PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 140, Number 3, March 2012, Pages 1075-1083 S 0002-9939(2011)10951-1 Article electronically published on July 11, 2011

A COMBINATORIAL CONSTRUCTION OF SYMPLECTIC EXPANSIONS

YUSUKE KUNO

(Communicated by Daniel Ruberman)

ABSTRACT. The notion of a symplectic expansion directly relates the topology of a surface to formal symplectic geometry. We give a method to construct a symplectic expansion by solving a recurrence formula given in terms of the Baker-Campbell-Hausdorff series.

1. INTRODUCTION

Let Σ be a compact connected oriented surface of genus g > 0 with one boundary component. Choose a basepoint * on the boundary $\partial \Sigma$ and let $\pi = \pi_1(\Sigma, *)$ be the fundamental group of Σ .

The notion of (generalized) Magnus expansions was introduced by Kawazumi [5] in his study of the mapping class group of a surface. By definition, the mapping class group $\mathcal{M}_{g,1}$ is the group of homomorphisms of Σ fixing $\partial \Sigma$ pointwise, modulo isotopies fixing $\partial \Sigma$ pointwise. The group $\mathcal{M}_{g,1}$ faithfully acts on π , a free group of rank 2g, and it is known as the theorem of Dehn-Nielsen that $\mathcal{M}_{g,1}$ is identified with a subgroup of the automorphism group of a free group:

$$\mathcal{M}_{q,1} = \{ \varphi \in \operatorname{Aut}(\pi); \varphi(\zeta) = \zeta \}.$$

Here, $\zeta \in \pi$ is the element corresponding to the boundary. See §2. By choosing a Magnus expansion, the completed group ring of π (with respect to the augmentation ideal) is identified with the completed tensor algebra generated by the first homology of the surface. In this way we obtain a tensor expression of the action of $\mathcal{M}_{g,1}$ on π . From this point of view, Kawazumi obtained extensions of the Johnson homomorphisms τ_k introduced by Johnson [3], [4]. For details, see [5].

Actually the treatment in [5] is on the automorphism group of a free group, rather than the mapping class group. There are infinitely many Magnus expansions, and the arguments in [5] hold for any Magnus expansions. Recently, Massuyeau [11] introduced the notion of *symplectic expansions*, which are Magnus expansions satisfying a certain kind of boundary condition, which comes from the fact that π has a particular element corresponding to the boundary $\partial \Sigma$. Some nice properties of symplectic expansions are clarified by [7]. In particular, it is shown that there is a Lie algebra homomorphism from the Goldman Lie algebra of Σ

©2011 American Mathematical Society

Received by the editors October 2, 2010 and, in revised form, December 14, 2010.

²⁰¹⁰ Mathematics Subject Classification. Primary 57N05, 20F34.

The author is supported by JSPS Research Fellowships for Young Scientists (22.4810).

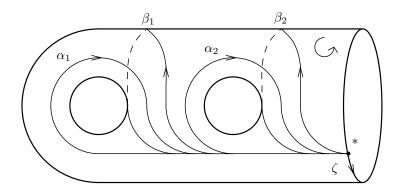


FIGURE 1. Symplectic generators for g = 2

(see Goldman [2]) to "associative", one of the three Lie algebras in formal symplectic geometry by Kontsevich [8], via a symplectic expansion (see [7], Theorem 1.2.1).

Although there are infinitely many symplectic expansions (see [7], Proposition 2.8.1), there are not so many known examples. The boundary condition is too strong to be satisfied. For instance, the fatgraph Magnus expansion given by Bene-Kawazumi-Penner [1] is, unfortunately, not symplectic. Kawazumi [6], §6, first constructed an \mathbb{R} -valued symplectic expansion, called the harmonic Magnus expansion, by a transcendental method. Massuyeau [11], Proposition 5.6, also gave a \mathbb{Q} -valued symplectic expansion using the LMO functor.

The purpose of this paper is to present another construction of symplectic expansions. Our construction is elementary and suitable for computer-aided calculation.

Theorem 1.1. There is an algorithm to construct a symplectic expansion θ^{S} associated to any free generating set S for π .

It should be remarked here that in the proof of the existence of symplectic expansions ([11], Lemma 2.16), Massuyeau already showed how to construct a symplectic expansion degree after degree. Our construction is also inductive, but by using the Dynkin idempotents it fixes the choices that had to be done in the inductive step of [11], Lemma 2.16, hence is canonical. Moreover, our construction works for any free generating set for π whereas [11], Lemma 2.16, only deals with symplectic generators.

In §2, we recall Magnus expansions and symplectic expansions. Theorem 1.1 will be proved in §3. In §4, we show a naturality of our construction under the action of a subgroup of $\operatorname{Aut}(\pi)$ including the mapping class group $\mathcal{M}_{g,1}$. In §5, we discuss the symplectic expansion associated to symplectic generators.

