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A COMBINATORIAL CONSTRUCTION

OF SYMPLECTIC EXPANSIONS

YUSUKE KUNO

(Communicated by Daniel Ruberman)

Abstract. The notion of a symplectic expansion directly relates the topology
of a surface to formal symplectic geometry. We give a method to construct
a symplectic expansion by solving a recurrence formula given in terms of the
Baker-Campbell-Hausdorff series.

1. Introduction

Let Σ be a compact connected oriented surface of genus g > 0 with one boundary
component. Choose a basepoint ∗ on the boundary ∂Σ and let π = π1(Σ, ∗) be the
fundamental group of Σ.

The notion of (generalized) Magnus expansions was introduced by Kawazumi [5]
in his study of the mapping class group of a surface. By definition, the mapping
class group Mg,1 is the group of homomorphisms of Σ fixing ∂Σ pointwise, modulo
isotopies fixing ∂Σ pointwise. The group Mg,1 faithfully acts on π, a free group
of rank 2g, and it is known as the theorem of Dehn-Nielsen that Mg,1 is identified
with a subgroup of the automorphism group of a free group:

Mg,1 = {ϕ ∈ Aut(π);ϕ(ζ) = ζ}.
Here, ζ ∈ π is the element corresponding to the boundary. See §2. By choosing
a Magnus expansion, the completed group ring of π (with respect to the augmen-
tation ideal) is identified with the completed tensor algebra generated by the first
homology of the surface. In this way we obtain a tensor expression of the action of
Mg,1 on π. From this point of view, Kawazumi obtained extensions of the Johnson
homomorphisms τk introduced by Johnson [3], [4]. For details, see [5].

Actually the treatment in [5] is on the automorphism group of a free group,
rather than the mapping class group. There are infinitely many Magnus expan-
sions, and the arguments in [5] hold for any Magnus expansions. Recently, Mas-
suyeau [11] introduced the notion of symplectic expansions, which are Magnus ex-
pansions satisfying a certain kind of boundary condition, which comes from the
fact that π has a particular element corresponding to the boundary ∂Σ. Some nice
properties of symplectic expansions are clarified by [7]. In particular, it is shown
that there is a Lie algebra homomorphism from the Goldman Lie algebra of Σ
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Figure 1. Symplectic generators for g = 2

(see Goldman [2]) to “associative”, one of the three Lie algebras in formal symplec-
tic geometry by Kontsevich [8], via a symplectic expansion (see [7], Theorem 1.2.1).

Although there are infinitely many symplectic expansions (see [7], Proposi-
tion 2.8.1), there are not so many known examples. The boundary condition is
too strong to be satisfied. For instance, the fatgraph Magnus expansion given by
Bene-Kawazumi-Penner [1] is, unfortunately, not symplectic. Kawazumi [6], §6,
first constructed an R-valued symplectic expansion, called the harmonic Magnus
expansion, by a transcendental method. Massuyeau [11], Proposition 5.6, also gave
a Q-valued symplectic expansion using the LMO functor.

The purpose of this paper is to present another construction of symplectic expan-
sions. Our construction is elementary and suitable for computer-aided calculation.

Theorem 1.1. There is an algorithm to construct a symplectic expansion θS as-
sociated to any free generating set S for π.

It should be remarked here that in the proof of the existence of symplectic expan-
sions ([11], Lemma 2.16), Massuyeau already showed how to construct a symplectic
expansion degree after degree. Our construction is also inductive, but by using
the Dynkin idempotents it fixes the choices that had to be done in the inductive
step of [11], Lemma 2.16, hence is canonical. Moreover, our construction works for
any free generating set for π whereas [11], Lemma 2.16, only deals with symplectic
generators.

In §2, we recall Magnus expansions and symplectic expansions. Theorem 1.1 will
be proved in §3. In §4, we show a naturality of our construction under the action
of a subgroup of Aut(π) including the mapping class group Mg,1. In §5, we discuss
the symplectic expansion associated to symplectic generators.

