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Abstract. The Legendre-Stirling numbers were discovered in 2002 as a result of a problem in-
volving the spectral theory of powers of the classical second-order Legendre di¤erential expression.
Speci�cally, these numbers are the coe¢ cients of integral composite powers of the Legendre expres-
sion in Lagrangian symmetric form. Quite remarkably, they share many similar properties with the
classical Stirling numbers of the second kind which, as shown in [9], are the coe¢ cients of integral
powers of the Laguerre di¤erential expression. An open question, regarding the Legendre-Stirling
numbers, has been to obtain a combinatorial interpretation of these numbers. In this paper, we
provide such an interpretation.

1. Introduction

The Legendre-Stirling numbers fPS(j)n g were �rst discovered (see [7]) as a result of an application
of left-de�nite operator theory to the classical second-order Legendre di¤erential equation

(1.1) `k[y](x) := �((1� x2)y0(x))0 + ky(x) = �y(x) (x 2 (�1; 1)):

Here, k is a �xed, non-negative constant. In most special functions settings, we take k = 0; for
operator-theoretic purposes, it is sometimes useful to have k > 0 and we can do so, without loss of
generality, since we can negate the additional term ky by also including it as part of the spectral
term �y: The classical (�rst) left-de�nite setting for this expression is in the Sobolev space

H = ff : (�1; 1)! C j f 2 ACloc(�1; 1); f;
p
1� x2f 0 2 L2(�1; 1)g;

with inner product

(f; g) =

Z 1

�1

�
(1� x2)f 0(x)g0(x) + kf(x)g(x)

�
dx (f; g 2 H);

notice that this inner product (when k > 0) is generated from the left-hand side of (1.1), prompting
the notation �left-de�nite�. Left-de�nite theory has its origins in di¤erential equations and can be
traced back to some fundamental work of Weyl in [13]. Questions about the existence of symmetric
or self-adjoint operators, generated by (1.1), in H and about their spectral properties are the central
issues in a left-de�nite analysis of the Legendre di¤erential expression. This left-de�nite study of
(1.1) in H was initiated by Pleijel in a series of papers [11] and [12] and further studied by Everitt
in [5]. Speci�cally, these authors sought a self-adjoint operator in H, generated by (1.1), that has
the Legendre polynomials fPmg1m=0 as (orthogonal) eigenfunctions in H:
In [9], Littlejohn and Wellman generalized left-de�nite theory from its traditional roots in di¤er-

ential equations to a more abstract setting, namely to arbitrary self-adjoint operators A that are
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bounded below in a Hilbert space (H; (�; �)) by a positive constant k; that is to say,
(Ax; x) � k(x; x) (x 2 D(A)):

They show that the appropriate (�rst) left-de�nite setting for such operators is the Hilbert space
H1 = D(A1=2) endowed with the inner product

(f; g)1 = (A
1=2f;A1=2g) (f; g 2 H1):

Moreover, using the Hilbert space spectral theorem, they prove that there is, in fact, a continuum
of left-de�nite spaces f(Hr; (�; �)r)gr>0 associated with the pair (H;A); these spaces are explicitly
given by

Hr = D(Ar=2)
with corresponding inner products

(1.2) (f; g)r = (A
r=2f;Ar=2g) (f; g 2 Hr):

In practice, unless the spectral resolution of the identity is explicitly known for the self-adjoint
operator A; it is di¢ cult to determine Hr for every r > 0: However, as the authors show in [9]
(see also [3], [6], [7], and [8]), it is possible to compute these spaces and inner products for several
well-known self-adjoint operators for each positive integer r: Indeed, for f 2 D(Ar) � D(Ar=2) and
g 2 D(Ar=2); the self-adjointness of Ar=2 yields

(f; g)r = (A
rf; g):

Consequently, the rth left-de�nite inner product, as well as the rth left-de�nite spaceHr; is generated
by the rth power of A:In particular, when A is generated by a di¤erential expression `[�]; like (1.1),
this means that knowing the explicit form of the rth power of `[�] is necessary in order to �nd both
the rth left-de�nite space and the rth left-de�nite inner product. It is precisely these integral powers
of the Legendre expression that involves the Legendre-Stirling numbers.
The contents of this paper are as follows. In Section 2, we discuss the integral powers of the