2. Basic notions

We denote by ζ the loop parallel to $\partial \Sigma$ and going in a counterclockwise manner. Explicitly, if we take symplectic generators $\alpha_1, \beta_1, \ldots, \alpha_g, \beta_g \in \pi$ as shown in Figure 1, $\zeta = \prod_{i=1}^{g} [\alpha_i, \beta_i]$. Here our notation for commutators is $[x, y] := xyx^{-1}y^{-1}$.

Let $H_{\mathbb{Z}} := H_1(\Sigma; \mathbb{Z})$ be the first integral homology group of Σ . We denote $H := H_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q}$. $H_{\mathbb{Z}}$ is naturally isomorphic to $\pi/[\pi, \pi]$, the abelianization of π .

With this identification in mind, we denote $[x] := x \mod [\pi, \pi] \in H_{\mathbb{Z}}$, or $[x] := (x \mod [\pi, \pi]) \otimes_{\mathbb{Z}} 1 \in H$, for $x \in \pi$.

Let \widehat{T} be the completed tensor algebra generated by H. Namely $\widehat{T} = \prod_{m=0}^{\infty} H^{\otimes m}$, where $H^{\otimes m}$ is the tensor space of degree m. For each $p \geq 1$, denote $\widehat{T}_p := \prod_{m\geq p}^{\infty} H^{\otimes m}$. Note that the subset $1 + \widehat{T}_1$ constitutes a subgroup of the multiplicative group of the algebra \widehat{T} .

Definition 2.1 (Kawazumi [5]). A map $\theta: \pi \to 1 + \hat{T}_1$ is called a (Q-valued) Magnus expansion if

- (1) $\theta: \pi \to 1 + \widehat{T}_1$ is a group homomorphism, and
- (2) $\theta(x) \equiv 1 + [x] \mod \widehat{T}_2$, for any $x \in \pi$.

The standard Magnus expansion defined by $\theta(s_i) = 1 + [s_i]$, for some free generating set $\{s_i\}_i$ for π , is the simplest example of a Magnus expansion. This is introduced by Magnus [9] and is often used in combinatorial group theory.

Let $\widehat{\mathcal{L}} \subset \widehat{T}$ be the completed free Lie algebra generated by H. The bracket is given by $[u, v] := u \otimes v - v \otimes u$, and its degree p-part $\mathcal{L}_p = \widehat{\mathcal{L}} \cap H^{\otimes p}$ is successively given by $\mathcal{L}_1 = H$ and $\mathcal{L}_p = [H, \mathcal{L}_{p-1}], p \geq 2$. Via the intersection form $(\cdot): H \times H \to \mathbb{Q}$ on Σ , H and its dual $H^* = \operatorname{Hom}_{\mathbb{Q}}(H, \mathbb{Q})$ are canonically identified by the map $H \cong H^*, X \mapsto (Y \mapsto (Y \cdot X))$. Let $\omega \in \mathcal{L}_2 \subset H^{\otimes 2}$ be the symplectic form, namely the tensor corresponding to $-1_H \in \operatorname{Hom}_{\mathbb{Q}}(H, H) = H^* \otimes H = H \otimes H$. Explicitly, if we take symplectic generators as in Figure 1, then $A_i = [\alpha_i]$ and $B_i = [\beta_i]$ satisfy $(A_i \cdot B_j) = -(B_j \cdot A_i) = \delta_{ij}$ and $(A_i \cdot A_j) = (B_i \cdot B_j) = 0$; hence we have

(2.1)
$$\omega = \sum_{i=1}^{g} A_i \otimes B_i - B_i \otimes A_i = \sum_{i=1}^{g} [A_i, B_i].$$

For a Magnus expansion θ , let $\ell^{\theta} := \log \theta$. Here, log is the formal power series

$$\log(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (x-1)^n$$

defined on the set $1 + \hat{T}_1$. The inverse of log is given by the exponential $\exp(x) = \sum_{n=0}^{\infty} (1/n!) x^n$. Note that the Baker-Campbell-Hausdorff formula

$$u \star v := \log(\exp(u)\exp(v)) = u + v + \frac{1}{2}[u,v] + \frac{1}{12}[u-v,[u,v]]$$

2.2)
$$-\frac{1}{24}[u,[v,[u,v]]] + \cdots$$

endows the underlying set of $\widehat{\mathcal{L}}$ with a group structure. A priori, ℓ^{θ} is a map from π to \widehat{T}_1 .

Definition 2.2 (Massuyeau [11]). A Magnus expansion θ is called symplectic if

(1) θ is group-like, i.e., $\ell^{\theta}(\pi) \subset \widehat{\mathcal{L}}$, and

(

(2) $\theta(\zeta) = \exp(\omega)$, or equivalently, $\ell^{\theta}(\zeta) = \omega$.

