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1. Introduction. To explain the idea behind the present paper the follow-
ing fundamental principle is emphasized. Let X = (Xi, • • • , Xn) be an
w-dimensional vector valued random variable, and let p.(x) =p(xi, ■ ■ ■ , xn)
be its probability measure (defined on euclidean w-space £„). Suppose that
X has the property that p(x) =p(gx) for every element g of a group G of
order h of transformations of En into itself. Let f(x) =f(xx, ■ ■ • , x„) be a
/x-integrable complex valued function on £„. Then the expected value of f(x)
is

(1.1) Ef(X) = ff(x)dm(x) = jf(x)dp(x),

where

(1-2) /(*) =-   Zf(gx)-

This principle will be fruitful when it is possible to write/(x) in a form which
is simpler to integrate thanf(x).

We shall consider only the case when G is the symmetric group of permu-
lations a on n symbols, so that

/l    2   • • ■ n\
0~X — I X =   \Xffi, Xff^, , Xffn).

Vi   o-2 •• • <rj

Vector random variables X=(Xi, ■ ■ ■ , X„) with the property that
p(x) =p(ax) for every permutation are called symmetrically dependent and
have been treated at length by E. Sparre Andersen [l; 2; 3]. For the most
interesting applications of the present theory it will be necessary to require
in addition that Xi, • • • , Xn be identically distributed and independent.

For the function f(x) in equation (1.1) we shall take

f(x) = max [0, xi, xi + x2, ■ ■ ■ , Xi + x2 + ■ ■ • + xn].

The fundamental combinatorial result of this paper (Theorem 2.2) identifies
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the set of numbers If (ax) ], as a ranges over G, with a set of numbers [g(ax) ]
which have very desirable properties with regard to integration. The author
is indebted to H. F. Bohnenblust for valuable discussions. The proof of
Theorem 2.2 is due to him.

When applied to the case of independent identically distributed random
variables Xx, X2, ■ ■ ■ and their partial sums Sk = Xx+ • ■ ■ +Xk, Theorem
2.2 and the principle of equation (1.1) produce Theorem 3.1:

For \t\ <1,

(1.3) E*»(X)/" = exp [£—/"],
n=0 L  n=X n J

where <p„(X) is the characteristic function of max [0, Sx, S2, ■ ■ • , Sn], and
\pn(X) the characteristic function of max [0, Sn]. Equation (1.3) generalizes
results of M. Kac and G. A. Hunt (Theorem 4.1 in [7]), and of E. Sparre
Andersen (Theorem 1 in [3]). In §6 equation (1.3) is generalized in Theorem
6.1 which gives the joint characteristic function of Sn and max [0, Si, • • • ,
Sn].

§§4, 5, and 7 contain a number of new results concerning the limiting
behavior of the random variables max [0, Sx, ■ • ■ , Sn] and TVn = the number
of positive Sk, k = l, 2, ■ ■ ■ , n. These results are chosen to illustrate the
power of the combinatorial method, without in any way exhausting its
possibilities. The case of sums of nonidentically distributed independent
random variables clearly is beyond the scope of this method. The same re-
mark applies to continuous parameter stochastic processes and consequently
the present method is a natural one for the class of processes with stationary
independent increments.

2. Combinatorial considerations. The following proposition will be very
useful.

Theorem 2.1. Let x = (xx, ■ ■ ■ , xn) be a vector such that xx+x2+ ■ ■ ■ +xn
= 0, but no other partial sum of distinct components vanishes. Let xk+„ = xk, and
x(k) = (xk, Xic+i, ■ ■ ■ , xk+n), k = l, 2, • • • , w. Then, for each r = 0, 1, • • • ,
w — 1, exactly one of the cyclic permutations x(k) of x is such that exactly r of
its successive partial sums are positive.

Proof. Let sk=Xi+x2+ • ■ ■ +xk, s0=0, sk+n = sk. Then the successive
partial sums of the components of x(k) are sk — sk-X, sk+x— sk-X, ■ • • , sk+n-X
— sk-i. By assumption the sk are all distinct for fe = l, 2, • • • , w, so that the
number r of positive terms in the above sequence equals the number of posi-
tive terms among Sj — sk-i,j=l, 2, ■ ■ ■ , n. Hence r may be given any value
between 0 and n — 1 in one and only one way, i.e. by choosing k so that
st-i is (r + l)st from the top in order of magnitude among the sk, k = l, 2, • • • ,
w.