2. Basic notions

We denote by ζ the loop parallel to ∂Σ and going in a counterclockwise manner.
Explicitly, if we take symplectic generators α1, β1, . . . , αg, βg ∈ π as shown in Fig-
ure 1, ζ =

∏g
i=1[αi, βi]. Here our notation for commutators is [x, y] := xyx−1y−1.

Let HZ := H1(Σ;Z) be the first integral homology group of Σ. We denote
H := HZ ⊗Z Q. HZ is naturally isomorphic to π/[π, π], the abelianization of π.
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With this identification in mind, we denote [x] := x mod [π, π] ∈ HZ, or [x] :=
(x mod [π, π])⊗Z 1 ∈ H, for x ∈ π.

Let T̂ be the completed tensor algebra generated byH. Namely T̂ =
∏∞

m=0 H
⊗m,

where H⊗m is the tensor space of degree m. For each p ≥ 1, denote T̂p :=∏∞
m≥p H

⊗m. Note that the subset 1 + T̂1 constitutes a subgroup of the multi-

plicative group of the algebra T̂ .

Definition 2.1 (Kawazumi [5]). A map θ : π → 1 + T̂1 is called a (Q-valued)
Magnus expansion if

(1) θ : π → 1 + T̂1 is a group homomorphism, and

(2) θ(x) ≡ 1 + [x] mod T̂2, for any x ∈ π.

The standard Magnus expansion defined by θ(si) = 1 + [si], for some free gen-
erating set {si}i for π, is the simplest example of a Magnus expansion. This is
introduced by Magnus [9] and is often used in combinatorial group theory.

Let L̂ ⊂ T̂ be the completed free Lie algebra generated by H. The bracket is

given by [u, v] := u⊗ v− v⊗ u, and its degree p-part Lp = L̂ ∩H⊗p is successively
given by L1 = H and Lp = [H,Lp−1], p ≥ 2. Via the intersection form ( · ) : H ×
H → Q on Σ, H and its dual H∗ = HomQ(H,Q) are canonically identified by the
map H ∼= H∗, X �→ (Y �→ (Y · X)). Let ω ∈ L2 ⊂ H⊗2 be the symplectic form,
namely the tensor corresponding to −1H ∈ HomQ(H,H) = H∗ ⊗ H = H ⊗ H.
Explicitly, if we take symplectic generators as in Figure 1, then Ai = [αi] and
Bi = [βi] satisfy (Ai · Bj) = −(Bj · Ai) = δij and (Ai · Aj) = (Bi · Bj) = 0; hence
we have

(2.1) ω =

g∑
i=1

Ai ⊗Bi −Bi ⊗ Ai =

g∑
i=1

[Ai, Bi].

For a Magnus expansion θ, let �θ := log θ. Here, log is the formal power series

log(x) =
∞∑

n=1

(−1)n−1

n
(x− 1)n

defined on the set 1 + T̂1. The inverse of log is given by the exponential exp(x) =∑∞
n=0(1/n!)x

n. Note that the Baker-Campbell-Hausdorff formula

u  v := log(exp(u) exp(v)) = u+ v +
1

2
[u, v] +

1

12
[u− v, [u, v]]

− 1

24
[u, [v, [u, v]]] + · · ·(2.2)

endows the underlying set of L̂ with a group structure. A priori, �θ is a map from

π to T̂1.

Definition 2.2 (Massuyeau [11]). A Magnus expansion θ is called symplectic if

(1) θ is group-like, i.e., �θ(π) ⊂ L̂, and
(2) θ(ζ) = exp(ω), or equivalently, �θ(ζ) = ω.

Remark 2.3. Let Iπ be the augmentation ideal of the group ring Qπ, and Q̂π :=
lim←−m

Qπ/Iπm the completed group ring of π. Any Magnus expansion θ induces an

isomorphism θ : Q̂π
∼=→ T̂ of complete augmented algebras. See [5], Theorem 1.3.