Remark 2.3. Let $I\pi$ be the augmentation ideal of the group ring $\mathbb{Q}\pi$, and $\widehat{\mathbb{Q}\pi} := \lim_{m \to \infty} \mathbb{Q}\pi / I\pi^m$ the completed group ring of π . Any Magnus expansion θ induces an isomorphism $\theta: \widehat{\mathbb{Q}\pi} \xrightarrow{\cong} \widehat{T}$ of complete augmented algebras. See [5], Theorem 1.3. Moreover, let $\langle \zeta \rangle$ be the cyclic subgroup of π generated by ζ , and $\mathbb{Q}[[\omega]]$ the ring

YUSUKE KUNO

of formal power series in the symplectic form ω , which is regarded as a subalgebra of T in an obvious way. Then any symplectic expansion θ induces an isomorphism $\theta: (\widehat{\mathbb{Q}\pi}, \widehat{\mathbb{Q}\langle\zeta\rangle}) \to (\widehat{T}, \mathbb{Q}[[\omega]])$ of complete Hopf algebras. See [7], §6.2.

3. Main construction

We fix a free generating set $S = \{s_1, \ldots, s_{2q}\}$ for π . We denote $S_i := [s_i] \in H$, $1 \leq i \leq 2g$. Let $x_1 x_2 \cdots x_p$ be the unique reduced word in \mathcal{S} representing ζ .

Definition 3.1. Fix an integer $n \ge 1$. A set $\{\ell_j(s_i) : 1 \le i \le 2g, 1 \le j \le n\} \subset \widehat{\mathcal{L}}$ is called a partial symplectic expansion up to degree n if

- (1) $\ell_1(s_i) = S_i$, for $1 \le i \le 2g$,
- (2) $\ell_j(s_i) \in \mathcal{L}_j$, for $1 \le i \le 2g$, $1 \le j \le n$, and (3) if we set $\overline{\ell}_n(s_i) = \sum_{j=1}^n \ell_j(s_i)$ for $1 \le i \le 2g$, then

(3.1)
$$\bar{\ell}_n(x_1) \star \bar{\ell}_n(x_2) \star \cdots \star \bar{\ell}_n(x_p) \equiv \omega \mod \widehat{T}_{n+2}.$$

Here, we understand $\bar{\ell}_n(s_i^{-1}) = -\bar{\ell}_n(s_i)$.

This notion could be thought of as an approximation to a symplectic expansion. In this section we give a method to refine an approximation up to degree n-1, to the one up to degree n. Repeating this process, we will obtain a symplectic expansion.

We need two lemmas.

Lemma 3.2. Suppose 4g elements $Y_1, \ldots, Y_{2g}, Z_1, \ldots, Z_{2g} \in H$ satisfy $\sum_{i=1}^{2g} Y_i \otimes Z_i = \omega \in H^{\otimes 2}$. Then Z_1, \ldots, Z_{2g} constitute a basis for H.

Proof. Since ω corresponds to $-1_H \in \operatorname{Hom}_{\mathbb{Q}}(H, H)$ (see §2), for any $X \in H$, we have

$$X = \omega(-X) = \sum_{i=1}^{2g} (-X \cdot Y_i) Z_i.$$

This shows that the 2g elements Z_1, \ldots, Z_{2g} generate H. This proves the lemma. \square

Since π is free, the quotient $[\pi, \pi]/[\pi, [\pi, \pi]]$ is naturally isomorphic to $\Lambda^2 H_{\mathbb{Z}}$, the second exterior product of $H_{\mathbb{Z}}$. The isomorphism is induced by the homomorphism $f \colon [\pi,\pi] \to \Lambda^2 H_{\mathbb{Z}}$ which maps the commutator [x,y] to $[x] \wedge [y]$. Note that $\Lambda^2 H_{\mathbb{Z}}$ is naturally identified with a subgroup of $H^{\otimes 2}$ by

$$\Lambda^2 H_{\mathbb{Z}} \to H^{\otimes 2}, \ X \wedge Y \mapsto X \otimes Y - Y \otimes X,$$

and under this identification we have $f(\zeta) = \omega$.

Lemma 3.3. Let $y_1 \cdots y_q$ be a word in S and suppose $y_1 \cdots y_q$ lies in the commutator subgroup $[\pi, \pi]$. Then

$$f(y_1 \cdots y_q) = \frac{1}{2} \sum_{i < j} [y_i] \wedge [y_j].$$

Proof. We may assume $q \ge 2$. We prove the lemma by induction on q. The case q = 2 is trivial. Suppose q > 2. Then there must exist $i \ge 1$ such that $y_{i+1} = y_1^{-1}$, and

$$y_1 \cdots y_q = y_1 y_2 \cdots y_i y_1^{-1} y_{i+2} \cdots y_q = [y_1, y_2 \cdots y_i] y_2 \cdots y_i y_{i+2} \cdots y_q.$$

Hence $f(y_1 \cdots y_q) = f([y_1, y_2 \cdots y_i]) + f(y_2 \cdots y_i y_{i+2} \cdots y_q)$. The first term equals $[y_1] \wedge ([y_2] + \cdots + [y_i]) = \frac{1}{2} ([y_1] \wedge ([y_2] + \cdots + [y_i]) + ([y_2] + \cdots + [y_i]) \wedge [y_{i+1}])$

since $[y_1] = -[y_{i+1}]$, and the second term equals

$$\frac{1}{2} \sum_{\substack{k < \ell; \\ k, \ell \neq 1, i+1}} [y_k] \wedge [y_\ell]$$

by the inductive assumption. This proves the lemma.