One can obtain an interesting version of Theorem 2,1 which does not
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require the assumption that sk = 0. We call the polygon connecting the points
(0, 0), (1, Si), ■ ■ ■ , (k, sk), ••-,(«, sn) the sum polygon of the vector x.
The sum polygon for the cyclically permuted vector x(k) is defined the same
way. Then the numbers Sk — (k/n)sn represent the vertical distances from
the vertices of the sum polygon to its chord, the line connecting (0, 0) with
(n, sn). Now we may apply Theorem 2.1 to the numbers xk — sn/n, whose sum
vanishes, if they satisfy the incompatibility assumption. (It is clearly suffi-
cient that the xk be rationally independent.) The result is that if we consider
a sum polygon and its n cyclic permutations, and prescribe an integer r be-
tween 0 and n — 1, then exactly one of the cyclic permutations of the sum
polygon will have the property that exactly r of its vertices lie strictly above
its chord.

The geometric meaning of this theorem will provide the clue to Theorem
2.2. Its proof depends on the possibility of finding a unique cyclic permutation
of certain subsets of components, such that their sum polygon (the polygon
connecting the points (k, Sk)), lies entirely below its chord. Rational inde-
pendence of the components will be assumed there.

Now we introduce certain notations. For any real a

a+ = (| a | + a)/2 = max [0, a],

so that

max [0, oi, • • • , a„] =   max a*.
lStgn

(1    2 ■ ■ ■ n \
(2.1) ax =  ( )x = (x0l, x„2, ■ ■ ■ , xgn),

\ai   a2 ■ • • <7„/

sk(<jx) = xai + x„2 + ■ ■ ■ + x„k,

(2.2) S(ax) =   max sk (crx) =   max I   2J x«i)   •
l£*Si lSfcin \ ,=i        /

Consider the permutation t represented as a product of cycles, including
the one-cycles, and with no index contained in more than one cycle. For exam-
ple suppose that n = 7, and that

(2.3) r = (14)(2)(3756).

Then we define

(2.4) T(rx) = (xi + x^   + x2 + (x3 -t- x7 + xs + x6) .

In formal notation, let

(2-3') r = (ai(r))(a2(r)) • • ■ («,W(r)),

where the <Xi(r), i = l, 2, ■ ■ • , n(r), are disjoint sets of integers whose union
is the set [l, 2, ••• , »]. Then define

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



326 FRANK SPITZER [July

(2.4') T(tx) = Y(     Yir)xk)+.
i=X  \       i-Soi(T)       /

Now it is claimed that

Theorem 2.2. For an arbitrary fixed vector x = (xx, x2, ■ ■ ■ , xn) the sets
[S(ax)] and [T(tx)], which are generated by letting a and r run through all of
the n! permutations, are identical sets.

Proof. If the theorem is proved for a set of x which is dense in En, then
its truth follows for arbitrary x, since the numbers S(ax) and T(tx) are
continuous functions of x. Therefore the proof is given for an arbitrary fixed
x with rationally independent components. (For rational r,-, riXi+r2x2+ ■ • ■
+rHxn = 0 if and only if each r,- = 0.)

It is planned to exhibit between permutations of the form cr, defined in
(2.1), and permutations of the form r, defined in (2.3') a one to one cor-
respondence ax(r). This mapping will depend on x and will have the property
that, for each r and for each x with rationally independent components,

(2.5) T(tx) = S(^(r)x).

