a, so c contains two points p′ and p′′ which are fixed for the action of T
and is the union of two p′, p′′-chains C ′ = (r ′

i )i=1,... ,L and C ′′ = (r ′′
i )i=1,... ,L

such that r ′′
i = r ′

i + n̄ and T [C ′] = C ′′, T [C ′′] = C ′. Moreover, if p′
1, . . . , p′

t
(resp. p′′

1 , . . . , p′′
t ) are the vertices of C ′ (resp. C ′′) numbered following the

orientation of C ′ (resp. C ′′), then the trees �p′
i

and �p′′
i

are isomorphic for
2 ≥ i ≥ t − 1 via an isomorphism that respects the distance of the vertices
from c and if the edge a is in �p′

i
, then the corresponding edge in �p′′

i
is

a + n̄. Also, the tree �p′ (resp. �p′′) is the union of two isomorphic trees
�1

p′ and �2
p′ (resp. �1

p′′ and �2
p′′) via an isomorphism that respects the distance

of the vertices from c and if the edge a is in �1
p′ (resp. in �1

p′′) then the

corresponding edge in �2
p′ (resp. �2

p′′) is a + n̄. Summing up, � is a symmetric

graph in which one half is given by the union of C ′, �1
p′ , �1

p′′ and all �p for
p a vertex of C ′ other than p′ and p′′, and by Lemma 5.8 the standard ngc is
the minimal one.

So we have that T j̄ [c′] does not intersect c′, c = ∪α−1
i=0 T i [c′], and if we

define B to be the union of c′ and all chains having no edges in common with c
and starting from a vertex of c′ except the starting vertex, then � = ∪α−1

i=0 T i [B]
and this is a block decomposition of a α-ring. Moreover, the powers of T
give us the isomorphisms between the blocks as required in the Definition 5.9
and, checking the labels of the edges of different blocks, we have that � is
s-coherently labeled for s = r−a

β
.

Suppose now that � is a s-coherently labeled α-ring in Grn,n with α

maximal for the fixed labeling. Let c be the simple loop of �, β = n
α

, h be
the number of vertices of � in the positive orbit, k = n − h be the number of
vertices of � in the negative orbit and fix a block decomposition B1, . . . , Bα

of �. After a cyclical permutation of the edges, we may suppose that the edge
1 is the starting edge of B1. Let 1 = p, q, where p is the starting vertex of
the block B1. Let xn = ym be the branch curve of the minimal ngc defined
by �, i.e. m is the minimum integer compatible with �. Then T 1,m acts on
the edges of � sending the edge i to the edge i + m and fixing c (as a set).
Write m = tβ + r with 0 ≤ r < β. If r �= 0, then let r ′ be the edge of
B1 corresponding to the edge r , c′ be the chain in c, oriented as c, starting
from the edge 1 and having only one point in common with r ′, and B ′

1 be the
union of c′ together with all �p for p a non-starting edge of c′. Then, the sets
T j

1,m[B ′
1] give a block decomposition of � as a α′-ring in which each block has

r elements, so that α′ > α. Since α is maximal, we have that m ≡ 0 mod β.
By the Lemma 5.13, m must be a multiple of hβ, and exchanging h with k,
m must be a multiple of kβ too, so we have that hk

(h,k)
β|m.
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We claim that m = hk
(h,k)

β. Indeed, by Lemma 5.13, p is sent by T 1,lhβ

to the first vertex of the block Bl+1, while exchanging h with k, q is sent by
T 1,l′kβ to its corresponding vertex in the block B−l′ , where the indices of the
blocks are taken to be cyclical (modα). Then the edge 1 will be sent to the first
edge of a block by T 1, j for j = lhβ = l ′kβ such that l + 1 ≡ −l ′ + 1 mod α.
Now, since h + k = αβ and from Lemma 5.12 (h, k) = (h, β), we have that
α| h+k

(h,k)
, and so α

β

(h,β)
= h+k

(h,k)
. Thus, T 1, hk

(h,k)
β

sends the edge 1 to the first edge

of the block B k
(h,k)

+1 (recall that by Lemma 5.12 h ≡ s mod α), which is the

edge 1 + hk
(h,k)

β.