Let $\Phi: \widehat{T}_1 \to \widehat{\mathcal{L}}$ be the linear map defined by $\Phi(Y_1 \otimes \cdots \otimes Y_m) = [Y_1, [\cdots | Y_{m-1}, Y_m] \cdots]]$, $Y_i \in H$, $m \geq 1$. We have $\Phi(u) = mu$ and $\Phi(uv) = [u, \Phi(v)]$ for any $u \in \mathcal{L}_m, v \in \widehat{T}_1$. See Serre [12], Part I, Theorem 8.1, p. 28. The maps $(1/m)\Phi|_{H^{\otimes m}}$ are called *the Dynkin idempotents*. From these two properties we see that the restriction of the map

(3.2)
$$\frac{1}{m+1} (\mathrm{id} \otimes \Phi) \colon H^{\otimes m+1} \to H \otimes \mathcal{L}_m$$

to \mathcal{L}_{m+1} gives a right inverse of the bracket $[,]: H \otimes \mathcal{L}_m \twoheadrightarrow \mathcal{L}_{m+1}$.

Let $n \ge 2$ and let $\{\ell_j(s_i) : 1 \le j \le n-1, 1 \le i \le 2g\}$ be a partial symplectic expansion up to degree n-1. We have

(3.3)
$$\bar{\ell}_{n-1}(x_1) \star \bar{\ell}_{n-1}(x_2) \star \cdots \star \bar{\ell}_{n-1}(x_p) \equiv \omega \mod \widehat{T}_{n+1}.$$

Let $V_{n+1} \in \mathcal{L}_{n+1}$ be the degree (n+1)-part of $\ell_{n-1}(x_1) \star \ell_{n-1}(x_2) \star \cdots \star \ell_{n-1}(x_p)$. By Lemma 3.3 we have $\omega = f(\zeta) = f(x_1 \cdots x_p) = \frac{1}{2} \sum_{i < j} X_i \wedge X_j = \frac{1}{2} \sum_{i < j} (X_i \otimes X_j - X_j \otimes X_i)$, where $X_i = [x_i]$. Since S_1, \ldots, S_{2g} constitute a basis for H, we can uniquely write

$$\omega = \frac{1}{2} \sum_{i < j} (X_i \otimes X_j - X_j \otimes X_i) = \sum_{i=1}^{2g} S_i \otimes Z_i, \quad \text{where } Z_i = \sum_k c_{ik} S_k, \quad c_{ik} \in \mathbb{Z}.$$

Also, in view of applying (3.2) we write $V_{n+1} \in \mathcal{L}_{n+1} \subset H^{\otimes n+1}$ as

$$V_{n+1} = \sum_{i=1}^{2g} S_i \otimes V_n^{S_i}, \quad V_n^{S_i} \in H^{\otimes n}.$$

Now by Lemma 3.2, Z_1, \ldots, Z_{2g} constitute a basis for H; hence the matrix $\{c_{ik}\}_{i,k}$ is of full rank. Let $\{d_{ik}\}_{i,k}$ be the inverse matrix of $\{c_{ik}\}_{i,k}$.

Proposition 3.4. Keep the same notation as above. Set $W_i := (-1/(n+1))\Phi(V_n^{S_i}) \in \mathcal{L}_n$ for $1 \le i \le 2g$, and $\ell_n(s_i) := \sum_k d_{ik}W_k$ for $1 \le i \le 2g$. Then $\{\ell_j(s_i) : 1 \le j \le n-1, 1 \le i \le 2g\} \cup \{\ell_n(s_i) : 1 \le i \le 2g\}$ is a partial symplectic expansion up to degree n.

Proof. Set $\bar{\ell}_n(s_i) = \bar{\ell}_{n-1}(s_i) + \ell_n(s_i)$. Understanding $\ell_n(s_i^{-1}) = -\ell_n(s_i)$, we have $\sum_{i=1}^p \ell_n(x_i) = 0$ since $\zeta \in [\pi, \pi]$. Hence we have $\bar{\ell}_n(x_1) \star \bar{\ell}_n(x_2) \star \cdots \star \bar{\ell}_n(x_p) \equiv \omega \mod \widehat{T}_{n+1}$ from (3.3). By (2.2) we see that the degree (n+1)-part of $\bar{\ell}_n(x_1) \star \bar{\ell}_n(x_2) \star \cdots \star \bar{\ell}_n(x_p)$ equals

(3.5)
$$V_{n+1} + \frac{1}{2} \sum_{i < j} ([X_i, \ell_n(x_j)] + [\ell_n(x_i), X_j]).$$