The proof will then be complete.
Suppose a permutation r is given in the form of (2.3'). The order of the

indices in each set ai(r) is then prescribed up to an arbitrary cyclic permuta-
tion. In accordance with the remarks following the proof of Theorem 2.1 we
choose that unique cyclic permutation of the indices which ensures that the
sum polygon lies below its chord. In terms of the example of equation (2.3),

r = (14) (2) (3756)

is rewritten as

r = (14)(2)(5637),

if it turns out that

Xl "i Xi T   Xi + Xo     XB + Xo + X3~\ Xi + Xo + x3 + x7
(2.6) xi <—-—;    max |a:6,—-—>-J<-

In formal notation, suppose that the cycle (a„(r)) =(ji,jt, • • • ,jk). Then
without changing that cycle as a permutation we can rewrite it in one and
only one way, as (ar(r)) = (ii, i2, • • • , ik) so that

Xil -\- Xi2                        Xi^     l     '   *   *   -"n   -Tifc-i             Xi^ -p   *   *   *  ~p X{k
(2.6) max^.i___,    ...,   -__-j< -__-,

where (ti, it, ■ ■ • , 4) is a cyclic permutation of (ji, ■ ■ ■ ,jk). This is done for
each cycle.

Finally, the cycles a{(r) may be permuted among themselves. Again

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1956] A COMBINATORIAL LEMMA 327

using the rational independence of the components of x, there is a unique
permutation (relabeling) of the <Xi(T), after which

(2.7)     _^_>_^-_>"->   z i'
*G«iW '£«iW '£««(,)(•)

Thus in our example r should now be rewritten as

r = (5637)(2)(14),

if it turns out that

Xf, + X6 + X3 + X7 Xi + Xi
(2.7) - > x2 >-

4 2

Finally we define

(1 2 3 4 5 6 7\
<r) = ( ) t

\5 6 3 7 2 1 4/

or in general

/l    2 • • • n\
(2.8) crx(r) = ( .     . ),

Vi   ti ■ ■ • ij

where the indices i\, ■ ■ ■ , in are the integers [l, 2, •••,«] in that unique
order in which they now appear in the successive sets a<(r).

It remains to define rx(a) as a function of a, and to show that (tx[tx(o-) ] =<r,
and finally that equation (2.5) holds. Given

, = (''2- •■•■•),
\i\, ii, ■ ■ ■ , ij

consider the sum polygon through the points (0, 0), (1, xtl), ■ • • , (k,
x;,+ • • • +Xik), ■••,(«, sn). Now we define the lowest convex majorant of
the sum polygon as that unique polygon which goes through (0, 0) and (n, sn)
in such a way that all its vertices are also vertices of the sum polygon and
that it always lies above or coincides with the sum polygon. (Uniqueness fol-
lows from the fact that the xt are rationally independent.) Suppose now that
the lowest convex majorant constructed for the permutation a has the vertices
(0, 0), (ki, xh+ ■ ■ ■ +xihi), ■ ■ ■ , (kv, xh+ • ■ ■ +xitt), (n, sn), where
0<&i< ■ • - <kr<n. Then we define

(2.9) Tx(a) = (ilt ■ ■ ■ , ik/)(ikv • ■ ■ , ik2) • • • (4v+i. ■ • • , *n)-

It is geometrically obvious that rx(a) is left unchanged by the transformations
used in (2.6') and (2.7') to define o-x(t), so that aI[rI(a)]=a, establishing
the desired one to one correspondence.
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Finally S(ax) is the maximum ordinate among those of the vertices of the
sum polygon, but this maximum is clearly also attained at a vertex of the
lowest convex majorant corresponding to er. It follows from (2.9) that

S(o-x) = (xtl + ■ ■ ■ + xiki)++ • ■ • + (xikp+i + • • • +xin)+ = T(tx(<t)x),

or

T(rx) = S(o-x(r)x),

which completes the proof.
In §5, we shall give a simple proof of a very surprising theorem of

E. Sparre Andersen, which is stated in Equation (5.3). That theorem will be
seen to follow from a combinatorial fact rather similar to Theorem 2.1.

Let 0(a) = 1 if a>0 and 0 otherwise. Let x = (xx, ■ ■ ■ , x„) be a given
w-tuple as before, and let ax = (xai, ■ ■ ■ , x„n) be a permutation of x. Let
T = (ax)(a2) ■ ■ ■ («„(,-)) be a permutation decomposed into cycles, and define

n

A(ax) = Yeix"i + • • ■ + xCk),
k=l

Birx)  =  Y(    Y   l)4    Y   */l.

Then we have

Theorem 2.3. The sets {A (ax)} and \B(tx) }, which are obtained by letting
a and t run through all permutations on n objects, are identical sets.

