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A COMBINATORIAL APPROACH
TO VOICULESCU’S BI-FREE PARTIAL TRANSFORMS

PAUL SKOUFRANIS

We present a combinatorial approach to the 2-variable bi-free partial S-
and T -transforms recently discovered by Voiculescu. This approach pro-
duces an alternate definition of said transforms using (l, r)-cumulants.

1. Introduction

Voiculescu [2014] introduced the notion of bi-free pairs of faces as a means to
simultaneously study left and right actions of algebras on reduced free product
spaces. Substantial work has been performed since then in order to better under-
stand bi-freeness and its applications [Charlesworth et al. 2015a; 2015b; Skoufranis
2015; Voiculescu 2016; Mastnak and Nica 2015; Gu et al. 2015]. Specifically, the
results of [Voiculescu 1986] were generalized to the bi-free setting in [Voiculescu
2016] through the development of a 2-variable bi-free partial R-transform using an-
alytic techniques. A combinatorial construction of the bi-free partial R-transform
was given in [Skoufranis 2015] using results from [Charlesworth et al. 2015b].

Along similar lines, modifying his S-transform introduced in [Voiculescu 1987],
Voiculescu [2015] associated to a pair (a, b) of operators in a noncommutative
probability space a 2-variable bi-free partial S-transform, denoted by Sa,b(z, w).
Using ideas from [Haagerup 1997], he demonstrated that if (a1, b1) and (a2, b2)

are bi-free then

Sa1a2,b1b2(z, w)= Sa1,b1(z, w)Sa2,b2(z, w).(1)

He also constructed a 2-variable bi-free partial T -transform Ta,b(z, w) to study the
convolution product where additive convolution is used for the left variables and
multiplicative convolution is used for the right variables. In particular, the defining
characteristic of Ta,b(z, w) is that if (a1, b1) and (a2, b2) are bi-free then

Ta1+a2,b1b2(z, w)= Ta1,b1(z, w)Ta2,b2(z, w).(2)
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The goal of this paper is to provide a combinatorial proof of the results of
[Voiculescu 2015]. The paper is structured as follows. Section 2 establishes all
preliminary results, background, and notation necessary for the remainder of the
paper. A reader would benefit greatly from knowledge of the combinatorial ap-
proach to the free S-transform from [Nica and Speicher 1997] and knowledge of
the combinatorial approach to bi-freeness from [Charlesworth et al. 2015b] (or
the summary in [Charlesworth et al. 2015a]). Section 3 provides an equivalent
description of Ta,b(z, w) using (l, r)-cumulants and provides a combinatorial proof
of equation (2). Section 4 provides an equivalent description of Sa,b(z, w) using
(l, r)-cumulants and provides a combinatorial proof of equation (1).

An intriguing question arises in taking products of bi-free pairs of operators: is
the “correct” multiplication to use on the right pair of algebras the usual one or
its opposite? In other words, if (a1, b1) and (a2, b2) are bi-free pairs of operators,
which product should be used, (a1a2, b1b2) or (a1a2, b2b1)? It is not difficult to
see that the resulting distributions can be different; see [Charlesworth et al. 2015a].
Further, by Theorem 5.2.1 of [Charlesworth et al. 2015b] the (l, r)-cumulants of
(a1a2, b2b1) can be computed via a convolution product of the (l, r)-cumulants of
(a1, b1) and (a2, b2) involving a bi-noncrossing Kreweras complement, just as in
the free case. However, the product of Voiculescu’s bi-free partial S-transforms of
(a1, b1) and (a2, b2) is the bi-free partial S-transform of (a1a2, b1b2). As we will
see in Section 4, this is not just a matter of differences in notation and therefore
one needs to carefully consider which product to use.

2. Background and preliminaries

In this section, we recall the necessary background required for this paper. We refer
the reader to the summary in [Charlesworth et al. 2015a, Section 2] for more back-
ground on scalar-valued bi-free probability. This section also serves the purpose
of setting notation for the remainder of the paper, which we endeavour to make
consistent with [Voiculescu 2015]. We treat all series as formal power series, with
commuting variables in the multivariate cases.

2.1. Free transforms. Let (A, ϕ) be a noncommutative probability space (that is,
a unital algebra A with a linear functional ϕ : A→ C such that ϕ(I ) = 1) and
let a ∈A. The Cauchy transform of a is

Ga(z) := ϕ((z I − a)−1)=
1
z

∑
n≥0

ϕ(an)z−n,

and the moment series of a is

ha(z) := ϕ((I − az)−1)=
∑
n≥0

ϕ(an)zn
=

1
z

Ga

(1
z

)
.
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Recall one defines Ka(z) to be the inverse of Ga(z) in a neighbourhood of 0 so
that Ga(Ka(z))= z. Thus Ra(z) := Ka(z)− 1

z is the R-transform of a and

ha

( 1
Ka(z)

)
= Ka(z)Ga(Ka(z))= zKa(z).(3)

Furthermore, if κn(a) denotes the n-th free cumulant of a and the cumulant series
of a is

ca(z) :=
∑
n≥1

κn(a)zn,

then one can verify that

1+ ca(z)= zKa(z).(4)

To define the S-transform of a, we assume ϕ(a) 6= 0 and let ψa(z) := ha(z)−1.
Since ψa(0) = 0 and ψ ′a(z) = ϕ(a) 6= 0, ψa(z) has a formal power series inverse
under composition, denoted ψ 〈−1〉

a (z). We define Xa(z) := ψ
〈−1〉
a (z) so that

ha(Xa(z))= 1+ψa(Xa(z))= 1+ z.(5)

The S-transform of a is then defined to be

Sa(z) :=
1+z

z
Xa(z).(6)

2.2. Free multiplicative functions and convolution. Let NC(n) denote the lattice
of noncrossing partitions on {1, . . . , n}with its usual refinement order, let 0n denote
the minimal element of NC(n), and let 1n = {1, 2, . . . , n} denote the maximal
element of NC(n). For π, σ ∈ NC(n) with π ≤ σ , the interval between π and σ ,
denoted [π, σ ], is the set

[π, σ ] = {ρ ∈ NC(n) | π ≤ ρ ≤ σ }.

A procedure is described in [Speicher 1994] which decomposes each interval of
noncrossing partitions into a product of full partitions of the form

[01, 11]
k1×[02, 12]

k2×[03, 13]
k3× · · ·

where k j ≥ 0.
The incidence algebra of noncrossing partitions, denoted I(NC), is the algebra

of all functions
f :
⋃
n≥1

NC(n)×NC(n)→ C

such that f (π, σ ) = 0 unless π ≤ σ , equipped with pointwise addition and a
convolution product defined by

( f ∗ g)(π, σ ) :=
∑

ρ∈[π,σ ]

f (π, ρ)g(ρ, σ ).
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Recall f ∈ I(NC) is called multiplicative if whenever [π, σ ] has a canonical
decomposition [01, 11]

k1×[02, 12]
k2×[03, 13]

k3× · · · , then

f (π, σ )= f (01, 11)
k1 f (02, 12)

k2 f (03, 13)
k3 · · · .

Thus the value of a multiplicative function f on any pair of noncrossing partitions is
completely determined by the values of f on full noncrossing partition lattices. We
will denote the set of all multiplicative functions by M and the set all multiplicative
functions f with f (01, 11)= 1 by M1.

If f, g ∈ M, one can verify that f ∗ g = g ∗ f . Furthermore, there is a
nicer expression for convolution of multiplicative functions. Given a noncrossing
partition π ∈ NC(n), the Kreweras complement of π , denoted K (π), is the non-
crossing partition on {1, . . . , n} with noncrossing diagram obtained by drawing π
via the standard noncrossing diagram on {1, . . . , n}, placing nodes 1′, 2′, . . . , n′

with k ′ directly to the right of k, and drawing the largest noncrossing partition on
1′, 2′, . . . , n′ that does not intersect π , which is then K (π). The diagram below ex-
hibits that if π={{1, 6}, {2, 3, 4}, {5}, {7}}, then K (π)={{1, 4, 5}, {2}, {3}, {6, 7}}.

1 2 3 4 5 6 71′ 2′ 3′ 4′ 5′ 6′ 7′

For f, g ∈M, convolution may be written as

( f ∗ g)(0n, 1n)=
∑

π∈NC(n)

f (0n, π)g(0n, K (π)).

Note that [Nica and Speicher 1997] demonstrated that if a, b ∈ A are free and
if f (respectively g) is the multiplicative function associated to the cumulants of
a (respectively b) defined by f (0n, 1n) = κn(a) (respectively g(0n, 1n) = κn(b)),
then κn(ab)= κn(ba)= ( f ∗ g)(0n, 1n). Furthermore, for π ∈ NC(n) with blocks
{Vk}

m
k=1, we have f (0n, π)= κπ (a)=

∏m
k=1 κ|Vk |(a).