Legendre expression `[�] and brie�y introduce the Legendre-Stirling numbers from the context of
left-de�nite theory. As a means of comparison, we also discuss the classical Stirling numbers
of the second kind in Section 2; these combinatorial numbers are well known and we discuss a
relatively new result involving these numbers and the powers of the classical second-order Laguerre
di¤erential expression. In Section 3, we compare various properties of the classical Stirling numbers
of the section kind with the Legendre-Stirling numbers; as we will see, these two sets of numbers are
similar in many ways. One such property - the triangular recurrence relation (TRR) - is paramount
in establishing a combinatorial interpretation of the Legendre-Stirling numbers so we prove the
TRR for the Legendre-Stirling numbers in Section 3. In Section 4, we derive our combinatorial
interpretation of the Legendre-Stirling numbers and illustrate this result with several examples.

2. Background

In [7], the authors prove the following result which is the key prerequisite to establishing the left-
de�nite theory of the Legendre di¤erential expression; it is in this result that the Legendre-Stirling
numbers are �rst introduced.

Theorem 2.1. Let n 2 N: The nth composite power of the Legendre di¤erential expression (1.1);
in Lagrangian symmetric form, is given by

(2.1) `nk [y](x) =
nX
j=0

(�1)j
�
aj(n; k)(1� x2)(j)y(j)(x)

�(j)
(x 2 (�1; 1));



COMBINATORICS OF LEGENDRE-STIRLING NUMBERS 3

where the coe¢ cients aj(n; k) (j = 0; 1; : : : n) are non-negative and given by

a0(n; k) =

�
0 if k = 0
kn if k > 0;

and aj(n; k) :=

(
PS

(j)
n if k = 0Pn�j
r=0

�
n
r

�
PS

(j)
n�rk

r if k > 0
(j 2 f1; : : : ; ng);

moreover, for n; j 2 N; each PS(j)n is positive and given by

(2.2) PS(j)n =

jX
m=1

(�1)m+j (2m+ 1)(m
2 +m)n

(m+ j + 1)!(j �m)! :

In particular,

`n0 [y](x) =
nX
j=1

(�1)j
�
PS(j)n (1� x2)(j)y(j)(x)

�(j)
(x 2 (�1; 1)):

Furthermore, PS(j)n is the coe¢ cient of xn�j in the Taylor series expansion of

(2.3) fj(x) =

jY
m=0

1

1�m(m+ 1)x

�
jxj < 1

j(j + 1)

�
:

We call the numbers fPS(j)n g the Legendre-Stirling numbers. From (2.3), we see that we can
extend the de�nition of these numbers to include the initial conditions

(2.4) PS(0)n = 0 and P (j)0 = 0 except PS(0)0 = 1 (n; j 2 N):

The focus of this paper is on the combinatorics of these Legendre-Stirling numbers; however,
for the sake of completeness, we note that the nth left-de�nite inner product and space are readily
obtained from Theorem 2.1. Indeed, from (2.1), it can be shown that the nth left-de�nite inner
product is given by

(f; g)n :=

nX
j=1

Z 1

�1
aj(n; k)(1� x2)jf (j)(x)g(j)(x)dx:

Moreover, as shown in [7], with the mth Legendre polynomial de�ned by

Pm(x) =

r
2m+ 1

2

[m=2]X
j=0

(�1)j(2m� 2j)!
2mj!(m� j)!(m� 2j)!x

m�2j (m 2 N0);

the Legendre polynomials fPmg1m=0 satisfy the orthogonality relationship

(Pm; Pr)n = (m(m+ 1) + k)
n�m;r (m; r 2 N0)

and form a complete orthogonal set in the nth left-de�nite space explicitly given by

Hn = ff : (�1; 1)! C jf; f 0; : : : ; f (n�1) 2 ACloc(�1; 1);
(1� x2)j=2f (j) 2 L2(�1; 1) (j = 0; 1; : : : n)g:

The Legendre-Stirling numbers have several properties similar to the classical Stirling numbers
of the second kind fS(j)n g (see [1, pp. 824-825] and [4, Chapter V]). Indeed, in a new application
of the Stirling numbers of the second kind, it is reported in [9] that the Stirling numbers of the
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second kind fS(j)n g are the coe¢ cients of the integral composite powers of the second-order Laguerre
di¤erential expression:

mk[y](x) :=
1

x�e�x

�
�
�
x�+1e�xy0(x)

�0
+ kx�e�xy(x)

�
(x 2 (0;1)):

Speci�cally, the authors in [9] show that, for each n 2 N;

mn
k [y](x) =

1

x�e�x

nX
j=1

(�1)j
�
bj(n; k)x

�+je�xy(j)(x)
�(j)

;

where

b0(n; k) =

�
0 if k = 0
kn if k > 0

and bj(n; k) =

(
S
(j)
n if k = 0Pn�1
r=0

�
n
r

�
S
(j)
n�rk

r if k > 0
(j = 1; 2; : : : ; n):

In particular,

mn
0 [y](x) =

1

x�e�x

nX
j=1

(�1)j
�
S(j)n x

�+je�xy(j)(x)
�(j)

:

We note that the Stirling numbers of the second kind also appear in the composite integral powers
of the classical second-order Hermite di¤erential equation

h[y](x) :=
1

exp(�x2)
�
�(exp(�x2)y0(x))0 + k exp(�x2)y(x)

�
;

see [6] for further details.

3. A Comparison of Stirling Numbers of the Second Kind and the Legendre
Stirling Numbers

We begin this section with the following table that compares various properties of the Stirling
numbers of the second kind and the Legendre-Stirling numbers; details and proofs of these properties
are forthcoming in [2].

Property Stirling Numbers 2nd Kind Legendre-Stirling Numbers
Vertical RR S

(j)
n =

Pn
r=j S

(j�1)
r�1 jn�r PS

(j)
n =

Pn
r=j PS

(j�1)
r�1 (j(j + 1))n�r

Rational GF
jY
r=1

1

1� rx =
P1
n=0 S

(j)
n xn�j

jY
r=0

1

1� r(r + 1)x =
P1
n=0 PS

(j)
n xn�j

Triangular RR S
(j)
n = S

(j�1)
n�1 + jS

(j)
n�1 PS

(j)
n = PS

(j�1)
n�1 + j(j + 1)PS

(j�1)
n�1

S
(0)
n = S

(j)
0 = 0; S

(0)
0 = 1 PS

(0)
n = PS

(j)
0 = 0; PS

(0)
0 = 1

Horizontal GF xn =
Pn
j=0 S

(j)
n (x)j where xn =

Pn
j=0 PS

(j)
n hxij where

(x)j = x(x� 1) : : : (x� j + 1) hxij = x(x� 2) : : : (x� (j � 1)j)
1st Kind Numbers (x)n =

Pn
j=0 s

(j)
n xj hxin =

Pn
j=0 ps

(j)
n xj

Table 1: A Comparison of Properties of Stirling Numbers of the Second Kind and
Legendre-Stirling Numbers

From this table, notice the rational generating functions for the Stirling numbers of the second
kind and for the Legendre-Stirling numbers; in particular, note the coe¢ cients r and r(r + 1)
in the denominators of these products. Remarkably, and perhaps somewhat mysteriously, these
coe¢ cients are, respectively, the eigenvalues that produce the Laguerre and Legendre polynomial
solutions of degree r in the Laguerre and Legendre di¤erential equations: We �nd it even more
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remarkable that the computation of the integral composite powers of both the Laguerre and Le-
gendre di¤erential equations - these are completely algebraic calculations - are therefore intimately
connected to these classical orthogonal polynomial solutions. Furthermore, in the case of the Le-
gendre expression, the Glazman-Krein-Naimark theory [10] implies that there is an uncountable
number of self-adjoint operators in L2(�1; 1); generated by the Legendre expression `0[�], each of
which has a purely discrete (that is, eigenvalues only) spectrum. Exactly one of these self-adjoint
operators, namely the �Legendre polynomial�operator A de�ned by