The proof is omitted, since it has recently been shown by H. F. Bohnen-
blust that far more general theorems than those considered here are easier
to prove than the elegant but somewhat too special theorems considered here.

3. The distribution of max [0, Si, S2, ■ • ■ , Sn]. Before proceeding to the
applications of Theorem 2.2, it should be mentioned that even the simple
Theorem 2.1 is not without probabilistic interest. When applied to equation
(1.1) it immediately yields the following result of E. Sparre Andersen (Theo-
rem 3 in [2]):

"Let Xi, ■ • • , Xn+i be symmetrically dependent random variables and let C
be an event which is symmetric with respect to Xi, ■ ■ ■ , Xn+i. Let Nn* be the
number of points (j, Sf), 7 = 1, • • • , w, which lie above the straight line from
(0, 0) to (w + 1, 5n+i). Then for Pr [C]>0,

Pr [N*n = m I C] = (w + l)-\ m = 0, 1, • • • , w,

if and only if
Pr { [Wi = (n + D-'Sn+i] r\ C} = 0, i = 1, 2, • • • , n."

From now on Xi, X2, • ■ ■  will be an infinite sequence of indentically dis-
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tributed   independent   random   variables,   with   Sk = Xi+ • • • +Xk   and
Sk+ = max [0, Sk]. If r is the permutation

t = (ai)(a2) ■ ■ • («„(,-)),

then
n(r)    / \ +

t(tX) = £(  E Xk) >
i=i \ *e«j     /

and if

\<7i   tr2 • • • tr„/

then

5(<rZ) =   max ( X) *.J    ■
lSkSn \ ,-„i /

For every complex-valued f(x) it follows from equation (1.1) and from
Theorem 2.2 that

(3.1) Ef\  max sfl = — E 2</[S(<rX) ] = - E £/[7>X) ].
L isksn     j       n\   v ni   T

Equation (3.1) must be interpreted in the sense that each member is finite
and equal to the other two, provided that one of them is finite.

Everything said so far is valid for symmetrically dependent random vari-
ables. To take advantage of the independence of the A*,- it is convenient to
take

f(x) = exp (i\x),        Im (X) ^ 0,
(3.2) <£n(A) = 7iexp(j'X max Sk),       <£o(X) = 1,

1S*Sk

(3.3) tpk(\) = Eexp(iXSt).

Consider the last member of equation (3.1). If a permutation r consists of ky
cycles of length v, v = l, 2, • ■ ■ , n, with &i + 2&2+ • • • +nkn=n, then

E/[r(rX)] = ni>,(x)]^.»=i
The number of permutations on n objects, which, when decomposed into dis-
joint cycles, exhibit the above structure is exactly

«i n p-*'uM)_i-
Hence
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(3.4) *d»-E*n(—Y'r.«     w = °>
,=l \       V      /       kv\

where the summation Y* extends over all w-tuples (ki, k2, • - - , kn) of non-
negative integers with the property ki + 2kt+ ■ ■ ■ +nkn = n. It is easy to
verify that the identity between generating functions in equation (1.3) is
equivalent to equation (3.4). Hence we have proved

Theorem 3.1. For \t\ <1, Im (X)^0,

(3.5) Y *»(X)<" = exp [ Y ^- A ■

In §6, Theorem 3.1 will be found to be a special case of Theorem 6.1.
The results of M. Kac, G. A. Hunt, and E. Sparre Andersen are simple

consequences of Theorem 3.1.

Corollary 1 (Theorem 4.1 in [7]).
n       1

(3.6) E max Sk  = Y — ESi
l£jt§n jfc_l     k

This formula is obtained by differentiating (3.5) with respect to X and
setting X = 0. Alternatively, it can be proved directly from equation (3.1)
with the choice of f(x) —x.

Corollary 2.

