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Recent advances in genome research have accelerated the process of locating candidate genes and the variable
sites within them and have simplified the task of genotype measurement. The development of statistical and
computational strategies to utilize information on hundreds — soon thousands — of variable loci to investigate
the relationships between genome variation and phenotypic variation has not kept pace, particularly for
quantitative traits that do not follow simple Mendelian patterns of inheritance. We present here the
combinatorial partitioning method (CPM) that examines multiple genes, each containing multiple variable loci,
to identify partitions of multilocus genotypes that predict interindividual variation in quantitative trait levels.
We illustrate this method with an application to plasma triglyceride levels collected on 188 males, ages 20–60 yr,
ascertained without regard to health status, from Rochester, Minnesota. Genotype information included
measurements at 18 diallelic loci in six coronary heart disease–candidate susceptibility gene regions:
APOA1-C3-A4, APOB, APOE, LDLR, LPL, and PON1. To illustrate the CPM, we evaluated all possible partitions of
two-locus genotypes into two to nine partitions (∼106 evaluations). We found that many combinations of loci
are involved in sets of genotypic partitions that predict triglyceride variability and that the most predictive sets
show nonadditivity. These results suggest that traditional methods of building multilocus models that rely on
statistically significant marginal, single-locus effects, may fail to identify combinations of loci that best predict
trait variability. The CPM offers a strategy for exploring the high-dimensional genotype state space so as to
predict the quantitative trait variation in the population at large that does not require the conditioning of the
analysis on a prespecified genetic model.

Recent advances in genome research have accelerated
the process of locating candidate genes and the vari-
able sites within them and have simplified the task of
genotype measurement. In spite of such advances, the
task of identifying both the genes and the variable loci
within them that influence interindividual variation in
quantitative traits that are measures of health in hu-
man populations has emerged as one of the most dif-
ficult challenges facing geneticists (Risch and Merikan-
gas 1996; Clark et al. 1998; Terwilliger and Weiss
1998). This realization may be contrasted with the
many successes over the last century that have charac-
terized the genetic basis for thousands of inborn errors
of metabolism that segregate in a predictable Mende-
lian fashion (OMIM 2000). Early models of the genetics
of quantitative traits (Nilsson-Ehle 1909; Fisher 1918)
suggest why: Continuous phenotypic variation is in-
fluenced by variation among genotypes defined by

many genetic loci and variation in exposures to many
environmental agents.

The possible complexity of the genotype–
phenotype relationship was later emphasized by Sewall
Wright (1923), who argued for the importance of epis-
tasis (the interaction between two or more genetic loci)
and genotype-by-environment interaction in the map-
ping of genetic variability into phenotypic variability.
Most biologists accept the basic tenet that the influ-
ence of variation in a particular gene depends on the
context defined both by other genes and by exposures
to environments, both internal and external to the in-
dividual, over the life cycle (Lewontin 1992). The im-
portance of context in the analysis and interpretation
of quantitative variation in risk factors for coronary
heart disease (CHD) has been documented by our
group (Reilly et al. 1991; Sing et al. 1996; Zerba et al.
1996, 2000; Lussier-Cacan et al. 1999; Nelson et al.
1999) as well as others (Cobb et al. 1992; Taimela et al.
1996; Jarvik et al. 1997) in studies of the impact of
variation in the gene coding for the apolipoprotein E
molecule on quantitative measures of lipid metabo-
lism.

Despite the reality of these underlying biological
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complexities, a review of the literature reveals that the
goal of most genetic studies of human quantitative
traits is to identify and characterize the effects of indi-
vidual loci that influence interindividual variability.
There is a need to develop analytical methods to iden-
tify combinations of variable loci that may exhibit epi-
static effects on quantitative traits. The analytical strat-
egies that are typically employed make the implicit as-
sumption that such interacting loci can each be
identified through their independent, marginal contri-
bution to trait variability. This simplified approach ig-
nores the possibility that the effects of multilocus func-
tional genetic units play a larger role than do single-
locus effects in determining trait variability (Franklin
and Lewontin 1970; Templeton et al. 1976; Templeton
2000).

The goal of this article is to present the combina-
torial partitioning method (CPM) for identifying par-
titions of multilocus genotypes that predict variation
in quantitative trait levels. Each set of partitions is
evaluated for the phenotypic similarity of individuals
within partitions and dissimilarity of the partition
means. The identification and interpretation of bio-
logical interactions between alleles at each locus
(dominance) as well as biological interactions between
nonalleles (epistasis) is not constrained by their repre-
sentation as parameters in a linear statistical genetic
model. We illustrate this method with an application
to plasma triglycerides and 18 variable loci from six
candidate CHD susceptibility gene regions measured in
188 adult males. The results of these analyses using the
CPM provide statistical evidence for biological interac-
tions between loci. These findings demonstrate that
methods relying on single-locus marginal effects to
identify variable loci influencing quantitative trait
variability may overlook those loci whose contribution
is revealed only when considered in combination with
other loci.