Af(x) = `0[f ](x) (a.e. x 2 (�1; 1))
D(A) = ff : (�1; 1)! C j f; f 0 2 ACloc(�1; 1); f; `0[f ] 2 L2(�1; 1); lim

x!�1
(1� x2)f 0(x) = 0g

has spectrum fr(r + 1) j r 2 N0g: Why does the horizontal generating function involve the eigen-
values r(r+ 1) of this operator A? Why doesn�t this generating function involve the eigenvalues of
one of the other self-adjoint operators? It seems that there is an interesting connection here that
deserves further attention.
The following two tables list several Legendre-Stirling numbers and, for comparison purposes,

Stirling numbers of the second kind.

j=n n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

j = 1 1 2 4 8 16 32 64 128 256 512
j = 2 � 1 8 52 320 1936 11648 69952 419840 2519296
j = 3 � � 1 20 292 3824 47824 585536 7096384 85576448
j = 4 � � � 1 40 1092 25664 561104 11807616 243248704
j = 5 � � � � 1 70 3192 121424 4203824 137922336
j = 6 � � � � � 1 112 7896 453056 23232176
j = 7 � � � � � � 1 168 17304 1422080
j = 8 � � � � � � � 1 240 34584
j = 9 � � � � � � � � 1 330
j = 10 � � � � � � � � � 1

Table 2: A List of Legendre-Stirling Numbers (for example, PS(3)4 = 20; PS
(4)
6 = 1092)

j=n n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

j = 1 1 1 1 1 1 1 1 1 1 1
j = 2 � 1 3 7 15 31 63 127 255 511
j = 3 � � 1 6 25 90 301 966 3025 9330
j = 4 � � � 1 10 65 350 1701 7770 34105
j = 5 � � � � 1 15 140 1050 6951 42525
j = 6 � � � � � 1 21 266 2646 22827
j = 7 � � � � � � 1 28 462 5880
j = 8 � � � � � � � 1 36 750
j = 9 � � � � � � � � 1 45
j = 10 � � � � � � � � � 1

Table 3: A List of Stirling Numbers of the Second Kind S(j)n (for example, S(2)4 = 7;

S
(4)
6 = 65)
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The next lemma establishes the triangular recurrence relation for the Legendre-Stirling numbers;
we need this result for our main theorem in the next section.

Lemma 3.1. The Legendre-Stirling numbers satisfy the following triangular recurrence relation:

PS(j)n = PS
(j�1)
n�1 + j(j + 1)PS

(j)
n�1 (n; j 2 N; j � n)(3.1)

PS(0)n = PS
(j)
0 = 0;PS

(0)
0 = 1 (n; j 2 N):(3.2)

Proof. The initial conditions given above are part of the de�nition of PS(j)n ; given in (2.4): On the
other hand, for n; j 2 N and j � n;

PS
(j�1)
n�1 + j(j + 1)PS

(j)
n�1

=

j�1X
r=1

(�1)r+j�1 (2r + 1)(r
2 + r)n�1

(r + j)!(j � 1� r)! + j(j + 1)
jX
r=1

(�1)r+j (2r + 1)(r
2 + r)n�1

(r + j + 1)!(j � r)! :(3.3)

A routine calculation shows that, for 1 � r � j � 1;

(�1)r+j�1 (2r + 1)(r
2 + r)n�1

(r + j)!(j � 1� r)! + j(j + 1)(�1)
r+j (2r + 1)(r

2 + r)n�1

(r + j + 1)!(j � r)!