Let $\lambda: H \to \mathcal{L}_n$ be the linear map defined by $\lambda(S_i) = \ell_n(s_i)$ and apply the linear map $[\mathrm{id}, \lambda]: H^{\otimes 2} \to H^{\otimes n+1}$ to (3.4). Then we obtain

$$\frac{1}{2}\sum_{i< j}([X_i, \ell_n(x_j)] - [X_j, \ell_n(x_i)]) = \sum_{i=1}^{2g} [S_i, W_i'], \quad W_i' = \sum_k c_{ik}\ell_n(s_k).$$

But $W'_i = \sum_k \sum_j c_{ik} d_{kj} W_j = W_i$. Hence (3.5) is equal to

$$V_{n+1} + \sum_{i=1}^{2g} [S_i, W_i] = V_{n+1} - \frac{1}{n+1} \sum_{i=1}^{2g} [S_i, \Phi(V_n^{S_i})] = V_{n+1} - \frac{1}{n+1} \Phi(V_{n+1}) = 0,$$

since $V_{n+1} \in \mathcal{L}_{n+1}$. Therefore, we have $\bar{\ell}_n(x_1) \star \bar{\ell}_n(x_2) \star \cdots \star \bar{\ell}_n(x_p) \equiv \omega \mod \widehat{T}_{n+2}$. This completes the proof.

We can now conclude the proof of Theorem 1.1. Denote $S = \{s_1, \ldots, s_{2g}\}$ and set $\ell_1(s_i) := S_i$, $1 \le i \le 2g$. By the Baker-Campbell-Hausdorff formula (2.2) and Lemma 3.3, $\{\ell_1(s_i)\}_{1\le i\le 2g}$ is a partial symplectic expansion up to degree 1. Applying Proposition 3.4, we obtain $\{\ell_j(s_i); 1\le i\le 2g, j\ge 1\}$ satisfying (3.1) for any $n\ge 1$. Setting $\ell^S(s_i) := \sum_{j=1}^{\infty} \ell_j(s_i) \in \widehat{\mathcal{L}}$ and $\theta^S(s_i) := \exp(\ell^S(s_i))$, we extend θ^S to a homomorphism from π using the universality of the free group π . Then θ^S is the desired symplectic expansion. Note that the result θ^S does not depend on the total ordering on the set S. This completes the proof of Theorem 1.1.

Remark 3.5. For a group-like expansion θ , we denote $\ell^{\theta}(x) = \sum_{j=1}^{\infty} \ell_{j}^{\theta}(x), \ \ell_{j}^{\theta}(x) \in \mathcal{L}_{j}$, for $x \in \pi$. Proposition 3.4 can be phrased shortly as: a choice of a free generating set for π gives a canonical way of modifying any group-like expansion θ satisfying $\ell^{\theta}(\zeta) \equiv \omega \mod \widehat{T}_{n+1}$ for some $n \geq 2$ into a group-like expansion satisfying the same congruence with n + 1 replaced by n + 2, without changing $\ell_{j}^{\theta}(x)$, for $1 \leq j \leq n-1$.

4. NATURALITY

Let $\operatorname{Aut}(\pi)$ be the automorphism group of π . For $\varphi \in \operatorname{Aut}(\pi)$, let $|\varphi|$ be the filter-preserving algebra automorphism of \widehat{T} induced by the action of φ on the first homology H. If θ is a Magnus expansion, then the composite $|\varphi| \circ \theta \circ \varphi^{-1}$ is again a Magnus expansion.

We show a naturality of the symplectic expansion θ^{S} given in Theorem 1.1. Note that fatgraph Magnus expansions have a similar property (see [1], Theorem 4.2).

Proposition 4.1. Suppose $\varphi \in \operatorname{Aut}(\pi)$ satisfies $\varphi(\zeta) = \zeta$, or $\varphi(\zeta) = \zeta^{-1}$. Then $\theta^{\varphi(S)} = |\varphi| \circ \theta^S \circ \varphi^{-1}$.

Proof. Let $S = \{s_1, \ldots, s_{2g}\}$. We shall put S on the upper right of the objects $V_{n+1}, \ell_j, c_{ik}, \text{ etc.}, \text{ in the proof of Proposition 3.4 to indicate their dependence on <math>S$.

The equality we are going to prove is equivalent to $\ell^{\varphi(\mathcal{S})}(\varphi(s_i)) = |\varphi|\ell^{\mathcal{S}}(s_i)$, or, $\ell_n^{\varphi(\mathcal{S})}(\varphi(s_i)) = |\varphi|\ell_n^{\mathcal{S}}(s_i)$ for any $n \ge 1$. We prove this by induction on n. Since $\ell_1^{\varphi(\mathcal{S})}(\varphi(s_i)) = [\varphi(s_i)] = |\varphi|[s_i]$, the case n = 1 is clear. Suppose $n \ge 2$.