Another convolution product on M1 from [loc. cit.] is required. Let NC′(n)
denote all noncrossing partitions π on {1, . . . , n} such that {1} is a block in π . It
is not difficult to construct a natural isomorphism between NC′(n) and NC(n−1).
The following diagrams illustrate all elements NC′(4), together with their Kreweras
complements.

1 2 3 41′ 2′ 3′ 4′ 1 2 3 41′ 2′ 3′ 4′ 1 2 3 41′ 2′ 3′ 4′

1 2 3 41′ 2′ 3′ 4′ 1 2 3 41′ 2′ 3′ 4′
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We desire to make an observation, which may be proved by induction. Given two
noncrossing partitions π and σ , let π∨σ denote the smallest noncrossing partition
larger than both π and σ . Fix π ∈ NC′(n). If σ is the noncrossing partition on
{1, 1′, 2, 2′, . . . , n, n′} (with the ordering being the order of listing) with blocks
{k, k ′} for all k, then the only noncrossing partition τ on {1′, . . . , n′} such that
π∪τ is noncrossing (under the ordering 1, 1′, 2, 2′, . . . , n, n′) and (π∪τ)∨σ =12n

is τ = K (π).
For f, g ∈ M1, the “pinched-convolution” of f and g, denoted f ∗̌g, is the

unique element of M1 such that

( f ∗̌g)[0n, 1n] :=
∑

π∈NC′(n)

f (0n, π)g(0n, K (π)).

The pinched-convolution product is not commutative on M1.
Given an element f ∈M, define the formal power series

φ f (z) :=
∑
n≥1

f (0n, 1n)zn.

In particular, if f is the multiplicative function associated to the cumulants of a de-
fined by f (0n, 1n)= κn(a), then φ f (z)= ca(z). Several formulae involving φ f (z)
are developed in [Nica and Speicher 1997]. In particular, [loc. cit., Proposition 2.3]
demonstrates that if f, g ∈M1 then φ f (φ f ∗̌g(z))= φ f ∗g(z) and thus

φ f ∗̌g
(
φ
〈−1〉
f ∗g (z)

)
= φ

〈−1〉
f (z).(7)

Furthermore, [loc. cit., Theorem 1.6] demonstrates that

z ·φ〈−1〉
f ∗̌g (z)= φ

〈−1〉
f (z)φ〈−1〉

g (z).(8)

An immediate consequence of equation (8) is that if ϕ(a)= 1 then

Sa(z)=
1
z

c〈−1〉
a (z).(9)

2.3. Bi-freeness. For a map χ : {1, . . . , n}→{l, r}, the set of bi-noncrossing parti-
tions on {1, . . . , n} associated to χ is denoted by BNC(χ). Note BNC(χ) becomes
a lattice where π ≤σ provided every block of π is contained in a single block of σ .
The largest partition in BNC(χ), which is {{1, . . . , n}}, is denoted by 1χ . The work
in [Charlesworth et al. 2015b] demonstrates that BNC(χ) is naturally isomorphic
to NC(n) via a permutation of {1, . . . , n} induced by χ .

The (l, r)-cumulant associated to a map χ : {1, . . . , n} → {l, r}, given ele-
ments {an}

n
n=1 ⊆ A, was defined in [Mastnak and Nica 2015] and is denoted by

κχ (a1, . . . , an). Note κχ is linear in each entry. The main result of [Charlesworth
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et al. 2015b] is that if (a1, b1) and (a2, b2) are bi-free two-faced pairs in (A, ϕ),
χ : {1, . . . , n} → {l, r}, ε : {1, . . . , n} → {l, r}, cl,k = ak , and cr,k = bk , then

κχ (cχ(1),ε(1), . . . , cχ(n),ε(n))= 0

whenever ε is not constant.
Given a π ∈ BNC(χ), each block B of π corresponds to the bi-noncrossing

partition 1χB for some χB : B→ {l, r} (where the ordering on B is induced from
{1, . . . , n}). We write

κπ (a1, . . . , an)=
∏

B a block of π

κ1χB
((a1, . . . , an)|B),

where (a1, . . . , an)|B denotes the |B|-tuple with indices not in B removed. Simi-
larly, if V is a union of blocks of π , we denote by π |V the bi-noncrossing partition
obtained by restricting π to V .

For n,m ≥ 0, we often consider the maps χn,m : {1, . . . , n +m} → {l, r} such
that χ(k)= l if k ≤ n and χ(k)= r if k > n. For notational purposes, it is useful to
think of χn,m as a map on {1l, 2l, . . . , nl, 1r , 2r , . . . ,mr } under the identification
k 7→ kl if k ≤ n and k 7→ (k − n)r if k > n. Furthermore, we write BNC(n,m)
for BNC(χn,m), 1n,m for 1χn,m , and, for n,m ≥ 1, κn,m(a1, . . . , an, b1, . . . , bm) for
κ1n,m (a1, . . . , an, b1, . . . , bm). Finally, for n,m≥1, we set κn,m(a, b)=κ1n,m (a, b),
κn,0(a, b)= κn(a), and κ0,m(a, b)= κn(b).

2.4. Bi-free transforms. Given two elements a, b∈A, we define the ordered joint
moment and cumulant series of the pair (a, b) to be

Ha,b(z, w) :=
∑

n,m≥0

ϕ(anbm)znwm and Ca,b(z, w) :=
∑

n,m≥0

κn,m(a, b)znwm,

respectively (where κ0,0(a, b)=1). Note [Skoufranis 2015, Theorem 7.2.4] demon-
strates that

ha(z)+ hb(w)=
ha(z)hb(w)

Ha,b(z, w)
+Ca,b(zha(z), whb(w))(10)

through combinatorial techniques. It is also demonstrated that (10) is equivalent
to Voiculescu’s [2016] 2-variable bi-free partial R-transform.

For computational purposes, it is helpful to consider the series

(11) Ka,b(z, w) :=
∑

n,m≥1

κn,m(a, b)znwm
= Ca,b(z, w)− ca(z)− cb(w)− 1.
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Also of use are the series

(12) Fa,b(z, w) := ϕ((z I − a)−1(1−wb)−1)

=
1
z

∑
n,m≥0

ϕ(anbm)z−nwm
=

1
z

Ha,b

(1
z
, w
)
.

2.5. Bi-free cumulants of products. Of paramount importance to this paper is the
ability to write (l, r)-cumulants of products as sums of (l, r)-cumulants. We recall
a result from [Charlesworth et al. 2015a, Section 9].

Let m, n ≥ 1 with m < n. Fix a sequence of integers

k(0)= 0< k(1) < · · ·< k(m)= n.

For χ : {1, . . . ,m} → {l, r}, define χ̂ : {1, . . . , n} → {l, r} via

χ̂(q)= χ(pq),

where pq is the unique element of {1, . . . ,m} such that k(pq − 1) < q ≤ k(pq).
There exists an embedding of BNC(χ) into BNC(χ̂) via π 7→ π̂ where the p-th

node of π is replaced by the block {k(p− 1)+ 1, . . . , k(p)}. It is easy to see that
1̂χ = 1χ̂ and 0̂χ is the partition with blocks {{k(p−1)+1, . . . , k(p)}}mp=1. Given
two partitions π, σ ∈ BNC(χ), let π ∨ σ denote the smallest element of BNC(χ)
greater than π and σ .

Using ideas from [Nica and Speicher 2006, Theorem 11.12], [Charlesworth et al.
2015a, Theorem 9.1.5] showed that if {ak}

n
k=1 ⊆A, then

(13) κ1χ(a1 · · · ak(1), ak(1)+1 · · · ak(2), . . . , ak(m−1)+1 · · · ak(m))

=

∑
σ∈BNC(χ̂)
σ∨ 0̂χ=1χ̂

κσ (a1, . . . , an).

3. Bi-free partial T -transform

We begin with Voiculescu’s bi-free partial T -transform, as the combinatorics are
slightly simpler than the bi-free partial S-transform.

Definition 3.1 [Voiculescu 2015, Definition 3.1]. Let (a, b) be a two-faced pair in
a noncommutative probability space (A, ϕ) with ϕ(b) 6= 0. The 2-variable partial
bi-free T -transform of (a, b) is the holomorphic function on (C \ {0})2 near (0, 0)
defined by

Ta,b(z, w)=
w+1
w

(
1− z

Fa,b(Ka(z),Xb(w))

)
.(14)

It is useful to note the following equivalent definition of the bi-free partial T -
transform. To simplify the discussion, we show the equality in the case ϕ(b)= 1.
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This does not hinder the proof of the desired result, namely Theorem 3.5 (see
Remark 3.3).