(3.7) EPr { fi  [Sk = 0]\t" = exp i Y T Pr t5* = °l}  '
n=0 V k—1 J \ *—1     k J

This result is obtained by applying equation (3.5) to the random variables
—Xi, setting \=iu, and letting w—»°o. Actually (3.7) remains correct if
both inequalities in (3.7) are modified to be strict inequalities. In that form
(3.7) was discovered by E. Sparre Andersen. It is equation (3.6) of Theorem 1
in [3]. To obtain it directly, it is easiest to use the following weak form of
Theorem 2.3. The probability that the first w partial sums Si, S2, • • • , S„
are all positive is the same as the probability of success in the following ex-
periment. One selects a permutation at random (i.e. with equal probability)
from the w! permutations of size w, and observes the lengths vi, v2, ■ ■ ■ , vr of
its successive disjoint cycles. One then observes r independent random vari-
ables with the same distribution as S,„ S„„ • • • , S„r, and success is defined
as the event that they are all positive. This fact then leads to a direct proof of
equation (3.7) with strict inequalities quite similar to the proof of (3.5).

The analogue of Theorem 3.1 for continuous parameter separable sto-
chastic processes with stationary independent increments will be given else-
where.
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4. The limit behavior of max [0, Si, ■ ■ • , Sn].

Theorem 4.1. Let ak = Pr [Sk>0], \pk(\)=E exp (i\Sjt).
(a) If E™ a*A < °° > then

(4.1) max Sk —> sup Sk  = max Sk < oo
lgtSn tsi tai

wtVft probability one;

(4.2) lim sup SH = — « wi'/A probability one,
n—*<x>

except in the trivial case when Pr  [Xj = 0] = l. maxk^iSit has the infinitely
divisible characteristic function

+       -       r ^fc(x) — l "I
(4.3) E exp (i\ max 5*)   = 11 exp   -    -

*ai *-i      L      *      J
(b) 2/ Xi°° a^/fc = oo, 2fow

(4.4) max Sk —* sup 5t   = lim sup S„ = °°
l£*Sn Jt&l n->«

wi^ probability one.
(c) IfE\X{\ < oo and Pr [Xi = 0]<l, then case (a) corresponds to EX{<0,

while case (b) corresponds to EX,^0.

Proof. To prove (4.1) and (4.2) it is sufficient to show that in case (a)

(4.5) Pr [Sn > xi.o.] = 0, - oo < * < oo.

Let a„ = Pr [maxig*g„ 5*^0], a0 = l. In Theorem 3.1 set A=iw and let u—»«o.
Then

E ?n/n = exp |   E f—IJl\' I ' I < 1.
oo I- m _ -1

(4.6) (1 - 0 E qnt* = exp    - E "T <*   ' | * I < 1.
o L       i     «     J

Since the coefficients g„ are monotone nonincreasing, a simple Tauberian
argument gives

(4.7) lim $,, = exp   - E "V    > 0,
n-><o L 1       k J

so that

(4.8) Pr [Sn > 0 i.o.] g 1 - lim o„ < 1.
n—»w
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But it was shown by P. Levy [8, p. 147], that when Pr [X,- = 0]<1,

(4.9) Pr [Sn > ari.o.] = 0    or    1, - °o  < x < °o,

and that the probability in (4.8) is the same for every x. Equations (4.8) and
(4.9) now imply (4.5), and hence (4.1) and (4.2) are proved.

Equation (4.1) implies that the sequence

c/>„(X) = E exp   iX max Sk
L     is*s«      J

converges to a characteristic function. Therefore

E exp   TX max Sk     = lim cp„(X) = lim (1 — t) Y <Pn(X)/n
L     *ai      J      n-»=o i-»i i

= lim(l-OexPr£^-**l<->i L  i      i      J
r -   ^(x) - l -l= expL?—^—J*

This characteristic function is infinitely divisible since its factors

exp ( ~ 1 \ = exp [— { f   (cAx - 1)<* Pr [5* = *]>

are infinitely divisible.
To prove equation (4.4), suppose that 23i° a*/& = ». Then it follows from

(4.6) that

lim qn = Pr    sup SA g 0    = 0.
n^» L *21 J

Now

1 - Pr [Sk > 0 Lo.] = Pr    sup Sk = 01   + Y Pr   Sk > 0; sup Sk+m = 0
_ »-ai J        ;.=i       L ™§i J

=■ lim  X Pr    sup SM = 0   =   0.
n->«    «;—1 L ™&1 J

Hence, by (4.9)

Pr [Sk > 0 i.o.] = Pr [Sk > x i.o.] = 1,     - °° < x < °o,

which implies equation (4.4).
It remains to prove part (c). We assume that 7i|X;| <=°. Then, if

EXi<0, the strong law of large numbers implies that Pr [S„>0 i.o.] =0, so
that YT ak/k<x. Conversely, if EX,>0, we get Pr [S„<0 i.o.]=0, so that
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Pr [5„>0 i.o.] = 1, and Ei™ ak/k = oo. Finally, if EXt = 0, then the sequence
of partial sums Sn is recurrent in the sense of Chung and Fuchs [4], so that
Pr [5„>0i.o.] = l if Pr [X{ = 0] <1, and Ei" <**/£=<».