Let p′ be a vertex of the block Bf in the positive orbit and write hk
(h,k)

β =
ln + r with 0 < r < n (recall that by Lemma 5.12 (hk, α) = 1). Let j̄ be
the minimum index among all indices j for which T 1, jn sends p to p′. Then

T
−1
1, j̄ nT 1, hk

(h,k)
β

= T 1,(l− j̄)n+r sends p to the first vertex of the block B k
(h,k)

+1.

Notice that, since � is an s-coherently labeled α-ring, acting on the first vertex of
the block Bj by T 1+ jsβ,i we get the vertex in the block Bt+ j−1 corresponding
to T 1,i (p) ∈ Bt , thus, T 1,(l− j̄)n+r T 1+ hk

(h,k)
β, j̄ n = T 1,ln+r will take p′ to its

corresponding vertex in the block B k
(h,k)

+ f . Since the same will be true if p′

is a vertex in the block Bf in the negative orbit (reverse the orientation of c,
choose a block decomposition in which 1 is the starting edge of a block and
exchange h with k before applying the same argument) then m = hk

(h,k)
β as

we wanted.

Hence, the branch locus of the minimal ngc defined by a coherently labeled

α-ring � ∈ Grn,n is the curve {xn = y
hk

(h,k)
n
α }. Observe that, as in the case of

α-centered graphs, the uniqueness problem has a negative solution since we can
arbitrarily label one block of an α-ring � (using labels which form a complete
set of representatives for Zβ) and label the other blocks in such a way that
� is coherently labeled to obtain different ngc’s branched over the same curve
(even in different cyclical equivalent classes).

6. – Local fundamental groups

Let π : S → C
2 be an ngc branched over B = Bn,m and let ϕ : π1(C

2\B) →
Sd be its monodromy and � ∈ Grd,n the associated monodromy graph. Notice
that away from P = π−1((0, 0)) S is smooth, thus, in order to see if S
is singular we must check whether π1(S \ {P}) is trivial or not (see [Mu]).
Consider π |S\D

: S \ D −→ C
2 \ B, where D = π−1(B) and D = 2R + C , as

a divisor in Pic(S) (R is the ramification locus of π ). This is an unramified
covering, and we can identify π1(S \ D) with the subgroup of π1(C

2 \ B) given



A COMBINATORIAL APPROACH TO SINGULARITIES OF NORMAL SURFACES 485

by those elements γ such that ϕ(γ )( j) = j for j a fixed index, or (which is
the same) by the subgroup of those γ such that the verbal lifting γ stabilizes
a fixed vertex of �.

Let �′ be a maximal sub-tree in � and let p be a vertex of �. If c =
(kj )j=1,... ,l is a p-chain in �′, then set γc = γk1 . . . γkl , and if c is the trivial
p-chain, then set γc = id. Notice that there are exactly d p-chains in �′. Then,
the set of all γc for c a p-chain in �′ is a complete set of representatives for
left cosets of the stabilizer of the vertex p: indeed, if c is a p, q-chain in �′
then γ c(p) = q. Thus, to calculate π1(S \ D), we can apply the Reidemeister-
Shreier method (see [MKS]) to the Shreier set RS = {γc| c is a p − chain in �′}
to obtain:

Proposition 6.1. π1(S \ {P}) is generated by ηc,k = γcγkγ
−1
c′ for c a p-chain

in �′, k an edge of � − �′ which intersects c in its ending vertex and is not the last
edge of c, and where γc′ ∈ RS is in the same left coset as γcγk . Moreover we have
ηc,k = η−1

c′,k .

Proof. π1(S \ D) is generated by ηc,k for c a p-chain in �′, k an edge
of � such that c ∪ {k} is not a 1-chain in �′ and is defined by the relators
γc Rγ −1

c (rewritten in terms of the η’s) where c is a p-chain in �′ and R is a
relator of π1(C

2 \ B). Now, to obtain a presentation for π1(S \ {P}), we must
quotient by the normal subgroup generated by all loops around the components
of D = 2R+C . The loops around the components of C are those ηc,k with k an
edge not through the ending vertex of c, while the loops around the components
of R are those ηc,k with k equal to the last edge of c and the loops ηc,kηc′,k
in case k is an edge of � such that c ∪ {k} is not a p-chain in �′.