Proposition 3.2. If (a, b) is a two-faced pair in a noncommutative probability
space (A, ϕ) with ϕ(b)= 1, then, as formal power series,

Ta,b(z, w)= 1+ 1
w

Ka,b
(
z, c〈−1〉

b (w)
)
.(15)

Proof. Using equations (3), (5), and (10), we obtain that

1
Ha,b(1/Ka(z),Xb(w))

=
1

zKa(z)
+

1
1+w

−
1

zKa(z)
1

1+w
Ca,b(z, (1+w)Xb(w)).

Therefore, using equations (6), (9), (11), (12), and (14), we obtain that

Ta,b(z, w)

=
w+1
w

(
1− z

(1/Ka(z))Ha,b(1/Ka(z),Xb(w))

)
=
w+1
w

(
1− zKa(z)

( 1
zKa(z)

+
1

1+w
−

1
zKa(z)

1
1+w

Ca,b
(
z, c〈−1〉

b (w)
)))

=
1
w

(
−zKa(z)+Ca,b

(
z, c〈−1〉

b (w)
))

=
1
w

(
−zKa(z)+ 1+ ca(z)+ cb

(
c〈−1〉

b (w)
)
+ Ka,b

(
z, c〈−1〉

b (w)
))

=
1
w

(
w+ Ka,b

(
z, c〈−1〉

b (w)
))

= 1+ 1
w

Ka,b
(
z, c〈−1〉

b (w)
)
. �

Remark 3.3. One might be concerned that we have restricted to the case ϕ(b)= 1.
However, if we use (15) as the definition of the bi-free partial T -transform and
if λ ∈C\{0}, then Ta,b(z, w)= Ta,λb(z, w). Indeed, cλb(w)= cb(λw), so we have
c〈−1〉
λb (w)= 1

λ
c〈−1〉

b (w). Therefore, since κn,m(a, λb)= λmκn,m(a, b), we see that

Ka,λb
(
z, c〈−1〉

λb (w)
)
= Ka,b

(
z, c〈−1〉

b (w)
)
.

Thus there is no loss in assuming ϕ(b)= 1.

Remark 3.4. Note that Proposition 3.2 immediately provides the T -transform por-
tion of [Voiculescu 2015, Proposition 4.2]. Indeed if a and b are elements of a non-
commutative probability space (A, ϕ) with ϕ(b) 6= 0 and ϕ(anbm) = ϕ(an)ϕ(bm)

for all n,m ≥ 0, then κn,m(a, b)= 0 for all n,m ≥ 1 (see [Skoufranis 2015, Section
3.2]). Hence Ka,b(z, w)= 0, so Ta,b(z, w)= 1.
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We desire to prove the following theorem (which was one of two main results
of [Voiculescu 2015]) using combinatorial techniques and Proposition 3.2.

Theorem 3.5 [Voiculescu 2015, Theorem 3.1]. Let (a1, b1) and (a2, b2) be bi-
free two-faced pairs in a noncommutative probability space (A, ϕ) with ϕ(b1) 6= 0
and ϕ(b2) 6= 0. Then

Ta1+a2,b1b2(z, w)= Ta1,b1(z, w)Ta2,b2(z, w)

on (C \ {0})2 near (0, 0).

To simplify the proof of the result, we assume that ϕ(b1) = ϕ(b2) = 1. Note
that ϕ(b1b2) = 1 by freeness of the right algebras in bi-free pairs. Furthermore,
let g j denote the multiplicative function associated to the cumulants of b j defined
by g j (0n, 1n) = κn(b j ). Recall that if g is the multiplicative function associated
to the cumulants of b1b2, then g = g1 ∗ g2. Therefore φ〈−1〉

g (w) = c〈−1〉
b1b2

(w) and
φ
〈−1〉
g j (w)= c〈−1〉

b j
(w). Note that g, g1, g2 ∈M1 by assumption.

By Proposition 3.2 it suffices to show that

(16) Ka1+a2,b1b2

(
z, φ〈−1〉

g (w)
)
=21(z, w)+22(z, w)+

1
w
21(z, w)22(z, w),

where
2 j (z, w)= Ka j ,b j

(
z, φ〈−1〉

g j
(w)

)
.

Recall
Ka1+a2,b1b2(z, w)=

∑
n,m≥1

κn,m(a1+ a2, b1b2)znwm .

For fixed n,m ≥ 1, let σn,m denote the element of BNC(n, 2m) with blocks

{{kl}}
n
k=1 ∪ {{(2k− 1)r , (2k)r }}mk=1.

Thus (13) implies that

κn,m(a1+a2, b1b2) =
∑

π∈BNC(n,2m)
π∨σn,m=1n,2m

κπ (a1+ a2, . . . , a1+ a2︸ ︷︷ ︸
n

, b1, b2, b1, b2, . . . , b1, b2︸ ︷︷ ︸
b1 occurs m times

).

Notice that if π ∈BNC(n, 2m) and π∨σn,m=1n,2m , then any block of π containing
a kl must contain a jr for some j . Furthermore, if 1 ≤ k < j ≤ n are such that
kl and jl are in the same block of π , then ql must be in the same block as kl for
all k ≤ q ≤ j . Moreover, since (a1, b1) and (a2, b2) are bi-free, we note that

κπ (a1+ a2, . . . , a1+ a2︸ ︷︷ ︸
n

, b1, b2, b1, b2, . . . , b1, b2︸ ︷︷ ︸
b1 occurs m times

)= 0

if π contains a block containing a (2k)r and a (2 j − 1)r for some k, j .
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For n,m ≥ 1, let BNCT (n,m) denote all π ∈ BNC(n, 2m) such that

π ∨ σn,m = 1n,2m

and π contains no blocks containing both a (2k)r and a (2 j − 1)r for some k, j .
Consequently, we obtain

Ka1+a2,b1b2(z, w)

=

∑
n,m≥1

( ∑
π∈BNCT (n,m)

κπ (a1+ a2, . . . , a1+ a2︸ ︷︷ ︸
n

, b1, b2, b1, b2, . . . , b1, b2︸ ︷︷ ︸
b1 occurs m times

)

)
znwm .

We desire to divide up this sum into two parts based on types of partitions in
BNCT (n,m). Let BNCT (n,m)e denote all π ∈ BNCT (n,m) such that the block
containing 1l also contains a (2k)r for some k, and let BNCT (n,m)o denote all
π ∈ BNCT (n,m) such that the block containing 1l also contains a (2k − 1)r for
some k. Note that BNCT (n,m)e and BNCT (n,m)o are disjoint and

BNCT (n,m)e ∪BNCT (n,m)o = BNCT (n,m)

by previous discussions. Therefore, if for d ∈ {o, e} we define

9d(z, w)

:=

∑
n,m≥1

( ∑
π∈BNCT (n,m)d

κπ (a1+ a2, . . . , a1+ a2︸ ︷︷ ︸
n

, b1, b2, b1, b2, . . . , b1, b2︸ ︷︷ ︸
b1 occurs m times

)

)
znwm,

then
Ka1+a2,b1b2(z, w)=9e(z, w)+9o(z, w).

We derive expressions for 9e(z, w) and 9o(z, w) beginning with 9e(z, w).

Lemma 3.6. Under the above notation and assumptions,

9e(z, w)= Ka2,b2(z, φg2∗̌g1(w)).

Proof. For each n,m≥ 1, we desire to rearrange the sum in9e(z, w) by expanding
κπ as a product of full (l, r)-cumulants and summing over all π with the same block
containing 1l .

Fix n,m ≥ 1. If π ∈ BNCT (n,m)e, then the block Vπ containing 1l must also
contain (2k)r for some k, and thus all of (2m)r , 1l, 2l, . . . , nl must be in Vπ in
order for π ∨ σn,m = 1n,2m to be satisfied. Below is an example of such a π . Two
nodes are connected to each other with a solid line if and only if they lie in the
same block of π and two nodes are connected with a dotted line if and only if they
are in the same block of σn,m . The condition π ∨ σn,m = 1n,2m means one may
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travel from any one node to another using a combination of solid and dotted lines.
Note we really should draw all of the left nodes above all of the right notes.

1l

2l

3l

4l

5l

1r

2r

3r

4r

5r

6r

7r

8r

9r

10r

11r

12r

Let E = {(2k)r }mk=1, let O = {(2k−1)r }mk=1, let s denote the number of elements
of E contained in Vπ (so s ≥ 1), and let 1 ≤ k1 < k2 < · · · < ks = m be such
that (2kq)r ∈ Vπ . Note Vπ divides the right nodes into s disjoint regions. For
each 1≤ q ≤ s, let jq = kq − kq−1, with k0 = 0, and let πq denote the noncrossing
partition obtained by restricting π to

{(2kq−1+ 1)r , (2kq−1+ 2)r , . . . , (2kq − 1)r }.