Theorem 4.1 has a curious corollary which constitutes a novel form of
the strong law of large numbers for identically distributed random variables.
It gains in interest by comparison to the following result of P. Erdos [6].

EXi = m and EX2 < oo , if and only if

r I Sk
E Pr-m   > 6    < oo for every e > 0.i        L I k

We shall prove

Theorem 4.2. EX{ = m if and only if

A   1       V\Sk I        "I(4.10) E — Pr-w   > e    < oo for every e > 0.
i     k       Ll k I J

Proof. It will suffice to consider the case when m = 0. Suppose therefore
that EXi = 0. Then E(Xt-e) <0, if e>0, and by Theorem 4.1 (c)

°°    1
(4.11) E — Pr [Sk - kt > 0} < oo.

i     k

By the same argument
x     1

(4.12) E — Pr [Sk + ke < 0] < oo.
i     *

Adding (4.11) and (4.12), we have (4.10). Conversely, assume that (4.10)
holds with m=0. Then (4.11) and (4.12) must hold for every e>0, which
means that

Prg-o]-..

Now it follows from the converse of the strong law of large numbers that
EXi = 0.

5. The number of positive partial sums. We summarize earlier definitions
and make some new ones.

ah= Pr [Sk > 0],

Pn= Pr    min Sk > 0 \, p0 = 1,
|_lS*gM J

o„ = Pr    max Sk = 0 \> q0 = 1.
Listen J
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(5.1) TV„ = the number of S*>0, k = l, 2, ■ ■ ■ , n.
(5.2) 7\, = the index (time) k at which maxi^tg„ Sk is first attained, with the

provision that 7„ = 0 if maxi^gn SA_0.
The results of this section will depend on the following important theorem

of E. Sparre Andersen (Theorem 1 in [l]).
"If pk = Pr [Nk = k], qk = Pr [TV4=0] (as is the case in our notation), then

(5.3) Pr [TV„ = *] - pkqn-k = Pr [Tn = *],     h = 0, 1, • • • , w."

The second half of equation (5.3) is a simple consequence of the markovian
nature of the process of successive partial sums S„. To prove the first half, we
let
(5.4) p„(X) = E[e~Wn>] = ane-Xn + 1 - a„, X ^ 0.

(5.5) Xn(X) = £[«"xw»], X = 0.

One sees that in view of Theorem 2.3 the random variable TV„ has the same
distribution as the random variable

1-19(5,,) + v28(Sn) +   ■ • • + vr8(S„r),

where vx, • • ■ , vr are random variables indicating the length of the disjoint
cycles of a permutation chosen at random from among the permutations on
w objects. The partial sums S,„ • ■ ■ , S,r are taken as independent random
variables with the distribution indicated by their subscript. Hence the method
used to prove Theorem 3.1 applies with only the change of <p„(X) into x«(X),
and ^n(X) into pn(X), and yields the following result analogous to equation

(3.5):

(5.6) Y X»(X)<" = exp I" Y ^ A, X = 0.
n-0 L k-i       K J

Using (5.4) this becomes

Y X.(X)<" = exp [ Y j ite-x)k~\ exp [- Y J '*] •

and in view of equation (3.7) and the discussion following it,

Y Xn(K)t" =(Y <rxi^)( Y H^j ,

so that
n n

X»(X) =Y «-X* Pr [Nn = *] = Y e~™pkqn-*,
*;-0 k=0

from which the first half of (5.3) follows.
Now we consider the limiting behavior of N„ and T„.
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Theorem 5.2. (a) If E" a*/& < °°. then Nn-^>N< oo ana" Tn—*T< <», with
probability one, and

(5.7) EF = EF = exp [" E — (/* - 1)1, | <| ̂  1.