CPM Definitions
The objective of the CPM is to identify sets of parti-
tions of multilocus genotypes that predict quantitative
trait variability. We introduce the following notation
for defining the sets of genotypic partitions (see Box 1).
Let L be the set of variable loci that are measured for a
sample, where the number of loci in L is given as l. Let
M be a subset of L loci, and the number of loci in M be
m. For a particular subset M, the set of observed m-locus
genotypes is denoted as GM with size gM. We define a
genotypic partition as a partition that includes one or
more of all possible genotypes from the set GM. A set of
genotypic partitions, denoted K with size k, is a collec-
tion of two or more disjoint genotypic partitions. In
the CPM, every one of the possible m-locus genotypes
is included in one, and only one, of the disjoint geno-
typic partitions that make up a set, K. The collection of

all possible sets of partitions of the GM genotypes for all
subsets M of L total loci into genotypic partitions de-
fines the state space that is evaluated by the CPM. A
measure (or vector of measures) of phenotypic charac-
teristics computed for each set represents a point on
the surface of points that span all possible sets of par-
titions of genotypes that make up the state space.

Traditional genetic analyses of variation in trait
levels begin by assuming that the number of genotypic
partitions, which we denote as k, to be equal to the
number of genotypes gM on M. An analysis of variance
among genotype means is followed by a posteriori
comparisons to identify genotypes that have signifi-
cantly different trait means. For example, consider a
quantitative trait that is influenced by a diallelic varia-
tion at locus A, where the influence of the A allele is
dominant to the influence of the a allele. A test of
significant differences among the means of the three
unique genotypes, AA, Aa, and aa, may be followed by
all possible pair-wise comparisons that would establish
that, for example, the mean of AA is not significantly
different from the mean of Aa. The objective of the
CPM is to simultaneously identify the A locus as pre-
dicting trait variability and group genotypes that are
phenotypically similar into genotypic partitions as
{AA, Aa} and {aa}, emphasizing similarity among geno-
types within partitions as well as differences between
partitions. A posteriori comparisons have limited util-
ity for characterizing the partitions of genotypes when
gM is large. To overcome this limitation, the CPM
searches over the possible partitions of the gM m-locus

Box 1. Glossary of Notation

Symbol Definition

L Set of all measured loci
l Number of loci in set of loci L
M Subset of measured loci L
m Number of loci in subset of loci M
GM Set of m-locus genotypes defined by the subset of

loci M
gM Number of m-locus genotypes defined by the

subset of loci M
K Set of partitions of multilocus genotypes
k Number of partitions in set K
n Sample size
SSW Sum of squared differences among individuals

within partitions of set K
MSW Mean squared differences among individuals

within partitions of set K
SSK Sum of squared differences among partition

means for set K
sK
2 Bias-corrected estimate of the variance among

partition means for set K
pvK Proportion of phenotypic variability explained by

differences among partition means for set K
CV Appended to the above statistical symbols to

indicate the statistic is based on repeated
10-fold cross validation
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genotypes observed on the subset of loci,
M, into 2 � k � gM partitions.

The application of the CPM to identify
the subset of m � l loci that divide gM

genotypes into k partitions that are similar
within and most dissimilar between parti-
tions for the mean of a quantitative trait
can be broken down into three steps. These
steps are diagrammed in Figure 1. The first
step is to conduct the primary evaluation
of the state space of sets of genotypic par-
titions for statistical measures of pheno-
typic characteristics of the k partitions of
genotypes. In this presentation, we con-
sider the estimation of the genetic variance
measured by variation among the means of
the k partitions of the gM genotypes. The
sets of genotypic partitions that each pre-
dict more than a prespecified level of trait
variability are retained for further analysis.
The second step is to validate each of the
retained sets of genotypic partitions by
cross validation methods. The third step is to select the
best sets of genotypic partitions, on the basis of the
results of the cross-validation from step 2, and proceed
to draw inferences about the combinations of variable
loci and the relationships between the distribution of
phenotypic variability and the distribution of the gM

multilocus genotypes for these sets of genotypic parti-
tions. In the following sections, we describe each of
these steps in greater detail.