Note that
∑s

q=1 jq = m. Furthermore, if π ′q is obtained from πq by adding the
singleton block {(2kq)r }, then π ′q |E is naturally an element of NC′( jq) and π ′q |O
is naturally an element of NC( jq), which must be K (π ′q |E) in order to satisfy
π ∨σn,m = 1n,2m . The below diagram demonstrates an example of this restriction.

1l

2l

3l

4l

5l

1r

2r

3r

4r

5r

6r

7r

8r

9r

10r

11r

12r

5r

6r

7r

8r

9r

10r



430 PAUL SKOUFRANIS

Consequently, by writing κπ as a product of cumulants, using linearity of κπ , and
using the fact that (a1, b1) and (a2, b2) are bi-free (and implicitly using ϕ(b2)= 1),
we obtain

κπ (a1+ a2, . . . , a1+ a2︸ ︷︷ ︸
n

, b1, b2, b1, b2, . . . , b1, b2︸ ︷︷ ︸
b1 occurs m times

)znwm

= κn,s(a2, b2)zn
s∏

q=1

g2(0 jq , π
′

q)g1(0 jq , K (π ′q))w
jq .

Consequently, summing over all ρ ∈ BNCT (n,m)e with Vρ = Vπ , we obtain∑
ρ∈BNCT (n,m)e

Vρ=Vπ

κρ(a1+ a2, . . . , a1+ a2︸ ︷︷ ︸
n

, b1, b2, b1, b2, . . . , b1, b2︸ ︷︷ ︸
b1 occurs m times

)znwm

= κn,s(a2, b2)zn
s∏

q=1

(g2∗̌g1)(0 jq , 1 jq )w
jq .

Finally, if we sum over all possible n,m≥1 and all possible Vπ (so, in the above
equation, we get all possible s ≥ 1 and all possible jq ≥ 1), we obtain that

9e(z, w)=
∑

n,s≥1

κn,s(a2, b2)zn
s∏

q=1

φg2∗̌g1(w)

=

∑
n,s≥1

κn,s(a2, b2)zn(φg2∗̌g1(w))
s
= Ka2,b2(z, φg2∗̌g1(w)),

as desired. �

In order to discuss9o(z, w), it is quite helpful to discuss a subcase. For n,m≥0,
let σ ′n,m denote the element of BNC(n, 2m+ 1) with blocks

{{kl}}
n
k=1 ∪ {1r } ∪ {{(2k)r , (2k+ 1)r }}mk=1.

Let BNCT (n,m)′o denote the set of all partitions π ∈ BNC(n, 2m + 1) such that
π∨σ ′n,m=1n,2m+1 and π contains no blocks containing both a (2k)r and a (2 j−1)r
for any k, j .

Lemma 3.7. Under the above notation and assumptions, if

9o′(z, w)

:=

∑
n≥1
m≥0

( ∑
π∈BNCT (n,m)′o

κπ (a1+ a2, . . . , a1+ a2︸ ︷︷ ︸
n

, b2, b1, b2, b1, . . . , b1, b2︸ ︷︷ ︸
b1 occurs m times

)

)
znwm+1,

then
9o′(z, w)=

w

φg2∗̌g1(w)
Ka2,b2(z, φg2∗̌g1(w)).
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Proof. For each n,m≥1, we desire to rearrange the sum in9o′(z, w) by expanding
κπ as a product of full (l, r)-cumulants and summing over all π with the same block
containing 1l .

Fix n≥ 1 and m≥ 0. If π ∈BNCT (n,m)′o, then the block Vπ containing 1l must
contain 1r , (2m+1)r , 1l, 2l, . . . , nl in order to have π ∨σ ′n,m = 1n,2m+1. Below is
an example of such a π .

1l

2l

3l

4l

5l

1r

2r

3r

4r

5r

6r

7r

8r

9r

10r

11r

Let E ={(2k)r }mk=1, let O ={(2k−1)r }m+1
k=1 , let s denote the number of elements

of O contained in Vπ (so s≥ 1), and let 1= k1< k2< · · ·< ks =m+1 be such that
(2kq−1)r ∈Vπ . Note Vπ divides the right nodes into s−1 disjoint regions. For each
1≤q≤ s−1, let jq = kq+1−kq and let πq denote the noncrossing partition obtained
by restricting π to {(2kq)r , (2kq+1)r , . . . , (2kq+1−2)r }. Note that

∑s−1
q=1 jq =m.

Furthermore, if π ′q is obtained from πq by adding the singleton block {(2kq−1)r },
then π ′q |O is naturally an element of NC′( jq) and π ′q |E is naturally an element of
NC( jq), which must be K (π ′q |O) by π∨σ ′n,m = 1n,2m+1. Consequently, by writing
κπ as a product of cumulants, using linearity of κπ , and using the fact that (a1, b1)

and (a2, b2) are bi-free (and implicitly using ϕ(b2)= 1), we obtain

κπ (a1+ a2, . . . , a1+ a2︸ ︷︷ ︸
n

, b2, b1, b2, b1, . . . , b1, b2︸ ︷︷ ︸
b1 occurs m times

)znwm+1

= κn,s(a2, b2)znw

s−1∏
q=1

g2(0 jq , π
′

q)g1(0 jq , K (π ′q))w
jq .

Consequently, summing over all ρ ∈ BNCT (n,m)′o with Vρ = Vπ , we obtain∑
ρ∈BNCT (n,m)′o

Vρ=Vπ

κπ (a1+ a2, . . . , a1+ a2︸ ︷︷ ︸
n

, b2, b1, b2, b1, . . . , b1, b2︸ ︷︷ ︸
b1 occurs m times

)znwm+1

= κn,s(a2, b2)znw

s−1∏
q=1

(g2∗̌g1)(0 jq , 1 jq )w
jq .



432 PAUL SKOUFRANIS

Finally, if we sum over all possible n ≥ 1, m ≥ 0, and all possible Vπ (so, in the
above equation, we get all possible s ≥ 1 and all possible jq ≥ 1), we obtain that

9o′(z, w)=
∑

n,s≥1

κn,s(a2, b2)znw

s−1∏
q=1

φg2∗̌g1(w)

=
w

φg2∗̌g1(w)

∑
n,s≥1

κn,s(a2, b2)zn(φg2∗̌g1(w))
s

=
w

φg2∗̌g1(w)
Ka2,b2(z, φg2∗̌g1(w)). �

Lemma 3.8. Under the above notation and assumptions,

9o(z, w)=
(

1+ 1
φg1∗̌g2(w)

9o′(z, w)
)

Ka1,b1(z, φg1∗̌g2(w)).

Proof. For each n,m≥ 1, we desire to rearrange the sum in9o(z, w) by expanding
κπ as a product of full (l, r)-cumulants and summing over all π with the same block
containing 1l .

Fix n,m ≥ 1, let E = {(2k)r }mk=1, let O = {(2k−1)r }mk=1, let π ∈BNCT (n,m)o,
let Vπ denote the block of π containing 1l , let t (respectively s) denote the number
of elements of {1l, . . . , nl} (respectively O) contained in Vπ (so t, s ≥ 1). Since
π ∨ σn,m = 1n,2m , Vπ must be of the form {kl}

t
k=1 ∪ {(2kq − 1)r }sq=1 for some

1= k1 < k2 < · · ·< ks ≤ m. Below is an example of such a π .

1l

2l

3l

4l

5l

1r

2r

3r

4r

5r

6r

7r

8r

9r

10r

11r

12r

Note that Vπ divides the right nodes into s disjoint regions, where the bottom
region is special as those nodes may connect to left nodes. For each 1 ≤ q ≤ s,
let jq = kq+1− kq , where ks = m + 1. Note that

∑s
q=1 jq = m. For q 6= s, let πq

denote the noncrossing partition obtained by restricting π to

{(2kq)r , (2kq + 1)r , . . . , (2kq+1− 2)r }.
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As discussed in Lemma 3.6, if π ′q is obtained from πq by adding the singleton block
{(2kq − 1)r }, then π ′q |O is naturally an element of NC′( jq) and π ′q |E is naturally
an element of NC( jq), which must be K (π ′q |O) since π ∨ σn,m = 1n,2m .

Let π ′s denote the bi-noncrossing partition obtained by restricting π to

{kl}
n
k=t+1 ∪ {(2ks)r , (2ks + 1)r , . . . , (2m)r }

(which is shaded differently in the above diagram). Notice, since π∨σn,m=12n,2m ,
that it must be the case that πs ∈ BNCT (n− t, js − 1)′o.