= (�1)r+j (2r + 1)(r
2 + r)n

(r + j + 1)!(j � r)! :(3.4)

Moreover, the term corresponding to r = j in the second sum in (3.3) is

(3.5) j(j + 1)(�1)2j (2j + 1)(j
2 + j)n�1

(2j + 1)!
=
(2j + 1)(j2 + j)n

(2j + 1)!

which is the same as the term in (3.4) when r = j: Consequently, the right-hand side of (3.3)
simpli�es to

jX
r=1

(�1)r+j (2r + 1)(r
2 + r)n

(r + j + 1)!(j � r)! = PS
(j)
n :

�

4. A Combinatorial Interpretation of the Legendre-Stirling Numbers

The Stirling number of the second kind S(j)n counts the number of ways of putting n objects into
j non-empty, indistinguishable sets. For an excellent account of these numbers, and a full account
of their properties, see the text of Comtet [4, Chapter V]. From Tables 2 and 3 in the previous
section, it is immediately clear that, for n > j; PS(j)n is considerably larger than S(j)n : It is natural
to ask: what do the Legendre-Stirling numbers count? In this section, we answer this question.
To describe a combinatorial interpretation of the Legendre-Stirling number PS(j)n , for each n 2 N;

we consider two copies of each positive integer between 1 and n :

11; 12; 21; 22; : : : ; n1; n2;

we may say that these are the integers f1; 2; : : : ; ng with two colors. For positive integers p; q � n
and i; j 2 f1; 2g; we say that pi > qj if p > q:We now describe two rules on how to �ll j+1 �boxes�
with the numbers f11; 12; 21; 22; : : : ; n1; n2g:

(1) the �zero box�is the only box that may be empty and it may not contain both copies of any
number.
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(2) the other j boxes are indistinguishable and each is non-empty; for each such box, the
smallest element in that box must contain both copies (or colors) of this smallest number
but no other elements have both copies in that box.

Example 4.1. n = 3; j = 2: As the table below shows, there are eight di¤erent ways to satisfy the
above two rules.

Zero Box Other two boxes Zero Box Other two boxes
? f11; 12; 31g; f21; 22; 32g f31g f11; 12; 32g; f21; 22g
? f11; 12; 32g; f21; 22; 31g f32g f11; 12; 31g; f21; 22g
f21g f11; 12; 22g; f31; 32g f31g f11; 12g; f21; 22; 32g
f22g f11; 12; 21g; f31; 32g f32g f11; 12g; f21; 22; 31g

Example 4.2. n = 5; j = 1: In this case, there are sixteen di¤erent ways to satisfy the above two
rules. To see this, �rst note that no copy of the number 1 can be in the zero box. Indeed, by
Rule 1, it is not possible for both copies of 1 to belong to the zero box. Moreover, if the zero box
contains exactly one copy of 1; then the only other box in this case must contain the other copy
of 1; which violates Rule 2. In fact, since there is only one other box besides the zero box, it is
straightforward to see that the zero box is non-empty and necessarily has the form f2i; 3j ; 4k; 5lg
where i; j; k; l 2 f1; 2g: There are two di¤erent choices for each of the numbers 2; 3; 4; and 5 and,
consequently, there are precisely 24 = 16 ways to build this zero box.

Example 4.3. n = 4; j = 3: For this example, there are 20 di¤erent possibilities:

Zero Box Other 3 Boxes Zero Box Other 3 Boxes
? f11; 12; 31g; f21; 22; 32g; f41; 42g f31g f11; 12; 32g; f21; 22g; f41; 42g
? f11; 12; 32g; f21; 22; 31g; f41; 42g f32g f11; 12; 31g; f21; 22g; f41; 42g
? f11; 12; 41g; f21; 22; 42g; f31; 32g f31g f11; 12g; f21; 22; 32g; f41; 42g
? f11; 12; 42g; f21; 22; 41g; f31; 32g f32g f11; 12g; f21; 22; 31g; f41; 42g
? f11; 12; 41g; f21; 22g; f31; 32; 42g f41g f11; 12g; f21; 22; 42g; f31; 32g
? f11; 12; 42g; f21; 22g; f31; 32; 41g f42g f11; 12g; f21; 22; 41g; f31; 32g
? f11; 12g; f21; 22; 41g; f31; 32; 42g f41g f11; 12g; f21; 22g; f31; 32; 42g
? f11; 12g; f21; 22; 42g; f31; 32; 41g f42g f11; 12g; f21; 22g; f31; 32; 41g
f21g f11; 12; 22g; f31; 32g; f41; 42g f41g f11; 12; 42g; f21; 22g; f31; 32g
f22g f11; 12; 21g; f31; 32g; f41; 42g f42g f11; 12; 41g; f21; 22g; f31; 32g

We now come to the main result of this paper.