(b) If E" a* A = °° > then Nn—*°o a»a" I"",,—»oo ?w7A probability one.

Proof. Let E" ak/k<<x>. Then equations (4.1) and (4.2) of Theorem 4.1
imply that

Pr [Nn+i * Nn i.o.] = Pr [7B+i p* Tn i.o.] = 0.

On the other hand, if E™ ak/k= oo, then it follows from equation (4.4) that

Pr [Nn+i = Nn+1 i.o.] = Pr [T» = n i.o.] = 1.

This proves the probability one statements in parts (a) and (b) of the present
theorem.

To prove equation (5.7) it suffices to consider the random variables Nn.
In case (a), when they converge to a random variable N with probability
one, we have

CG

EtN = E <*limPr [Nn = ft].
k-0      n->»

By (5.3)
lim Pr [Nn = k] = pk lim a„ = pkq.
n—* <x> n—*»

In fact, (4.7) states that

a = exp[-E|],

and (3.7) that

E Pkt" = exp I   E "T H '
o L   i    ft    J

so that

EtN = EF = exp I" E — (tk ~ 1)11 | < I ̂  1.

6. The joint distribution of 5„ and max [0, Su ■ • ■ , Sn]. The results and
methods of the preceding sections enable us to find the joint characteristic
function of 5„ and max [0, Si, ■ ■ ■ , Sn]. For reasons of symmetry we shall
concentrate on the bivariate characteristic function
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(6.1) <t>n(oc, fi) = Eexp ia max Sk + iP[ max 5* — 5„) > <t>o(cc, fi) = 1.

The joint characteristic function of Sn and max [0, Si, ■ ■ • , Sn] will then be

(6.2) E exp    ictSn + ifi  max Sk    = c6»(a + /3, — a).
L lgtfirc      J

It will be seen that </>„(«, fi) depends only on the characteristic functions

(6.3) uk(o) = E exp [ioSt],        (2St =  | 5* | + Sk),

(6.4) vk(fi) = E exp [#& ],        (2Sl~ =  \ Sk\ - Sk),

for k = l, 2, • ■ • , n.

Theorem 6.1. For \t\ <1, Im (a)^0, Im ((3)^0,

(6.5) E *»(«, $)tn = exp [ E — («*(«) + j>*08) - 1)/*1 •
n-0 L k=l     ft J

The proof depends on equation (5.3)

Pr [Tn = ft] = pkqn-k.

It max [0, Si, ■ ■ ■ , Sn] is assumed at Tn = k, then the random variables
Si — Sk, i^k, and Sj — Sk,j^k, are independent. By a simple argument one
obtains

/eiaS"dP    \ e-^-fdP
Ak J B„-k

(6.6) <pn(a, /3) = E #*?»-*     _    r.  i-r-TT^-i-'k=o Pr L4*J Pr [23„_tJ

where
k k

Ak = n [s.->o], 2J* = n [s< ̂  o],
i=l i-1

so that Pr [Ak] =pk, Pr [234] =qk. To evaluate the integrals in (6.6) one must
go back to Theorem 2.2 and apply the method of equation (1.1) just as was
done in the proof of Theorem 3.1. One obtains

(6.7) T,t" f   eiaS"dP = exp |   E — («*(«) - 1 + at)lk\ >
n=0        J A „ L fc=l     ft J

(6.8) iff   e**»dP = exp j   E — (vk(f3) - ak)tk   ,
n=0        J B„ L fc=l     ft J
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where a* = Pr [Sfc>0]. But now it follows from equation (6.6) that the series
on the left in (6.5) is the product of the generating function in (6.7) and (6.8).
This product gives the right-hand side of (6.5) as was to be proved.

7. The generalized arc-sine law. By the generalized arc-sine laws we mean
the following one parameter family of distributions Fa(x).

F0(x) = 0 if x < 0, 1 if x = 0,
sin iro:   Cx

Fa(x) = - I    5a-l(l - s)-"ds, 0 < a < 1,
x     Jo

Fx(x) = Oif x < 1, 1 if x =■ 1.