By writing κπ as a product of cumulants, using linearity of κπ , and using the fact
that (a1, b1) and (a2, b2) are bi-free (and implicitly using ϕ(b1)= 1), we obtain

κπ (a1+ a2, . . . , a1+ a2︸ ︷︷ ︸
n

, b1, b2, b1, b2, . . . , b1, b2︸ ︷︷ ︸
b1 occurs m times

)znwm

= κt,s(a1, b1)zt
( s−1∏

q=1

g1(0 jq , π
′

q)g2(0 jq , K (π ′q))w
jq

)
· κπs (a1+ a2, . . . , a1+ a2︸ ︷︷ ︸

n−t

, b2, b1, b2, . . . , b1, b2︸ ︷︷ ︸
b2 occurs js times

)zn−tw js .

Consequently, summing over all ρ ∈ BNCT (n,m)o with Vρ = Vπ , we obtain∑
ρ∈BNCT (n,m)o

Vρ=Vπ

κρ(a1+ a2, . . . , a1+ a2︸ ︷︷ ︸
n

, b1, b2, b1, b2, . . . , b1, b2︸ ︷︷ ︸
b1 occurs m times

)znwm

= κt,s(a1, b1)zt
( s−1∏

q=1

(g1∗̌g2)(0 jq , 1 jq )w
jq

)
·

( ∑
σ∈BNCT (n−t, js−1)′o

κσ (a1+ a2, . . . , a1+ a2︸ ︷︷ ︸
n−t

, b2, b1, b2, . . . , b1, b2︸ ︷︷ ︸
b2 occurs js times

)zn−tw js

)

as all σ ∈ BNCT (n− t, js − 1)′o occur.
We desire to sum over all n,m≥1 and all possible Vπ . This produces all possible

t, s ≥ 1 and all jq ≥ 1. If we first sum those terms above with t = n, we see, using
similar arguments to those used above, that∑

σ∈BNCT (0, js−1)′o

κσ (b2, b1, b2, . . . , b1, b2︸ ︷︷ ︸
b2 occurs jq times

)w js = (g1∗̌g2)(0 js , 1 js )w
js .

Consequently, summing those terms with t = n gives∑
t,s≥1

κt,s(a1, b1)zt
s∏

q=1

φg1∗̌g2(w)=
∑
t,s≥1

κt,s(a1, b1)zt(φg1∗̌g2(w))
s

= Ka1,b1(z, φg1∗̌g2(w)).
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Moreover, summing those terms with t 6= n gives

∑
t,s≥1

κt,s(a1, b1)zt
( s−1∏

q=1

φg1∗̌g2(w)

)
9o′(z, w)

=

∑
t,s≥1

κt,s(a1, b1)zt(φg1∗̌g2(w))
s−19o′(z, w)

=
1

φg1∗̌g2(w)
9o′(z, w)Ka1,b1(z, φg1∗̌g2(w)).

Combining the above two sums completes the proof. �

Proof of Theorem 3.5. By Lemma 3.6 along with (7), we see that

9e
(
z, φ〈−1〉

g (w)
)
= Ka2,b2

(
z, φg2∗̌g1

(
φ〈−1〉

g (w)
))
= Ka2,b2

(
z, φ〈−1〉

g2
(w)

)
.

By Lemma 3.7 along with equations (7) and (8)), we see that

9o′
(
z, φ〈−1〉

g (w)
)
=

φ
〈−1〉
g (w)

φg2∗̌g1

(
φ
〈−1〉
g (w)

)Ka2,b2

(
z, φg2∗̌g1

(
φ〈−1〉

g (w)
))

=

1
w
φ
〈−1〉
g1 (w)φ

〈−1〉
g2 (w)

φ
〈−1〉
g2 (w)

Ka2,b2

(
z, φ〈−1〉

g2
(w)

)
=

1
w
φ〈−1〉

g1
(w)Ka2,b2

(
z, φ〈−1〉

g2
(w)

)
.

Furthermore, by Lemma 3.8 along with (7), we obtain

9o
(
z, φ〈−1〉

g (w)
)

=

(
1+

1

φg1∗̌g2

(
φ
〈−1〉
g (w)

)9o′
(
z, φ〈−1〉

g (w)
))

Ka1,b1

(
z, φg1∗̌g2

(
φ〈−1〉

g (w)
))

=

(
1+

1

φ
〈−1〉
g1 (w)

9o′
(
z, φ〈−1〉

g (w)
))

Ka1,b1

(
z, φ〈−1〉

g1
(w)

)
=

(
1+ 1

w
Ka2,b2

(
z, φ〈−1〉

g2
(w)

))
Ka1,b1

(
z, φ〈−1〉

g1
(w)

)
= Ka1,b1

(
z, φ〈−1〉

g1
(w)

)
+

1
w

Ka1,b1

(
z, φ〈−1〉

g1
(w)

)
Ka2,b2

(
z, φ〈−1〉

g2
(w)

)
.

As

Ka1+a2,b1b2

(
z, φ〈−1〉

g (w)
)
=9e

(
z, φ〈−1〉

g (w)
)
+9o

(
z, φ〈−1〉

g (w)
)
,

we have verified that equation (16) holds and thus the proof is complete. �
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4. Bi-free partial S-transform

In this section, we study Voiculescu’s bi-free partial S-transform through combina-
torics. All notation in this section refers to the notation established in this section
and not to the notation of Section 3.

Definition 4.1 [Voiculescu 2015, Definition 2.1]. Let (a, b) be a two-faced pair
in a noncommutative probability space (A, ϕ) with ϕ(a) 6= 0 and ϕ(b) 6= 0. The
2-variable partial bi-free S-transform of (a, b) is the holomorphic function defined
on (C \ {0})2 near (0, 0) by

Sa,b(z, w)=
z+1

z
w+1
w

(
1− 1+z+w

Ha,b(Xa(z),Xb(w))

)
.(17)

It is useful to note, in the following proposition, an equivalent definition of the
bi-free partial S-transform. To simplify the discussion, we demonstrate the equality
in the case ϕ(a) = ϕ(b) = 1. This does not hinder the proof of the desired result,
namely Theorem 4.5 (see Remark 4.3).

Proposition 4.2. If (a, b) is a two-faced pair in a noncommutative probability
space (A, ϕ) with ϕ(a)= ϕ(b)= 1, then, as a formal power series,

Sa,b(z, w)= 1+ 1+z+w
zw

Ka,b
(
c〈−1〉

a (z), c〈−1〉
b (w)

)
.(18)

Proof. Using equations (5), (6), (9), and (10), we obtain that

1
Ha,b(Xa(z),Xb(w))

=
1

1+z
+

1
1+w

−
1

1+z
1

1+w
Ca,b

(
c〈−1〉

a (z), c〈−1〉
b (w)

)
.

Therefore, using equations (11) and (17), we obtain that

Sa,b(z, w)=
z+1

z
w+1
w

(
1− (1+ z+w)

( 1
1+z
+

1
1+w

−
1

1+z
1

1+w
Ca,b

(
c〈−1〉

a (z), c〈−1〉
b (w)

)))
=

1
zw
(
(1+ z)(1+w)− (1+ z+w)(2+ z+w)

+ (1+ z+w)Ca,b
(
c〈−1〉

a (z), c〈−1〉
b (w)

))
=

1
zw

(
zw− (1+ z+w)2

+ (1+ z+w)
(
1+ z+w+ Ka,b

(
c〈−1〉

a (z), c〈−1〉
b (w)

)))
= 1+ 1+z+w

zw
Ka,b

(
c〈−1〉

a (z), c〈−1〉
b (w)

)
. �

Remark 4.3. Again, one might be concerned that we have restricted to the case
ϕ(a) = ϕ(b) = 1. Using the same ideas as in Remark 3.3, if we use (18) as the
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definition of the S-transform and if λ,µ ∈ C \ {0}, then Sa,b(z, w)= Sλa,µb(z, w).
Hence there is no loss in assuming ϕ(a)= ϕ(b)= 1.

Remark 4.4. Note Proposition 4.2 immediately provides the S-transform part of
[Voiculescu 2015, Proposition 4.2]. Indeed if a and b are elements of a noncommu-
tative probability space (A, ϕ)with ϕ(a) 6=0, ϕ(b) 6=0, and ϕ(anbm)=ϕ(an)ϕ(bm)

for all n,m ≥ 0, then κn,m(a, b) = 0 for all n,m ≥ 1 (see [Skoufranis 2015, Sec-
tion 3.2]). Hence Ka,b(z, w)= 0, so Sa,b(z, w)= 1.

We desire to prove the following, which is one of two main results of [Voiculescu
2015], using combinatorial techniques and Proposition 4.2.