Moreover, let 〈ζ〉 be the cyclic subgroup of π generated by ζ, and Q[[ω]] the ring
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of formal power series in the symplectic form ω, which is regarded as a subalgebra

of T̂ in an obvious way. Then any symplectic expansion θ induces an isomorphism

θ : (Q̂π, Q̂〈ζ〉) → (T̂ ,Q[[ω]]) of complete Hopf algebras. See [7], §6.2.

3. Main construction

We fix a free generating set S = {s1, . . . , s2g} for π. We denote Si := [si] ∈ H,
1 ≤ i ≤ 2g. Let x1x2 · · ·xp be the unique reduced word in S representing ζ.

Definition 3.1. Fix an integer n ≥ 1. A set {�j(si) : 1 ≤ i ≤ 2g, 1 ≤ j ≤ n} ⊂ L̂
is called a partial symplectic expansion up to degree n if

(1) �1(si) = Si, for 1 ≤ i ≤ 2g,
(2) �j(si) ∈ Lj , for 1 ≤ i ≤ 2g, 1 ≤ j ≤ n, and
(3) if we set �̄n(si) =

∑n
j=1 �j(si) for 1 ≤ i ≤ 2g, then

(3.1) �̄n(x1)  �̄n(x2)  · · ·  �̄n(xp) ≡ ω mod T̂n+2.

Here, we understand �̄n(s
−1
i ) = −�̄n(si).

This notion could be thought of as an approximation to a symplectic expansion.
In this section we give a method to refine an approximation up to degree n − 1,
to the one up to degree n. Repeating this process, we will obtain a symplectic
expansion.

We need two lemmas.

Lemma 3.2. Suppose 4g elements Y1, . . . , Y2g, Z1, . . . , Z2g ∈ H satisfy
∑2g

i=1 Yi ⊗
Zi = ω ∈ H⊗2. Then Z1, . . . , Z2g constitute a basis for H.

Proof. Since ω corresponds to −1H ∈ HomQ(H,H) (see §2), for any X ∈ H, we
have

X = ω(−X) =

2g∑
i=1

(−X · Yi)Zi.

This shows that the 2g elements Z1, . . . , Z2g generate H. This proves the lemma.
�

Since π is free, the quotient [π, π]/[π, [π, π]] is naturally isomorphic to Λ2HZ, the
second exterior product of HZ. The isomorphism is induced by the homomorphism
f : [π, π] → Λ2HZ which maps the commutator [x, y] to [x] ∧ [y]. Note that Λ2HZ

is naturally identified with a subgroup of H⊗2 by

Λ2HZ → H⊗2, X ∧ Y �→ X ⊗ Y − Y ⊗X,

and under this identification we have f(ζ) = ω.

Lemma 3.3. Let y1 · · · yq be a word in S and suppose y1 · · · yq lies in the commu-
tator subgroup [π, π]. Then

f(y1 · · · yq) =
1

2

∑
i<j

[yi] ∧ [yj ].

Proof. We may assume q ≥ 2. We prove the lemma by induction on q. The case
q = 2 is trivial. Suppose q > 2. Then there must exist i ≥ 1 such that yi+1 = y−1

1 ,
and

y1 · · · yq = y1y2 · · · yiy−1
1 yi+2 · · · yq = [y1, y2 · · · yi]y2 · · · yiyi+2 · · · yq.
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Hence f(y1 · · · yq) = f([y1, y2 · · · yi]) + f(y2 · · · yiyi+2 · · · yq). The first term equals