E. Sparre Andersen was the first to prove that the sequence of random
variables TV„/w, i.e. the fraction of times that S„>0, converges in distribution
to the law Fa(x), if the sequence ak = Pr [St>0] converges to a (Theorem 3 in
[3]). We generalize his result in the following way.

Theorem 7.1. If (ai+a2+ • • • +a„)/w—>a, then

VNn 1
(7.1) Pr-=■*-»£«(*).

If (ax+ ■ ■ ■ +an)/n does not tend to a limit, then neither does Pr [N„/n^x].

The second half of the theorem is trivial, since

ax+ ■ ■ ■ + a„ Nn- = E-,
n n

and a sequence of uniformly bounded random variables cannot converge in
distribution unless their first moments converge. Moreover, this half of the
theorem may also be vacuous, since it is not known whether there exists a
sequence of identically distributed independent random variables with the
property that the ak fail to have a (C, 1) limit.

However, the so called universal laws of Doeblin [5 ] show that the ordi-
nary limit of ak need not exist. Hence Theorem 7.1 is a generalization of
E. Sparre Andersen's.

The proof of (7.1) will be based on the following Abelian theorem.

Lemma 7.2. If the sequence \ak}, k = l, 2, ■ ■ ■ , is (C, 1) summable to a,
and X^O, then as s—>1 through real s<l,

(7.2) lim  Y —^~ s*[l ~ e"^1-')] = a log (1 + X).
»-»i   4=1      k

Proof. Let An=(ax+a2+ ■ ■ ■ +an)/n. Then after summation by parts,
equation (7.2) becomes
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DC

lim  Y Akck(s) = a log (1 + X),
«->l    *=1

where ck(s) = sk[l-e-W1->]-(ksk+1/(k + l))[l-e~™+1'>«->]. By Toeplitz,
Theorem we have to prove that

(a) lim ck(s) = 0,
»->i

00

(b) lim Y ck(s) = log (1 + X),

oo

(c) Y I C*W I <7T in some interval 1 - i | i ^ 1.

It is easily deduced that (a) and (b) hold. To verify (c), note that
/>fc(l-s)                          \ksk+1    /»(fc+l)(l-s) /» (*+l)(l-«)

e~xXdx-I e~xXdx 5; — Xs* I e~~xXdx
0 & +   1 7 0 J /t(l-s)

= - Xs*(l - 5)e-U(1-s>.

Hence |c*(s)| ^c*(5) + 2Xs*(l-5)e-x*(1-8), so that
oo

lim sup Y I *,(*) | = log (1 + X) + 2X,
s->l        jt_i

so that (c) is satisfied for some 8>0 with 7C = 4X.
We proceed to prove Theorem 7.1. As in §5 let

X„(X) = £[*-*»-].
and equation (5.6) can be written in the form

(7.3) (l-s)Y Xn[X(l - s)]s* = exp \ Y — s"[l - e-x«a-.)]l ,
n-0 V. n-1     W )

when |s| <1 and X^O. For |s| <1 both members of (7.3) can be written as
convergent power series in X and we may equate the coefficients ck(s) of
X*, k = 0, 1, • • • . Lemma 7.2 simply states that

00

lim Y Ck(s)\" = (1 + X)-,
S->1     jfc=0

so that

(7.4) limft(*) =(      J, k = 0,l,---.

Since Xn(X) is a moment generating function for TV„ we can use equation (7.3)
to express the coefficients ck(s) in terms of the moments of Nn/n. Let
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-"-'£)■•

Then

(—l)* °°
ck(s) = (1 - SY+1 —^- E nWs", \s | < 1,

ft!      n=0

and equation (7.4) implies that

(7.5) (l-s)ZnVkS"~(-l)K(       )---, J-l.
»-0 \   ft   /  (1   - S)k

The left-hand member as a power series in j has the coefficients

(«+i)Vr+i) - «vr = **&, - tf>.
which are non-negative. Karamata's Tauberian theorem therefore applies,
and yields

limp?* = (-l)*(~~), ft = 0, 1, •••.
n->« \   ft   /

But it is easy to verify that

("!)*("")  = f"*dFa(x),

and because the moment problem in this case has a unique solution, the proof
of Theorem 7.1 is complete.
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