Theorem 4.5 [Voiculescu 2015, Theorem 2.1]. Let (a1, b1) and (a2, b2) be bi-free
two-faced pairs in a noncommutative probability space (A, ϕ) with ϕ(a j ) 6= 0 and
ϕ(b j ) 6= 0. Then

Sa1a2,b1b2(z, w)= Sa1,b1(z, w)Sa2,b2(z, w)

on (C \ {0})2 near (0, 0).

To simplify the proof of this result, we assume that ϕ(a j )=ϕ(b j )= 1. Note that
ϕ(a1a2)=ϕ(b1b2)=1 by freeness of the left algebras and of the right algebras in bi-
free pairs. Furthermore, let f j (respectively g j ) denote the multiplicative function
associated to the cumulants of a j (respectively b j ) defined by f j (0n, 1n)= κn(a j )

(respectively g j (0n, 1n) = κn(b j )). Recall that if f (respectively g) is the mul-
tiplicative function associated to the cumulants of a1a2 (respectively b1b2), then
f = f1 ∗ f2 (respectively g = g1 ∗ g2). Thus

φ
〈−1〉
f (z)= c〈−1〉

a1a2
(z), φ〈−1〉

g (w)= c〈−1〉
b1b2

(w),

φ
〈−1〉
f j
(z)= c〈−1〉

a j
(z), φ〈−1〉

g j
(w)= c〈−1〉

b j
(w).

Note that f, g, f j , g j ∈M1 by assumption.
By Proposition 4.2, it suffices to show that

(19) Ka1a2,b1b2

(
φ
〈−1〉
f (w), φ〈−1〉

g (w)
)

=21(z, w)+22(z, w)+
1+z+w

zw
21(z, w)22(z, w)

where

2 j (z, w)= Ka j ,b j

(
φ
〈−1〉
f j
(w), φ〈−1〉

g j
(w)

)
.

Recall

Ka1a2,b1b2(z, w)=
∑

n,m≥1

κn,m(a1a2, b1b2)znwm .
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For fixed n,m ≥ 1, let σn,m denote the element of BNC(2n, 2m) with blocks

{{(2k− 1)l, (2k)l}}nk=1 ∪ {{(2k− 1)r , (2k)r }}mk=1.

Thus (13) implies that

κn,m(a1a2, b1b2)

=

∑
π∈BNC(2n,2m)
π∨σn,m=12n,2m

κπ (a1, a2, a1, a2, . . . , a1, a2︸ ︷︷ ︸
a1 occurs n times

, b1, b2, b1, b2, . . . , b1, b2︸ ︷︷ ︸
b1 occurs m times

).

Since (a1, b1) and (a2, b2) are bi-free, we note that

κπ (a1, a2, a1, a2, . . . , a1, a2︸ ︷︷ ︸
a1 occurs n times

, b1, b2, b1, b2, . . . , b1, b2︸ ︷︷ ︸
b1 occurs m times

)= 0

if π contains a block containing a (2k)θ1 and a (2 j − 1)θ2 for some θ1, θ2 ∈ {l, r}
and for some k, j .

For n,m ≥ 1, let BNCS(n,m) be the set of all π ∈ BNC(2n, 2m) such that
π ∨σn,m = 12n,2m and π contains no blocks with both a (2k)θ1 and a (2 j−1)θ2 for
some θ1, θ2 ∈ {l, r} and for some k, j . Consequently, we obtain

Ka1a2,b1b2(z, w)=∑
n,m≥1

( ∑
π∈BNCS(n,m)

κπ(a1, a2, a1, a2, . . . , a1, a2︸ ︷︷ ︸
a1 occurs n times

, b1, b2, b1, b2, . . . , b1, b2︸ ︷︷ ︸
b1 occurs m times

)

)
znwm .

We desire to divide up this sum into two parts based on types of partitions
in BNCS(n,m). Notice that if π ∈BNCS(n,m), then π must contain a block with
both a kl and a jr for some k, j , so that π ∨ σn,m = 12n,2m . If

V ⊆ {1l, . . . , (2n)l, 1r , . . . , (2m)r },

we define min(V ) to be the integer k such that either kl ∈ V or kr ∈ V yet jl, jr /∈ V
for all j < k.

Let BNCS(n,m)e denote all π ∈ BNCS(n,m) such that min(V ) ∈ 2Z for the
block V of π that has the smallest min-value over all blocks W of π such that there
exist kl, jr ∈W for some k, j ; that is, V is the first block, measured from the top, in
the bi-noncrossing diagram of π that has both left and right nodes, and these nodes
are of even index. Similarly, let BNCS(n,m)o denote all π ∈ BNCT (n,m) such
that min(V ) ∈ 2Z+1 for the block V of π that has the smallest min-value over all
blocks W of π such that there exist kl, jr ∈ W for some k, j . Note BNCS(n,m)e
and BNCS(n,m)o are disjoint and

BNCS(n,m)e ∪BNCS(n,m)o = BNCS(n,m).
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Therefore, if for d ∈ {o, e} we define

9d(z, w) :=∑
n,m≥1

( ∑
π∈BNCS(n,m)d

κπ(a1, a2, a1, a2, . . . , a1, a2︸ ︷︷ ︸
a1 occurs n times

, b1, b2, b1, b2, . . . , b1, b2︸ ︷︷ ︸
b1 occurs m times

)

)
znwm,

then
Ka1a2,b1b2(z, w)=9e(z, w)+9o(z, w).

We derive expressions for 9e(z, w) and 9o(z, w) beginning with 9e(z, w). We do
not use the same rigour as in Section 3, as most of the arguments are similar.

Lemma 4.6. Under the above notation and assumptions,

9e(z, w)= Ka2,b2(φ f2∗̌ f1(z), φg2∗̌g1(w)).

Proof. Fix n,m ≥ 1. If π ∈ BNCS(n,m)e, let Vπ denote the first (and, as it
happens, only) block of π , as measured from the top of π ’s bi-noncrossing diagram,
that has both left and right nodes. Since π ∨ σn,m = 12n,2m , there exist t, s ≥ 1,
1≤ l1 < l2 < · · ·< lt = n, and 1≤ k1 < k2 < · · ·< ks = m such that

Vπ = {(2lp)l}
t
p=1 ∪ {(2kq)r }

s
q=1.

Note Vπ divides the remaining left nodes into t disjoint regions and the remaining
right nodes into s disjoint regions. Moreover, each block of π can only contain
nodes in one such region. Below is an example of such a π .

1l

2l

3l

4l

5l

6l

7l

8l

9l

10l

1r

2r

3r

4r

5r

6r

7r

8r

9r

10r

11r

12r

Let E = {(2k)l}nk=1 ∪ {(2k)r }mk=1 and O = {(2k − 1)l}nk=1 ∪ {(2k − 1)r }mk=1. For
each 1≤ p≤ t , let i p = lp−lp−1, where l0= 0, and let πl,p denote the noncrossing
partition obtained by restricting π to {(2lp−1 + 1)l, (2lp−1 + 2)l, . . . , (2lp − 1)l}.
Note that

∑t
p=1 i p=n. Furthermore, as explained in Lemma 3.6, if π ′l,p is obtained



A COMBINATORIAL APPROACH TO BI-FREE PARTIAL TRANSFORMS 439

from πl,p by adding the singleton block {(2lp)l}, then π ′l,p|E is naturally an element
of NC′(i p) and π ′l,p|O is naturally an element of NC(i p), which must be K (π ′l,p|E)
in order to have π ∨ σn,m = 12n,2m .

Similarly, for each 1 ≤ q ≤ s, let jq = kq − kq−1, where k0 = 0, and let πr,q

denote the noncrossing partition obtained by restricting π to

{(2kq−1+ 1)r , (2kq−1+ 2)r , . . . , (2kq − 1)r }.

Note that
∑s

q=1 jq = m. Furthermore, as explained in Lemma 3.6, if π ′r,q is ob-
tained from πr,q by adding the singleton block {(2kq)r }, then π ′r,q |E is naturally an
element of NC′( jq) and π ′r,q |O is naturally an element of NC( jq), which must be
K (π ′r,q |E) in order to have π ∨ σn,m = 12n,2m .

Expanding

κρ(a1, a2, . . . , a1, a2︸ ︷︷ ︸
a1 occurs n times

, b1, b2, . . . , b1, b2︸ ︷︷ ︸
b1 occurs m times

)znwm

for ρ ∈ BNCS(n,m)e and summing such terms with Vρ = Vπ , we obtain

κt,s(a2, b2)

( t∏
p=1

( f2∗̌ f1)(0i p , 1i p)z
i p

)( s∏
q=1

(g2∗̌g1)(0 jq , 1 jq )w
jq

)
.