[y1] ∧ ([y2] + · · ·+ [yi]) =
1

2
([y1] ∧ ([y2] + · · ·+ [yi]) + ([y2] + · · ·+ [yi]) ∧ [yi+1])

since [y1] = −[yi+1], and the second term equals

1

2

∑
k<�;

k,� �=1,i+1

[yk] ∧ [y�],

by the inductive assumption. This proves the lemma. �

Let Φ: T̂1 → L̂ be the linear map defined by Φ(Y1 ⊗ · · · ⊗ Ym) = [Y1, [· · · [Ym−1,
Ym] · · · ]], Yi ∈ H, m ≥ 1. We have Φ(u) = mu and Φ(uv) = [u,Φ(v)] for any

u ∈ Lm, v ∈ T̂1. See Serre [12], Part I, Theorem 8.1, p. 28. The maps (1/m)Φ|H⊗m

are called the Dynkin idempotents. From these two properties we see that the
restriction of the map

(3.2)
1

m+ 1
(id⊗ Φ): H⊗m+1 → H ⊗ Lm

to Lm+1 gives a right inverse of the bracket [ , ] : H ⊗ Lm � Lm+1.
Let n ≥ 2 and let {�j(si) : 1 ≤ j ≤ n − 1, 1 ≤ i ≤ 2g} be a partial symplectic

expansion up to degree n− 1. We have

(3.3) �̄n−1(x1)  �̄n−1(x2)  · · ·  �̄n−1(xp) ≡ ω mod T̂n+1.

Let Vn+1 ∈ Ln+1 be the degree (n+ 1)-part of �̄n−1(x1)  �̄n−1(x2)  · · ·  �̄n−1(xp).
By Lemma 3.3 we have ω = f(ζ) = f(x1 · · ·xp) =

1
2

∑
i<j Xi ∧Xj =

1
2

∑
i<j(Xi ⊗

Xj −Xj ⊗Xi), where Xi = [xi]. Since S1, . . . , S2g constitute a basis for H, we can
uniquely write
(3.4)

ω =
1

2

∑
i<j

(Xi ⊗Xj −Xj ⊗Xi) =

2g∑
i=1

Si ⊗ Zi, where Zi =
∑
k

cikSk, cik ∈ Z.

Also, in view of applying (3.2) we write Vn+1 ∈ Ln+1 ⊂ H⊗n+1 as

Vn+1 =

2g∑
i=1

Si ⊗ V Si
n , V Si

n ∈ H⊗n.

Now by Lemma 3.2, Z1, . . . , Z2g constitute a basis for H; hence the matrix {cik}i,k
is of full rank. Let {dik}i,k be the inverse matrix of {cik}i,k.

Proposition 3.4. Keep the same notation as above. Set Wi := (−1/(n+1))Φ(V Si
n )

∈ Ln for 1 ≤ i ≤ 2g, and �n(si) :=
∑

k dikWk for 1 ≤ i ≤ 2g. Then {�j(si) : 1 ≤
j ≤ n− 1, 1 ≤ i ≤ 2g} ∪ {�n(si) : 1 ≤ i ≤ 2g} is a partial symplectic expansion up
to degree n.

Proof. Set �̄n(si) = �̄n−1(si) + �n(si). Understanding �n(s
−1
i ) = −�n(si), we have∑p

i=1 �n(xi) = 0 since ζ ∈ [π, π]. Hence we have �̄n(x1)  �̄n(x2)  · · ·  �̄n(xp) ≡
ω mod T̂n+1 from (3.3). By (2.2) we see that the degree (n + 1)-part of �̄n(x1) 
�̄n(x2)  · · ·  �̄n(xp) equals

(3.5) Vn+1 +
1

2

∑
i<j

([Xi, �n(xj)] + [�n(xi), Xj ]).
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Let λ : H → Ln be the linear map defined by λ(Si) = �n(si) and apply the linear
map [id, λ] : H⊗2 → H⊗n+1 to (3.4). Then we obtain

1

2

∑
i<j

([Xi, �n(xj)]− [Xj , �n(xi)]) =

2g∑
i=1

[Si,W
′
i ], W ′

i =
∑
k

cik�n(sk).