First we assume $\varphi(\zeta) = \zeta$. Then $\varphi(x_1) \cdots \varphi(x_p)$ is a word in $\varphi(\mathcal{S})$ representing ζ , and we have $|\varphi|\omega = \omega$ since $\varphi(\zeta) = \zeta$ and the homomorphism $f : [\pi, \pi] \to \Lambda^2 H_{\mathbb{Z}}$

1081

in §3 is Aut(π)-equivariant. By the inductive assumption, we have $\bar{\ell}_{n-1}^{\varphi(S)}(\varphi(s_i)) = |\varphi|\bar{\ell}_{n-1}^S(s_i)$; hence applying $|\varphi|$ to the congruence $\bar{\ell}_{n-1}^S(x_1)\star\bar{\ell}_{n-1}^S(x_2)\star\cdots\star\bar{\ell}_{n-1}^S(x_p) \equiv \omega + V_{n+1}^S \mod \hat{T}_{n+2}$, we obtain $V_{n+1}^{\varphi(S)} = |\varphi|V_{n+1}^S$. Therefore, writing $V_{n+1}^{\varphi(S)} = \sum_{i=1}^{2g} (|\varphi|S_i) \otimes V_n^{|\varphi|S_i}$, we have $V_n^{|\varphi|S_i} = |\varphi|V_n^S$.

On the other hand, applying $|\varphi|$ to (3.4), we obtain

$$\omega = \sum_{i=1}^{2g} |\varphi| S_i \otimes Z_i^{\varphi(\mathcal{S})}, \quad Z_i^{\varphi(\mathcal{S})} = \sum_k c_{ik} |\varphi| S_k.$$

This implies that $c_{ik}^{\varphi(S)} = c_{ik}^S$; hence $d_{ik}^{\varphi(S)} = d_{ik}^S$. We conclude that $W_i^{\varphi(S)} = |\varphi| W_i^S$ and $\ell_n^{\varphi(S)}(\varphi(s_i)) = |\varphi| \ell_n^S(s_i)$, as desired.

If $\varphi(\zeta) = \zeta^{-1}$, the same argument shows that $V_{n+1}^{\varphi(S)} = -|\varphi|V_{n+1}^{S}$ and $c_{ik}^{\varphi(S)} = -c_{ik}^{S}$ because in this case $\varphi(x_1) \cdots \varphi(x_p)$ is a word in $\varphi(S)$ representing ζ^{-1} , and we have $|\varphi|\omega = -\omega$. Hence we again obtain $\ell_n^{\varphi(S)}(\varphi(s_i)) = |\varphi|\ell_n^{S}(s_i)$. This completes the induction.

5. Symplectic generators

Let $S_0 = \{\alpha_1, \beta_1, \ldots, \alpha_g, \beta_g\}$ be symplectic generators as in §2, and let $\theta^0 = \theta^{S_0}$ be the symplectic expansion associated to S_0 , given by the algorithm of Theorem 1.1. For simplicity we write $\alpha_1, \beta_1, \ldots, \alpha_g, \beta_g = \xi_1, \ldots, \xi_{2g}$. Let $T \in \operatorname{Aut}(\pi)$ be the automorphism defined by $T(\xi_i) = \xi_{2g+1-i}, 1 \leq i \leq 2g$. Then we have $T(\zeta) = \zeta^{-1}$ and $T(S^0) = S^0$. By Proposition 4.1, we obtain a certain kind of symmetry for θ^0 .

Proposition 5.1. Let θ^0 be the symplectic expansion as above. Then

$$\theta^0(\xi_{2g+1-i}) = |T|\theta^0(\xi_i), \quad 1 \le i \le 2g.$$

Finally, we give a more explicit formula for ℓ^{S_0} in a form suitable for computeraided calculation. First we give another description of V_{n+1} which does not involve the Baker-Campbell-Hausdorff series. Let $n \geq 2$ and let $\{\ell_j(s_i) : 1 \leq j \leq n-1, 1 \leq i \leq 2g\}$ be a partial symplectic expansion up to degree n-1. Set $\bar{\theta}_{n-1}(s_i) := \exp(\bar{\ell}_{n-1}(s_i))$ and $\bar{\theta}_{n-1}(s_i^{-1}) := \exp(-\bar{\ell}_{n-1}(s_i))$. From (3.3), we have $\bar{\ell}_{n-1}(x_1) \star \bar{\ell}_{n-1}(x_2) \star \cdots \star \bar{\ell}_{n-1}(x_p) \equiv \omega + V_{n+1} \mod \hat{T}_{n+2}$. Applying the exponential, we obtain $\bar{\theta}_{n-1}(x_1)\bar{\theta}_{n-1}(x_2) \cdots \bar{\theta}_{n-1}(x_p) \equiv \exp(\omega) + V_{n+1} \mod \hat{T}_{n+2}$. Hence

(5.1)
$$V_{n+1} = \left(\bar{\theta}_{n-1}(x_1)\bar{\theta}_{n-1}(x_2)\cdots\bar{\theta}_{n-1}(x_p) - \exp(\omega)\right)_{n+1}$$

where the subscript n+1 in the right-hand side means taking the degree (n+1)-part.