Notice that π1(S \ {P}) has n − d + 1 generators, so we have:

Corollary 6.2. If � is a tree, S is smooth.

By a result in [MP] an ngc branched over Bn,bn is smooth if and only if
the monodromy graph is a tree, so we have:

Proposition 6.3. Let � ∈ Grd,n. The standard ngc defined by � is smooth if
and only if � is a tree.

We want now to compute the local fundamental group of the surface of
the ngc defined by a s-coherently labeled α-ring. The case α = n of a polygon
was analyzed (partially) in [MP] using an algebraic approach. In this section we
will treat the general case using an argument based on the monodromy graph.

We recall the results in [MP]. Let π : S −→ C
2 be the ngc branched

over Bn,m constructed from the pair (“polygon with n vertices, valence 1 and
increment α”, bα(n − α)).

Theorem 6.4. With the above notation, if α > 1 π1(S \ {P}) = Z/bZ.

Consider now the case in which α = 1. In order to compute the local
fundamental group of the surface S, it is more convenient to express the mon-
odromy graph in terms of the standard vertical generators, or to look at the ngc
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S′ obtained from S by base change through the map ψ(x, y) = (y, x) (which
is therefore isomorphic to S). It is easy to see (cfr. [MP]) that the monodromy
graph �′ associated to S′ is the b-pullback of a β = n − 1-centered tree in
Grn,n−1. This is what we called in [MP] a double star of type (1, β) and
valence b. Since if b = 1, �′ is a tree, this immediately gives us:

Proposition 6.5. If α = b = 1 then S is smooth.

If b > 1 then we may take the maximal subtree formed by the edges
1, . . . , β and their common vertex p to compute a set of generators for the
stabilizer of p. Namely, using the Shreier set for left cosets Li = γi for
i = 0, . . . , β (L0 = 1), we get that π1(S \ D) is generated by

Ai, j = γiγi+ jβ Bi, j = γi+ jβγ −1
i

for i = 1, . . . , β and j = 0, . . . , b − 1 and

Ci, j = γiγjγ
−1
i

for i = 1, . . . , β and 1 ≤ j ≤ (b − 1)β, j �≡ i(mod β). In π1(S \ {P}) we have
the relations

Ci, j = Ai,0 = Bi,0 = Bi, j Ai, j = 1

for all i and j , from which we have

Bi, j = A−1
i, j .

To these relations we must add the relations that come from rewriting the
relations of π1(C

2 \ B). Observe that a set of defining relations for Gm,n

(notice that we have exchanged n and m) are the following

T1,n = γ1, . . . , γn = Th,n = γh . . . γh+n−1

for each h = 2, . . . , n (see [MP]). Thus we have to rewrite the relators

Li T1,β+1T −1
h,β+1L−1

i

for i = 0, . . . , β h = 1, . . . , bβ, in terms of the generators Ai, j .

Theorem 6.6. With the above notation, if α = 1 π1(S \ {P}) = Z/bZ.

Proof. Let’s apply the rewriting process to the relation T1,β+1 = Th+sβ,β+1
where 1 ≤ h ≤ β and 0 ≤ s ≤ b − 1. Rewriting the first half we get T1,β+1 =
C1,2C1,3 . . . C1,β A1,1, while rewriting the second half we get Th+sβ,β+1 =
D A−1

h,s Ah,s+1 D′ where D and D′ are words in the Ci, j only, and where we
set Ai,b = 1 ∀i . Deleting all Ci, j ’s we obtain

(6.7) Ai, j = A j
1,1
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for each j = 1, . . . , b − 1 and

(6.8) Ab
1,1 = 1 .

Now we apply the rewriting process to the relations

Li T1,β+1L−1
i = Li Th+i+sβ,β+1L−1

i

for i = 1, . . . , β − 1, where 1 ≤ h ≤ β and 0 ≤ s ≤ b − 1 to get (after deleting
all Ci j ’s)

1 = Ai,s+1 A−1
i+1,s+1

which are a consequence of 6.7.
The remaining relations are obtained by rewriting the relations

LnT1,β+1L−1
n = LnTh+sβ,β+1L−1

n

for 1 ≤ h ≤ β and 0 ≤ s ≤ b − 1 which yield (after deleting the Ci, j ’s)

A−1
1,1 = An,s A−1

1,s+1

which also are a consequence of 6.7 if s �= b − 1 and of 6.8 if s = b − 1.
Using the relations 6.7 to delete all generators Ai, j if i or j > 1, we are

left with only one generator, A1,1, of order b as we wanted.