But W ′
i =

∑
k

∑
j cikdkjWj = Wi. Hence (3.5) is equal to

Vn+1 +

2g∑
i=1

[Si,Wi] = Vn+1 −
1

n+ 1

2g∑
i=1

[Si,Φ(V
Si
n )] = Vn+1 −

1

n+ 1
Φ(Vn+1) = 0,

since Vn+1 ∈ Ln+1. Therefore, we have �̄n(x1) �̄n(x2) · · · �̄n(xp) ≡ ω mod T̂n+2.
This completes the proof. �

We can now conclude the proof of Theorem 1.1. Denote S = {s1, . . . , s2g} and
set �1(si) := Si, 1 ≤ i ≤ 2g. By the Baker-Campbell-Hausdorff formula (2.2)
and Lemma 3.3, {�1(si)}1≤i≤2g is a partial symplectic expansion up to degree 1.
Applying Proposition 3.4, we obtain {�j(si); 1 ≤ i ≤ 2g, j ≥ 1} satisfying (3.1) for

any n ≥ 1. Setting �S(si) :=
∑∞

j=1 �j(si) ∈ L̂ and θS(si) := exp(�S(si)), we extend

θS to a homomorphism from π using the universality of the free group π. Then θS

is the desired symplectic expansion. Note that the result θS does not depend on
the total ordering on the set S. This completes the proof of Theorem 1.1.

Remark 3.5. For a group-like expansion θ, we denote �θ(x) =
∑∞

j=1 �
θ
j (x), �

θ
j (x) ∈

Lj , for x ∈ π. Proposition 3.4 can be phrased shortly as: a choice of a free
generating set for π gives a canonical way of modifying any group-like expansion θ

satisfying �θ(ζ) ≡ ω mod T̂n+1 for some n ≥ 2 into a group-like expansion satisfying
the same congruence with n + 1 replaced by n + 2, without changing �θj (x), for
1 ≤ j ≤ n− 1.

4. Naturality

Let Aut(π) be the automorphism group of π. For ϕ ∈ Aut(π), let |ϕ| be the

filter-preserving algebra automorphism of T̂ induced by the action of ϕ on the first
homology H. If θ is a Magnus expansion, then the composite |ϕ| ◦ θ ◦ ϕ−1 is again
a Magnus expansion.

We show a naturality of the symplectic expansion θS given in Theorem 1.1. Note
that fatgraph Magnus expansions have a similar property (see [1], Theorem 4.2).

Proposition 4.1. Suppose ϕ ∈ Aut(π) satisfies ϕ(ζ) = ζ, or ϕ(ζ) = ζ−1. Then

θϕ(S) = |ϕ| ◦ θS ◦ ϕ−1.

Proof. Let S = {s1, . . . , s2g}. We shall put S on the upper right of the objects
Vn+1, �j , cik, etc., in the proof of Proposition 3.4 to indicate their dependence on
S.

The equality we are going to prove is equivalent to �ϕ(S)(ϕ(si)) = |ϕ|�S(si), or,
�
ϕ(S)
n (ϕ(si)) = |ϕ|�Sn(si) for any n ≥ 1. We prove this by induction on n. Since

�
ϕ(S)
1 (ϕ(si)) = [ϕ(si)] = |ϕ|[si], the case n = 1 is clear. Suppose n ≥ 2.
First we assume ϕ(ζ) = ζ. Then ϕ(x1) · · ·ϕ(xp) is a word in ϕ(S) representing

ζ, and we have |ϕ|ω = ω since ϕ(ζ) = ζ and the homomorphism f : [π, π] → Λ2HZ
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in §3 is Aut(π)-equivariant. By the inductive assumption, we have �̄
ϕ(S)
n−1 (ϕ(si)) =

|ϕ|�̄Sn−1(si); hence applying |ϕ| to the congruence �̄Sn−1(x1)�̄
S
n−1(x2)· · ·�̄Sn−1(xp)≡

ω + V S
n+1 mod T̂n+2, we obtain V

ϕ(S)
n+1 = |ϕ|V S

n+1. Therefore, writing V
ϕ(S)
n+1 =∑2g

i=1(|ϕ|Si)⊗ V
|ϕ|Si
n , we have V

|ϕ|Si
n = |ϕ|V Si

n .
On the other hand, applying |ϕ| to (3.4), we obtain

ω =

2g∑
i=1

|ϕ|Si ⊗ Z
ϕ(S)
i , Z

ϕ(S)
i =

∑
k

cik|ϕ|Sk.