Finally, if we sum over all possible n,m ≥ 1 and all possible Vπ (so, in the above
equation, we get all possible t, s ≥ 1 and all possible i p, jq ≥ 1), we obtain that

9e(z, w)=
∑
t,s≥1

κt,s(a2, b2)

( t∏
p=1

φ f2∗̌ f1(z)
)( s∏

q=1

φg2∗̌g1(z)
)

=

∑
t,s≥1

κt,s(a2, b2)(φ f2∗̌ f1(z))
t(φg2∗̌g1(w))

s

= Ka2,b2

(
φ f2∗̌ f1(z), φg2∗̌g1(w)

)
. �

In order to discuss9o(z, w), it is quite helpful to discuss subcases. For n,m ≥ 0,
let σ ′n,m denote the element of BNC(2n+ 1, 2m+ 1) with blocks

{{1l, 1r }} ∪ {{(2l)l, (2l + 1)l}}nl=1 ∪ {{(2k)r , (2k+ 1)r }}mk=1.

Define BNCS(n,m)′o to be the set of all π ∈ BNC(2n + 1, 2m + 1) such that
π∨σ ′n,m = 12n+1,2m+1 and π contains no blocks with both a (2k)θ1 and a (2 j−1)θ2

for any θ1, θ2 ∈ {l, r} and any k, j . We wish to divide up BNCS(n,m)′o further. For
π ∈ BNCS(n,m)′o, let Vπ,l denote the block of π containing 1l and Vπ,r the block
of π containing 1r . Then,
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BNCS(n,m)o,0
= {π ∈ BNCS(n,m)′o | Vπ,l has no right nodes and Vπ,r has no left nodes},

BNCS(n,m)o,r
= {π ∈ BNCS(n,m)′o | Vπ,l has no right nodes but Vπ,r has left nodes},

BNCS(n,m)o,l
= {π ∈ BNCS(n,m)′o | Vπ,l has right nodes but Vπ,r has no left nodes},

BNCS(n,m)o,lr = {π ∈ BNCS(n,m)′o | Vπ,l = Vπ,r }.

Due to the nature of bi-noncrossing partitions, the above sets are disjoint and have
union BNCS(n,m)′o.

For d ∈ {0, r, l, lr}, define

9o,d(z, w) :=∑
n,m≥0

( ∑
π∈BNCS(n,m)o,d

κπ (a2, a1, a2, . . . , a1, a2︸ ︷︷ ︸
a1 occurs n times

, b2, b1, b2, . . . , b1, b2︸ ︷︷ ︸
b1 occurs m times

)

)
zn+1wm+1.

Lemma 4.7. Under the above notation and assumptions,

9o,0(z, w)= zw ·
φ f2(φ f2∗̌ f1(z))φg2(φg2∗̌g1(w))

φ f2∗̌ f1(z)φg2∗̌g1(w)
.

Proof. Fix n,m ≥ 0. If π ∈ BNCS(n,m)o,0, then, since π ∨ σ ′n,m = 12n+1,2m+1,
there exist t, s≥ 1, 1= l1< l2< · · ·< lt = n+1, and 1= k1< k2< · · ·< ks =m+1
such that

Vπ,l = {(2lp − 1)l}tp=1 and Vπ,r = {(2kq − 1)r }sq=1.

Note that Vπ,l divides the remaining left nodes into t −1 disjoint regions and Vπ,r
divides the remaining right nodes into s−1 disjoint regions. Moreover, each block
of π can only contain nodes in one such region. Below is an example of such a π .

1l

2l

3l

4l

5l

6l

7l

8l

9l

10l

11l

1r

2r

3r

4r

5r

6r

7r

8r

9r
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If i p = lp+1− lp and jq = kq+1− kq , then

t−1∑
p=1

i p = n and
s−1∑
q=1

jq = m.

Using similar arguments to those in Lemma 4.6, expanding

κρ(a2, a1, a2, a1, . . . , a1, a2︸ ︷︷ ︸
a1 occurs n times

, b2, b1, b2, b1, . . . , b1, b2︸ ︷︷ ︸
b1 occurs m times

)zn+1wm+1

for ρ ∈ BNCS(n,m)o,0 and summing all terms with Vρ,l = Vπ,l and Vρ,r = Vπ,r ,
we obtain

zw · κt(a2)κs(b2)

( t−1∏
p=1

( f2∗̌ f1)(0i p , 1i p)z
i p

)( s−1∏
q=1

(g2∗̌g1)(0 jq , 1 jq )w
jq

)
.

Finally, if we sum over all possible n,m ≥ 0 and all possible Vπ,l and Vπ,r (so,
in the above equation, we get all possible t, s ≥ 1 and all possible i p, jq ≥ 1), we
obtain that

9e(z, w)= zw
∑
t,s≥1

κt(a2)κs(b2)

( t−1∏
p=1

φ f2∗̌ f1(z)
)( s−1∏

q=1

φg2∗̌g1(z)
)

= zw
∑
t,s≥1

κt(a2)κs(b2)(φ f2∗̌ f1(z))
t−1(φg2∗̌g1(w))

s−1

= zw ·
φ f2(φ f2∗̌ f1(z))φg2(φg2∗̌g1(w))

φ f2∗̌ f1(z)φg2∗̌g1(w)
. �

Lemma 4.8. Under the above notation and assumptions,

9o,r (z, w)=
w ·φ f1∗̌ f2(z)
φg2∗̌g1(w)

Ka2,b2(φ f2∗̌ f1(z), φg2∗̌g1(w)).

Proof. Fix n,m ≥ 0. Note BNCS(0,m)o,r =∅ by definition.
If π ∈ BNCS(n,m)o,r , then, since π ∨ σ ′n,m = 12n+1,2m+1, there exist t, s ≥ 1,

1< l1 < l2 < · · ·< lt = n+ 1, and 1= k1 < k2 < · · ·< ks = m+ 1 such that

Vπ,r = {(2lp − 1)l}tp=1 ∪ {(2kq − 1)r }sq=1.

Note that Vπ,r divides the remaining right nodes into s−1 disjoint regions and the
remaining left nodes into t regions. However, the top region is special. If l0 is the
largest natural number such that (2l0 − 1)l ∈ Vπ,l , then l0 further divides the top
region on the left into two regions. Note that each block of π can only contain
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nodes in one such region. The following is an example of such a π for which
l0 = 3, with one part of the special region (1l, . . . , 5l) shaded differently.

1l

2l

3l

4l

5l

6l

7l

8l

9l

10l

11l

12l

13l

1r

2r

3r

4r

5r

6r

7r

8r

9r

Let i0 = l0, i p = lp − lp−1 when p 6= 0, and jq = kq+1− kq . Thus

t∑
p=0

i p = n+ 1 and
s−1∑
q=1

jq = m.

Using similar arguments to those in Lemma 4.6, expanding

κρ(a2, a1, a2, a1, . . . , a1, a2︸ ︷︷ ︸
a1 occurs n times

, b2, b1, b2, b1, . . . , b1, b2︸ ︷︷ ︸
b1 occurs m times

)zn+1wm+1

for ρ ∈ BNCS(n,m)o,r and summing all terms with Vρ,l = Vπ,l and Vρ,r = Vπ,r ,
we obtain

w · κt,s(a2, b2)

( t∏
p=1

( f2∗̌ f1)(0i p , 1i p)z
i p

)

·

( s−1∏
q=1

(g2∗̌g1)(0 jq , 1 jq )w
jq

)(
( f1∗̌ f2)(0i0, 1i0)z

i0
)
.

Note for p ≥ 2, each ( f2∗̌ f1)(0i p , 1i p)z
i p comes from the p-th region from the top

on the left, whereas the top region on the left gives ( f2∗̌ f1)(0i1, 1i1)z
i1 using the

partitions below (2l0−1)l and gives ( f1∗̌ f2)(0i0, 1i0)z
i0 using the partitions above

and including (2l0− 1)l .
Finally, if we sum over all possible n,m ≥ 0 and all possible Vπ,l and Vπ,r (so,

in the above equation, we get all possible t, s ≥ 1 and all possible i p, jq ≥ 1), we
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obtain that

9e(z, w)= w
∑
t,s≥1

κt,s(a2, b2)

( t∏
p=1

φ f2∗̌ f1(z)
)( s−1∏

q=1

φg2∗̌g1(z)
)(
φ f1∗̌ f2(z)

)
= w

∑
t,s≥1

κt,s(a2, b2)(φ f2∗̌ f1(z))
t(φg2∗̌g1(w))

s−1(φ f1∗̌ f2(z))

=
w ·φ f1∗̌ f2(z)
φg2∗̌g1(w)

Ka2,b2(φ f2∗̌ f1(z), φg2∗̌g1(w)). �

Lemma 4.9. Under the above notation and assumptions,

9o,l(z, w)=
z ·φg1∗̌g2(w)

φ f2∗̌ f1(z)
Ka2,b2(φ f2∗̌ f1(z), φg2∗̌g1(w)).