Let π : S −→ C
2 be a (not necessarily minimal) ngc branched over

Bn,m whose monodromy graph is a s-coherently labeled α-ring � ∈ Grn,n

(cfr. Section 5). Let n = βα, h and k be the number of elements of the
positive and negative orbit, respectively, and let b = m

hkβ (h, k). Recall that
(α, s) = 1, b is an integer and that we may assume that 1 is an edge of the
loop c of �. Let λ1, . . . , λrα be the edges of c with λ1 = 1 and such that
λi+1 follows λi in the orientation of c and let p be the vertex of 1 in the
positive orbit.

Suppressing the edge λrα , we obtain a maximal tree �′ and to calculate
π1(S \ P) we apply the Reidemeister-Shreier method to the Shreier set of left
cosets γc for c a p-chain in �′. A set of generators for π1(S \ D) is given by
the following elements (cfr. 6.1)

Ai = γcγiγ
−1
c′

for 1 ≥ i �= λrα , where c = (hk)k=1,... ,t is the p-chain in �′ such that ht = i
and c′ = c − {i};

Bj,i = γcγiγ
−1
c

for 0 ≥ j �= λrα and, if j ≥ 1, c = (hk)k=1,... ,t the p-chain in �′ such that
ht = j and i is such that c ∪ {i} is not a chain, while, if j = 0, c is the trivial
chain and i �= λrα is an edge which has not p as vertex;

C = γλ1 . . . γλrα

C = γλrα (γλ1 . . . γλrα−1)
−1
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while a set of defining relators is given by rewriting in terms of the above
generators the following

γcTi,m T −1
i+1,mγ −1

c

for all choices of i and c.
Observe that π1(S \{P}) is obtained from π1(S \ D) by adding the relations

Ai = Bi, j = CC = e

for all choices of i and j (they represent loops around all the components of
D). Thus π1(S \ {P}) is generated by C and to compute its order we have to
go through the rewriting process for the relations.

Theorem 6.9. With the above notation, π1(S \ {P}) = Z/ m
hk Z.

Proof. First observe that if hk
(h,k)

β < n then hβ

(h,k)

kβ
(h,k)

<
hβ

(h,k)
+ kβ

(h,k)
so that

hβ

(h,k)
= 1 or kβ

(h,k)
= 1, thus β = 1. Since if β = 1 then � is a polygon, the

result follows from Theorems 6.4, 6.6 and we may suppose m ≥ n.
As before, we have to rewrite the relations

γcT1,m(γc)
−1 = γcTi+1,m(γc)

−1

for i = 2, . . . , m and each chain c as above. Observe that, if c is a p-chain,
then q = γc(p) is its ending vertex, so

• γcγi = Aiγc−{i} if i is the last edge of c,
• γcγi = Bj,iγc if j is the last edge of c and i has not q as vertex,
• γcγi = C if c = (λ1, . . . , λrα−1) and i = λrα ,
• γcγi = C if c is the trivial chain and i = λrα .

Form this we immediately get that, in order to calculate the power of C
or of C that appears rewriting γ (c)Ti,m after killing all the Ai and Bj,i , we can
count how many times the motion of q under the action of Ti,m contains the
edge λrα .

Since for each k ≥ 0 we have that Ti,k(q) = T1,k+i−1(q ′
i ), where q ′

i =
(T1,i−1)

−1(q), then q will move in the positive (resp. negative) direction if
and only if q ′

i belongs to the positive (resp. negative) orbit, thus, rewriting
γ (c)Ti,m we will get Cu (resp. C

v
) for a certain u (resp. v). We shall prove

that u (resp. v) does not depend on i and that the sum u + v does not depend
on q either.

It may be that q ′
i belongs to the positive (resp. negative) orbit for every

i and we obtain the trivial relation Cu = Cu (resp. C
v = C

v
). On the other

hand, if q ′
i is not contained in the same orbit for every i (as is the case when

q = p, m ≥ n), then we will have the relation Cu = C
v
, i.e. Cu+v = 1.