This implies that c
ϕ(S)
ik = cSik; hence d

ϕ(S)
ik = dSik. We conclude that W

ϕ(S)
i = |ϕ|WS

i

and �
ϕ(S)
n (ϕ(si)) = |ϕ|�Sn(si), as desired.

If ϕ(ζ) = ζ−1, the same argument shows that V
ϕ(S)
n+1 = −|ϕ|V S

n+1 and c
ϕ(S)
ik =

−cSik because in this case ϕ(x1) · · ·ϕ(xp) is a word in ϕ(S) representing ζ−1, and we

have |ϕ|ω = −ω. Hence we again obtain �
ϕ(S)
n (ϕ(si)) = |ϕ|�Sn(si). This completes

the induction. �

5. Symplectic generators

Let S0 = {α1, β1, . . . , αg, βg} be symplectic generators as in §2, and let θ0 = θS0

be the symplectic expansion associated to S0, given by the algorithm of Theo-
rem 1.1. For simplicity we write α1, β1, . . . , αg, βg = ξ1, . . . , ξ2g. Let T ∈ Aut(π)
be the automorphism defined by T (ξi) = ξ2g+1−i, 1 ≤ i ≤ 2g. Then we have
T (ζ) = ζ−1 and T (S0) = S0. By Proposition 4.1, we obtain a certain kind of
symmetry for θ0.

Proposition 5.1. Let θ0 be the symplectic expansion as above. Then

θ0(ξ2g+1−i) = |T |θ0(ξi), 1 ≤ i ≤ 2g.

Finally, we give a more explicit formula for �S0 in a form suitable for computer-
aided calculation. First we give another description of Vn+1 which does not involve
the Baker-Campbell-Hausdorff series. Let n ≥ 2 and let {�j(si) : 1 ≤ j ≤ n−1, 1 ≤
i ≤ 2g} be a partial symplectic expansion up to degree n − 1. Set θ̄n−1(si) :=
exp(�̄n−1(si)) and θ̄n−1(s

−1
i ) := exp(−�̄n−1(si)). From (3.3), we have �̄n−1(x1) 

�̄n−1(x2)· · ·�̄n−1(xp) ≡ ω+Vn+1 mod T̂n+2. Applying the exponential, we obtain

θ̄n−1(x1)θ̄n−1(x2) · · · θ̄n−1(xp) ≡ exp(ω) + Vn+1 mod T̂n+2. Hence

(5.1) Vn+1 =
(
θ̄n−1(x1)θ̄n−1(x2) · · · θ̄n−1(xp)− exp(ω)

)
n+1

,

where the subscript n+1 in the right-hand side means taking the degree (n+1)-part.

Let us consider the case S = S0. Then ζ =
∏g

i=1[αi, βi]. For X,Y ∈ T̂1, by a
direct computation, we have

(5.2) (1 +X)(1 + Y )(1 +X)−1(1 + Y )−1 = 1 +
∑
i,j≥0

(−1)i+j [X,Y ]XiY j .

See Magnus-Karrass-Solitar [10], §5.5, (7a) for a similar formula. Therefore in case
S = S0, (5.1) becomes

Vn+1 =

(
g∏

i=1

G
(
θ̄n−1(αi)− 1, θ̄n−1(βi)− 1

)
− exp(ω)

)
n+1

,
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where G(X,Y ) is the right-hand side of (5.2). From (2.1) and (3.4), we obtain the
following recursive formulas for �S0 :

�S0
n (αi) =

1

n+ 1
Φ(V Bi

n ),

�S0
n (βi) =

−1

n+ 1
Φ(V Ai

n ).