Let us consider the case $\mathcal{S} = \mathcal{S}_0$. Then $\zeta = \prod_{i=1}^g [\alpha_i, \beta_i]$. For $X, Y \in \widehat{T}_1$, by a direct computation, we have

(5.2)
$$(1+X)(1+Y)(1+X)^{-1}(1+Y)^{-1} = 1 + \sum_{i,j\geq 0} (-1)^{i+j} [X,Y] X^i Y^j.$$

See Magnus-Karrass-Solitar [10], §5.5, (7a) for a similar formula. Therefore in case $S = S_0$, (5.1) becomes

$$V_{n+1} = \left(\prod_{i=1}^{g} G\left(\bar{\theta}_{n-1}(\alpha_{i}) - 1, \bar{\theta}_{n-1}(\beta_{i}) - 1\right) - \exp(\omega)\right)_{n+1},$$

where G(X, Y) is the right-hand side of (5.2). From (2.1) and (3.4), we obtain the following recursive formulas for ℓ^{S_0} :

$$\begin{split} \ell_n^{\mathcal{S}_0}(\alpha_i) &= \frac{1}{n+1} \Phi(V_n^{B_i}), \\ \ell_n^{\mathcal{S}_0}(\beta_i) &= \frac{-1}{n+1} \Phi(V_n^{A_i}). \end{split}$$

In this way we can effectively compute the terms of $\ell^{S_0}(\xi_i)$. Here we give the first few terms of ℓ^{S_0} for g = 1, 2.

Example 5.2 (the case of genus 1). For simplicity, we write $\alpha_1 = \alpha$, $\beta_1 = \beta$ and $A_1 = A$, $B_1 = B$. Modulo \hat{T}_6 , we have

$$\begin{split} \ell^{\mathcal{S}_{0}}(\alpha) &\equiv A + \frac{1}{2}[A, B] + \frac{1}{12}[B, [B, A]] - \frac{1}{8}[A, [A, B]] + \frac{1}{24}[A, [A, [A, B]]] \\ &- \frac{1}{720}[B, [B, [B, [B, A]]]] - \frac{1}{288}[A, [A, [A, [A, B]]]] - \frac{1}{288}[A, [B, [B, [B, A]]]] \\ &- \frac{1}{288}[B, [A, [A, [A, B]]]] + \frac{1}{144}[[A, B], [B, [B, A]]] + \frac{1}{128}[[A, B], [A, [A, B]]]; \\ \ell^{\mathcal{S}_{0}}(\beta) &\equiv B - \frac{1}{2}[A, B] + \frac{1}{12}[A, [A, B]] - \frac{1}{8}[B, [B, A]] + \frac{1}{24}[B, [B, [B, A]]] \\ &- \frac{1}{720}[A, [A, [A, [A, B]]]] - \frac{1}{288}[B, [B, [B, A]]] + \frac{1}{24}[B, [B, [B, A]]] \\ &- \frac{1}{288}[A, [B, [B, [B, A]]]] - \frac{1}{144}[[A, B], [A, [A, B]]] - \frac{1}{128}[[A, B], [B, [B, A]]] \\ &- \frac{1}{288}[A, [B, [B, [B, A]]]] - \frac{1}{144}[[A, B], [A, [A, B]]] - \frac{1}{128}[[A, B], [B, [B, A]]]. \end{split}$$