Define Q = Ti,m(q) and notice that Q does not depend on i . Also,
Q is the terminal point of the motion of q ′

i under the action of T1,m+i−1,
i.e. T1,m+i−1(q ′

i ) = Q. If Q = q then

Ti,m(q ′
i ) = T −1

1,i−1T1,m+i−1(q
′
i ) = T −1

1,i−1(Q) = T −1
1,i−1(q) = q ′
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i.e. T1,m acts as the identity on p′
i for every i , which implies that it acts as

the identity on all vertices of �. Hence, the covering is a pull back of the
standard one and n|m. Notice that this is true if and only if α|b. Since each
point in the positive (resp. negative) orbit undergoes a complete loop under
T1,hn (resp. T1,kn) it is easy to see that, in this case, u = m

hn and v = m
kn , so

that u + v = m
hk .

Suppose now Q �= q, i.e. n � |m. Suppose the point q ′
i belongs to the

positive orbit, and consider its motion under the action of T1,m+i−1. Since
i ≤ m, q ′

i will do ū or ū + 1 complete loops, where m = ūhn + r with r < hn.
If it does ū complete loops, then it will return to q, if it does ū + 1 complete
loops then it will not return to q, since

ūhn + r + i − 1 = m + i − 1 ≥ (ū + 1)hn + i − 1 ⇒ r ≥ hn .

We will say that Q is before q if, writing Q = T1, j (p), q = T1,l(p) with
j, l ≤ hn, we have j < l, i.e. Q is before q in the (oriented) motion of
p under the action of T1,hn; otherwise we will say that Q is after q (such
j and l exist since p′ = T1,ns(p) for some s, then q = T1,ns+i−1(p) and
Q = T1,ns+i−1+m(p)). The same definitions can be given for the position of p′

i
with respect to q or Q.

Let’s examine the case in which Q is before q . If q ′
i is before Q or it

is equal to Q, then after ū complete loops p′
i returns to q and to reach Q it

must do another complete loop (and no more), passing through the edge λrα

ū + 1 times (see picture for a schematic drawing of the motion of p′
i after the

complete loops).

�

�

�

q

p

Q �

�
p′i

p′i is before Q

(after ū + 1 loops)

�

�

�

q

p

Q �

�p′i

p′i is before q and after Q

(after ū loops)

�

�

�

q

p

Q ��p′i

p′i is after q

(after ū + 1 loops)

Fig. 8. Motion of p′
i in the positive orbit: the case where Q is before q.

If p′
i is after Q but before q or is equal to q, then it must do exactly

ū complete loops, return to q and reach Q passing from the edge λrα ū + 1
times. If p′

i is after q, then it must do exactly ū + 1 complete loops and reach
Q, thus passing from the edge λrα ū + 2 times. But since it must cross the
edge λrα while acting on it by T1,i−1, the number of times the point q crosses
the edge λrα is ū + 1.

In the same way, examining all the possibilities in the case in which Q is
after q, we find that q passes from the edge λrα ū times (see picture).



490 SANDRO MANFREDINI

�

�

�

q

p

Q�

�p′i

p′i is before q

(after ū loops)

�

�

�

q

p

Q�

�p
′
i

p′i is before Q and after q

(after ū + 1 loops)

�

�

�

q

p

Q�

�
p′i

p′i is after Q

(after ū loops)

Fig. 9. Motion of p′
i in the positive orbit: the case where Q is after q.

The same conclusions are valid in case p′
i belongs to the negative orbit,

provided that we exchange h with k and ū with v̄ such that m = v̄kn + s with
s < kn (and we give a slightly different definition of “before” and “after” q).
Namely we get that, in case Q is before q, q passes from the edge λrα v̄ times,
while if Q is after q, v̄ + 1 times.

So the order of C is ū + v̄ + 1 = [ m
hn ] + [ m

kn ] + 1. Since

m

hk
= m

hn
+ m

kn
=

[
m

hn

]
+

[
m

kn

]
+

{
m

hn

}
+

{
m

hn

}

and m
hk is an integer, we must have { m

hn } + { m
hn } = 0, 1. Notice, however, that

if { m
hn } = { m

hn } = 0, then n|m, so ū + v̄ + 1 = m
hk .
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