In this way we can effectively compute the terms of �S0(ξi). Here we give the first
few terms of �S0 for g = 1, 2.

Example 5.2 (the case of genus 1). For simplicity, we write α1 = α, β1 = β and

A1 = A, B1 = B. Modulo T̂6, we have

�S0(α) ≡ A+
1

2
[A,B] +

1

12
[B, [B,A]]− 1

8
[A, [A,B]] +

1

24
[A, [A, [A,B]]]

− 1

720
[B, [B, [B, [B,A]]]]− 1

288
[A, [A, [A, [A,B]]]]− 1

288
[A, [B, [B, [B,A]]]]

− 1

288
[B, [A, [A, [A,B]]]] +

1

144
[[A,B],[B, [B,A]]] +

1

128
[[A,B],[A, [A,B]]];

�S0(β) ≡ B − 1

2
[A,B] +

1

12
[A, [A,B]]− 1

8
[B, [B,A]] +

1

24
[B, [B, [B,A]]]

− 1

720
[A, [A, [A, [A,B]]]]− 1

288
[B, [B, [B, [B,A]]]]− 1

288
[B, [A, [A, [A,B]]]]

− 1

288
[A, [B, [B, [B,A]]]]− 1

144
[[A,B], [A, [A,B]]]− 1

128
[[A,B],[B,[B,A]]].

Example 5.3 (the case of genus 2). Modulo T̂5, we have

�S0(α1) ≡ A1 +
1

2
[A1, B1]

+
1

12
[B1, [B1, A1]]−

1

8
[A1, [A1, B1]]−

1

4
[A1, [A2, B2]]

+
1

24
[A1, [A1, [A1, B1]]]−

1

10
[[A1, B1], [A2, B2]] +

1

40
[A1, [B1, [A2, B2]]]

+
1

40
[A1, [B2, [A2, B2]]] +

1

40
[A1, [A1, [A2, B2]]] +

1

40
[A1, [A2, [A2, B2]]];

�S0(β1) ≡ B1 −
1

2
[A1, B1]

+
1

12
[A1, [A1, B1]]−

1

8
[B1, [B1, A1]]−

1

4
[B1, [A2, B2]]

+
1

24
[B1, [B1, [B1, A1]]] +

1

10
[[A1, B1], [A2, B2]] +

1

40
[B1, [A1, [A2, B2]]]

+
1

40
[B1, [A2, [A2, B2]]] +

1

40
[B1, [B1, [A2, B2]]] +

1

40
[B1, [B2, [A2, B2]]];

�S0(α2) ≡ A2 +
1

2
[A2, B2]

+
1

12
[B2, [B2, A2]]−

1

8
[A2, [A2, B2]] +

1

4
[A2, [A1, B1]]

+
1

24
[A2, [A2, [A2, B2]]]−

1

10
[[A1, B1], [A2, B2]]−

1

40
[A2, [B2, [A1, B1]]]

− 1

40
[A2, [B1, [A1, B1]]]−

1

40
[A2, [A2, [A1, B1]]]−

1

40
[A2, [A1, [A1, B1]]];
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�S0(β2) ≡ B2 −
1

2
[A2, B2]

+
1

12
[A2, [A2, B2]]−

1

8
[B2, [B2, A2]] +

1

4
[B2, [A1, B1]]

+
1

24
[B2, [B2, [B2, A2]]] +

1

10
[[A1, B1], [A2, B2]]−

1

40
[B2, [A2, [A1, B1]]]

− 1

40
[B2, [A1, [A1, B1]]]−

1

40
[B2, [B2, [A1, B1]]]−

1

40
[B2, [B1, [A1, B1]]].
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