Theorem 4.1. For n; j 2 N0 and j � n; the Legendre-Stirling number PS(j)n is the number of
di¤erent distributions according to the above two rules.

Proof. Let Le(j)n denote the number of di¤erent ways of distributing the numbers

11; 12; 21; 22; : : : ; n1; n2

into the �zero box�and the other j indistinguishable boxes according to the above rules. Clearly
Le

(0)
0 = 1 since there is only the zero box in this case and it is empty. Also Le(0)n = 0 for n 2 N

since the rules stipulate that you cannot put i1 and i2 into the zero box, the only box available
in this case. Next, Le(j)0 = 0 for j > 0 since none of the j indistinguishable boxes can be empty.

Thus the initial conditions for Le(j)n agree with those of PS(j)n (see (3.2)): Now we must establish
the recurrence relation (3.1); to do so, we split the distributions into two exhaustive, disjoint sets:
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(I) those distributions where n1 and n2; the two copies of the largest integer n; are in the same
box.

(II) those distributions where n1 and n2 are in di¤erent boxes.

We claim that there are Le(j�1)n�1 distributions for Case (I). Indeed, if n1 and n2 are in the
same box, it is necessarily one of the indistinguishable boxes. The remaining j � 1 boxes plus
the zero box have distributed among them the entries from f11; 12; 21; 22; : : : ; (n � 1)1; (n � 1)2g;
and this can be done in Le(j�1)n�1 ways. In determining the number of distributions satisfying the
conditions of (II), suppose n1 and n2 are in di¤erent boxes. If we �rst distribute the elements
f11; 12; 21; 22; : : : ; (n� 1)1; (n� 1)2g into the j indistinguishable boxes plus the zero box (which we
can do in Le(j�1)n�1 ways), then we can put n1 into any of the j + 1 boxes and we, independently,
can put n2 into any of the remaining j boxes. The total number of distributions for Case (II) is
therefore j(j + 1)Le(j�1n�1 :
Combining these cases, we see that

Le(j)n = Le
(j�1)
n�1 + j(j + 1)Le

(j�1)
n�1 :

In conclusion, we see that Le(j)n and PS(j)n satisfy the same initial conditions and de�ning recurrence
relation. Therefore, for n; j � 0;

Le(j)n = PS(j)n :

�

Example 4.4. The argument in Example 4.2 easily generalizes to show that PS(1)n = 2n�1 for any
n 2 N:

Example 4.5. Our last example gives a counting argument to show that PS(n�1)n = 2
�
n+1
3

�
; of

course, we may verify this directly from the triangular recurrence relation in (3.1): In this case, we
have the zero box and n� 1 �other�non-empty, indistinguishable boxes to distribute two copies of
each of the integers 1; 2; : : : ; n according to the above rules. Since the least entry in each �other�
box must be repeated in that box we see that there is exactly one pair fi1; i2g which is split into
separate boxes. Keep in mind that i = i1 = i2 can be put into an �other�box only if it is larger
than the minimal pair put in that box; moreover, it is clear that i 6= 1. Hence, if one of the i0s
(either i1 or i2) goes into the zero box, the other i (i2 or i1) can go into i � 1 of the other boxes;
the total count for all possible pairs in this instance is

nX
i1=2

(i1 � 1) +
nX

i2=2

(i2 � 1) = 2
nX
i=2

(i� 1):

Of course, both i0s might avoid the zero box. In this case, there are

nX
i=2

(i� 1)(i� 2)
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possible ways of distributing the i0s in this instance. Therefore, the total number of distributions
in this case is

PS(n�1)n = 2
nX
i=2

(i� 1) +
nX
i=2

(i� 1)(i� 2)

=
nX
i=2

i(i� 1) = 2
nX
i=2

�
i

2

�
= 2

�
n+ 1

3

�
:

In particular, PS(2)3 = 2
�
4
3

�
= 8 and PS(3)4 = 2

�
5
3

�
= 20; see Examples 4.1 and 4.3.
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