Example 5.3 (the case of genus 2). Modulo \widehat{T}_5 , we have

$$\begin{split} \ell^{\mathcal{S}_{0}}(\alpha_{1}) &\equiv A_{1} + \frac{1}{2}[A_{1}, B_{1}] \\ &+ \frac{1}{12}[B_{1}, [B_{1}, A_{1}]] - \frac{1}{8}[A_{1}, [A_{1}, B_{1}]] - \frac{1}{4}[A_{1}, [A_{2}, B_{2}]] \\ &+ \frac{1}{24}[A_{1}, [A_{1}, [A_{1}, B_{1}]]] - \frac{1}{10}[[A_{1}, B_{1}], [A_{2}, B_{2}]] + \frac{1}{40}[A_{1}, [B_{1}, [A_{2}, B_{2}]]] \\ &+ \frac{1}{24}[A_{1}, [B_{2}, [A_{2}, B_{2}]]] + \frac{1}{40}[A_{1}, [A_{1}, [A_{2}, B_{2}]]] + \frac{1}{40}[A_{1}, [A_{2}, [A_{2}, B_{2}]]]] \\ &+ \frac{1}{40}[A_{1}, [B_{2}, [A_{2}, B_{2}]]] + \frac{1}{40}[A_{1}, [A_{1}, [A_{2}, B_{2}]]] + \frac{1}{40}[A_{1}, [A_{2}, [A_{2}, B_{2}]]]] \\ &+ \frac{1}{12}[A_{1}, [A_{1}, B_{1}]] - \frac{1}{8}[B_{1}, [B_{1}, A_{1}]] - \frac{1}{4}[B_{1}, [A_{2}, B_{2}]] \\ &+ \frac{1}{24}[B_{1}, [B_{1}, [B_{1}, A_{1}]]] + \frac{1}{10}[[A_{1}, B_{1}], [A_{2}, B_{2}]] + \frac{1}{40}[B_{1}, [A_{1}, [A_{2}, B_{2}]]] \\ &+ \frac{1}{40}[B_{1}, [A_{2}, [A_{2}, B_{2}]]] + \frac{1}{40}[B_{1}, [B_{1}, [B_{2}, [A_{2}, B_{2}]]]] \\ &+ \frac{1}{12}[B_{2}, [B_{2}, A_{2}]] - \frac{1}{8}[A_{2}, [A_{2}, B_{2}]] + \frac{1}{4}[A_{2}, [A_{1}, B_{1}]] \\ &+ \frac{1}{24}[A_{2}, [A_{2}, [A_{2}, B_{2}]]] - \frac{1}{10}[[A_{1}, B_{1}], [A_{2}, B_{2}]] - \frac{1}{40}[A_{2}, [B_{2}, [A_{1}, B_{1}]]] \\ &- \frac{1}{40}[A_{2}, [B_{1}, [A_{1}, B_{1}]]] - \frac{1}{40}[A_{2}, [A_{2}, [A_{1}, B_{1}]]] - \frac{1}{40}[A_{2}, [A_{2}, [A_{1}, B_{1}]]] - \frac{1}{40}[A_{2},$$

$$\begin{split} \ell^{\mathcal{S}_{0}}(\beta_{2}) &\equiv B_{2} - \frac{1}{2}[A_{2}, B_{2}] \\ &+ \frac{1}{12}[A_{2}, [A_{2}, B_{2}]] - \frac{1}{8}[B_{2}, [B_{2}, A_{2}]] + \frac{1}{4}[B_{2}, [A_{1}, B_{1}]] \\ &+ \frac{1}{24}[B_{2}, [B_{2}, [B_{2}, A_{2}]]] + \frac{1}{10}[[A_{1}, B_{1}], [A_{2}, B_{2}]] - \frac{1}{40}[B_{2}, [A_{2}, [A_{1}, B_{1}]]] \\ &- \frac{1}{40}[B_{2}, [A_{1}, [A_{1}, B_{1}]]] - \frac{1}{40}[B_{2}, [B_{2}, [A_{1}, B_{1}]]] - \frac{1}{40}[B_{2}, [B_{1}, [A_{1}, B_{1}]]]. \end{split}$$

Acknowledgments

The author wishes to express his gratitude to Alex Bene, who kindly suggested to him to extend the construction for not necessarily symplectic generators; Nariya Kawazumi for communicating to him a proof of a symmetry property of θ^0 ; and Robert Penner for warm comments on a rough draft of this paper. He also would like to thank Shigeyuki Morita and Masatoshi Sato for valuable comments.

References

- A. J. Bene, N. Kawazumi, and R. C. Penner, Canonical extensions of the Johnson homomorphisms to the Torelli groupoid, Adv. Math. 221, 627–659 (2009). MR2508933 (2010b:32015)
- W. M. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85, 263–302 (1986). MR846929 (87j:32069)
- 3. D. Johnson, An abelian quotient of the mapping class group \mathcal{I}_g , Math. Ann. **249**, 225–242 (1980). MR579103 (82a:57008)
- D. Johnson, A survey of the Torelli group, Contemporary Math. 20, 165–179, Amer. Math. Soc., Providence, RI (1983). MR718141 (85d:57009)
- N. Kawazumi, Cohomological aspects of Magnus expansions, preprint, math.GT/0505497 (2005).
- N. Kawazumi, Harmonic Magnus expansion on the universal family of Riemann surfaces, preprint, math.GT/0603158 (2006).
- 7. N. Kawazumi and Y. Kuno, The logarithms of Dehn twists, preprint, arXiv:1008.5017 (2010).
- M. Kontsevich, Formal (non)-commutative symplectic geometry, in: "The Gel'fand Mathematical Seminars, 1990-1992", Birkhäuser, Boston, 173–187 (1993). MR1247289 (94i:58212)
- W. Magnus, Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring, Math. Ann. 111, 259–280 (1935). MR1512992
- W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory, Dover, New York (1976). MR0422434 (54:10423)
- G. Massuyeau, Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant, preprint, arXiv:0809.4629 (2008).
- J. -P. Serre, Lie algebras and Lie groups, Lecture Notes in Mathematics 1500, Springer-Verlag, Berlin (2006). MR2179691 (2006e:17001)

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, HIROSHIMA UNIVERSITY, 1-3-1 KAGAMIYAMA, HIGASHI-HIROSHIMA, HIROSHIMA 739-8526, JAPAN

E-mail address: kunotti@hiroshima-u.ac.jp