Proof. The proof can be obtained by applying a mirror to Lemma 4.8. �

Lemma 4.10. Under the above notation and assumptions,

9o,lr (z, w)=
zw

φ f2∗̌ f1(z)φg2∗̌g1(w)
Ka2,b2(φ f2∗̌ f1(z), φg2∗̌g1(w)).

Proof. The proof of this result follows from the proof of Lemma 4.7 by replacing
each occurrence of κt(a2)κs(b2) with κt,s(a2, b2). Indeed there is a bijection from
BNCS(n,m)o,0 to BNCS(n,m)o,lr whereby, given π ∈BNCS(n,m)o,0, we produce
π ′ ∈ BNCS(n,m)o,lr by joining Vπ,l and Vπ,r into a single block.

1l

2l

3l

4l

5l

6l

7l

8l

9l

10l

11l

1r

2r

3r

4r

5r

6r

7r

8r

9r

1l

2l

3l

4l

5l

6l

7l

8l

9l

10l

11l

1r

2r

3r

4r

5r

6r

7r

8r

9r

�

Lemma 4.11. Under the above notation and assumptions,

9o(z, w)=
1

φ f1∗̌ f2(z)φg1∗̌g2(w)
9o′(z, w)Ka1,b1(φ f1∗̌ f2(z), φg1∗̌g2(w)),

where

9o′(z, w)=9o,0(z, w)+9o,r (z, w)+9o,l(z, w)+9o,lr (z, w).
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Proof. Fix n,m ≥ 1. If π ∈ BNCS(n,m)o, let Vπ denote the first block of π , as
measured from the top of π ’s bi-noncrossing diagram, that has both left and right
nodes. Since π ∈BNCS(n,m)o, there exist t, s ≥ 1, 1= l1 < l2 < · · ·< lt ≤ n, and
1= k1 < k2 < · · ·< ks ≤ m such that

Vπ = {(2lp − 1)l}tp=1 ∪ {(2kq − 1)r }sq=1.

Note Vπ divides the remaining left nodes and right nodes into t−1 disjoint regions
on the left, s − 1 disjoint regions on the right, and one region on the bottom.
Moreover, each block of π can only contain nodes in one such region. Below is
an example of such a π .

1l

2l

3l

4l

5l

6l

7l

8l

9l

10l

1r

2r

3r

4r

5r

6r

7r

8r

9r

10r

11r

12r

Let

E = {(2k)l}nk=1 ∪ {(2k)r }mk=1,

O = {(2k− 1)l}nk=1 ∪ {(2k− 1)r }mk=1.

For each 1≤ p ≤ t , let i p = lp+1− lp, where lt+1 = n+ 1, and, for p 6= t , let πl,p

denote the noncrossing partition obtained by restricting π to

{(2lp)l, (2lp + 1)l, . . . , (2lp+1− 2)l}.

Note that
∑t

p=1 i p=n. Furthermore, as explained in Lemma 3.6, if π ′l,p is obtained
from πl,p by adding the singleton block {(2lp − 1)l}, then π ′l,p|O is naturally an
element of NC′(i p) and π ′l,p|E is naturally an element of NC(i p), which must be
K (π ′l,p|O) in order to satisfy π ∨ σn,m = 12n,2m .

Similarly, for each 1≤ q ≤ s, let jq = kq+1− kq , where ks+1 = m+ 1, and, for
q 6= s, let πr,q denote the noncrossing partition obtained by restricting π to

{(2kq)r , (2kq + 1)r , . . . , (2kq+1− 2)r }.
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Note that
∑s

q=1 jq = m. Furthermore, as explained in Lemma 3.6, if π ′r,q is ob-
tained from πr,q by adding the singleton block {(2kq−1)r }, then π ′r,q |O is naturally
an element of NC′( jq) and π ′r,q |E is naturally an element of NC( jq), which must
be K (π ′r,q |O) in order to satisfy π ∨ σn,m = 12n,2m .

Finally, if π ′ is the bi-noncrossing partition obtained by restricting π to

{(2lt)l, (2lt + 1)l, . . . , (2n)l, (2ks)r , (2ks + 1)r , . . . , (2m)r }

(which is shaded differently in the above diagram), then π ′ ∈BNCS(it−1, js−1)′o.
Expanding

κρ(a1, a2, . . . , a1, a2︸ ︷︷ ︸
a1 occurs n times

, b1, b2, . . . , b1, b2︸ ︷︷ ︸
b1 occurs m times

)znwm

for ρ ∈ BNCS(n,m)o and summing such terms with Vρ = Vπ , we obtain

κt,s(a1, b1)

( t−1∏
p=1

( f1∗̌ f2)(0i p , 1i p)z
i p

)( s−1∏
q=1

(g1∗̌g2)(0 jq , 1 jq )w
jq

)

·

( ∑
τ∈BNCS(it−1, js−1)′o

κτ (a2, a1, a2, a1, . . . , a1, a2︸ ︷︷ ︸
a1 occurs it−1 times

, b2, b1, b2, b1, . . . , b1, b2︸ ︷︷ ︸
b1 occurs js−1 times

)zitw js

)
.

Note that for p 6= t , each ( f1∗̌ f2)(0i p , 1i p)z
i p comes from the p-th region from the

top on the left, for q 6= s each (g1∗̌g2)(0 jq , 1 jq )w
jq comes from the q-th region from

the top on the right, and all τ ∈ BNCS(it − 1, js − 1)′o are possible on the bottom.
Finally, if we sum over all possible n,m≥1 and all possible Vπ (so, in the above

equation, we get all possible t, s ≥ 1 and all possible i p, jq ≥ 1), we obtain that

9e(z, w)=
∑
t,s≥1

κt,s(a1, b1)

( t−1∏
p=1

φ f1∗̌ f2(z)
)( s−1∏

q=1

φg1∗̌g2(z)
)
9o′(z, w)

=

∑
t,s≥1

κt,s(a1, b1)(φ f1∗̌ f2(z))
t−1(φg1∗̌g2(w))

s−19o′(z, w)

=
1

φ f1∗̌ f2(z)φg1∗̌g2(w)
9o′(z, w)Ka1,b1(φ f1∗̌ f2(z), φg1∗̌g2(w)). �

Proof of Theorem 4.5. Using (7) and (8), we see (via Lemmata 4.6–4.10) that

9e
(
φ
〈−1〉
f1∗ f2

(z), φ〈−1〉
g1∗g2

(w)
)
= Ka2,b2

(
φ
〈−1〉
f2
(z), φ〈−1〉

g2
(w)

)
,

9o,0

(
φ
〈−1〉
f1∗ f2

(z), φ〈−1〉
g1∗g2

(w)
)
= φ

〈−1〉
f1∗ f2

(z)φ〈−1〉
g1∗g2

(w) ·
zw

φ
〈−1〉
f2
(z)φ〈−1〉

g2 (w)

= φ
〈−1〉
f1
(z)φ〈−1〉

g1
(w),
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9o,r
(
φ
〈−1〉
f1∗ f2

(z), φ〈−1〉
g1∗g2

(w)
)
=
φ
〈−1〉
f1
(z)φ〈−1〉

g1 (w)

w
Ka2,b2

(
φ
〈−1〉
f2
(z), φ〈−1〉

g2
(w)

)
,

9o,l
(
φ
〈−1〉
f1∗ f2

(z), φ〈−1〉
g1∗g2

(w)
)
=
φ
〈−1〉
f1
(z)φ〈−1〉

g1 (w)

z
Ka2,b2

(
φ
〈−1〉
f2
(z), φ〈−1〉

g2
(w)

)
,

9o,lr
(
φ
〈−1〉
f1∗ f2

(z), φ〈−1〉
g1∗g2

(w)
)
=
φ
〈−1〉
f1
(z)φ〈−1〉

g1 (w)

zw
Ka2,b2

(
φ
〈−1〉
f2
(z), φ〈−1〉

g2
(w)

)
.

Since

80
(
φ
〈−1〉
f1∗ f2

(z), φ〈−1〉
g1∗g2

(w)
)
=

1

φ
〈−1〉
f1
(z)φ〈−1〉

g1 (w)
9o′
(
φ
〈−1〉
f1∗ f2

(z), φ〈−1〉
g1∗g2

(w)
)
Ka1,b1

(
φ
〈−1〉
f1
(z), φ〈−1〉

g1
(w)

)
by (7) and Lemma 4.11, and since

1
z
+

1
w
+

1
zw
=

1+z+w
zw

and Ka1a2,b1b2(z, w)=9e(z, w)+90(z, w),

we have verified that (19) holds and thus the proof is complete. �
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