Step 1: Search and Evaluation of the State Space
Searching the state space of all possible ways to parti-
tion m-locus genotypes into sets of genotypic parti-
tions for all subsets of l loci can be separated into two
nested combinatorial operations, illustrated in Figure 2
for m = 2. The first operation, described in Figure 1,
Step 1, and illustrated in Figure 2A, consists of system-
atically selecting all possible subsets of variable loci for
the desired values of m, of which there are (l

m) ways. For
each subset M, the m-locus genotypes are identified,
illustrated in Figure 2B by the 3 � 3 grid for two dial-
lelic loci A and B. The second operation, depicted in
Figure 2C, is to evaluate the possible sets of genotypic
partitions over the desired range of k. The number of
ways to partition gM genotypes into a set of k genotypic
partitions is known as a Stirling number of the second
kind (Comtet 1974), computed from the sum

S�gM,k� =
1
k! �i= 0

k− 1

� − 1�i�ki ��k − i�gM.

For diallelic loci, the maximum number of m-locus
genotypes that could be observed is gM =3m. For two
diallelic loci with m = 2 and gM = 9, there are 21,146
ways to partition GM into k = 2, 3, …, 9 partitions.
Combining these two combinatorial operations
(choosing M from L and enumerating all K possible
from GM) in the example application below where the
number of variable loci l = 18, if m = 2 and gM = 9 for
all M in L, results in 3,235,338 possible sets of geno-
typic partitions. At this size it is practical to search the
two-locus state space exhaustively. However, by add-
ing even one more variable locus such that gM = 27,
and we partition GM into k = 2, 3, …, 27, the number of
sets of genotypic partitions for a single combination of
three loci is ∼1025, clearly out of the range of what can

Figure 2 A depiction of the combinatorial partitioning method applied two
variable loci at a time (m = 2) over a range of k.

Figure 1 The three steps that constitute the combinatorial par-
titioning method.
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be exhaustively enumerated. The computational feasi-
bility of the CPM is further addressed in the discussion
below. In this article, to illustrate the CPM, we restrict
our application to the two-locus case, and evaluate di-
rectly all possible sets of genotypic partitions. This
complete enumeration of the state space provides ad-
ditional advantages. As we have no a priori knowledge
of how the state space of sets of genotypic partitions, as
defined above, relates to the measured phenotypic
characteristics, enumeration in low dimensions allows
us to examine this relationship directly. Also, observ-
ing the nature of this relationship over the entire state
space can aid in the development of algorithms for
searching higher-dimensional spaces.

To evaluate the state space, we must select a sta-
tistical function that provides a measure of the value of
each set of genotypic partitions. This statistical func-
tion is often referred to as the objective function. The
sum of the squared deviations of the trait means of the
partitions from the overall sample mean (SSK) is a natu-
ral choice for an objective function of a set of geno-
typic partitions. The value of this measure increases as
the individuals within genotypic partitions become
more phenotypically similar and as the phenotypic dif-
ferences between partitions increase. A disadvantage of
the partition sum of squares is that it will tend to in-
crease as k increases, favoring the division of genotypes
into a greater number of partitions. The bias-corrected
estimate of genotypic variance (Boerwinkle and Sing
1986) is used to compensate for this bias. It can be
written as

sK
2 = �

i= 1

k ni�Yi − Y�2

n
−

�k − 1�

n �
i= 1

k

�
j= 1

ni �Yij − Yi�
2

n − k

=
SSK

n
−

�k − 1�

n
MSW

where n is the total sample size, Y is the sample grand
mean, ni is the sample size and Yi is the mean of par-
tition i, Yij is the phenotype of the jth individual in the
ith partition, and MSW is the mean squared estimate of
the phenotypic variability among individuals within
genotypic partitions. This statistic was derived using
the expected mean squares from a standard one-way
analysis of variance model to obtain an unbiased esti-
mator of the measured genotypic variance. This correc-
tion has the effect of penalizing the scaled partition
sum of squares by a quantity that increases with k if the
estimate of MSW does not decrease as additional parti-
tions are considered. For comparative purposes, the
proportion of variability explained by a set of geno-
typic partitions is preferred for general usage over s2

K.
The proportion, denoted pvK, is computed as

p�K =
sK
2

sP
2 =

sK
2

sK
2 + MSW

.

Note that the pvK statistic, which is a function of un-
biased estimators, is not an unbiased estimator of the
proportion of variability explained by set K (Wijsman
and Nur 2001). However, it is appropriate for our pur-
pose of comparing sets of genotypic partitions.

For most traits and combinations of variable loci,
most of the sets evaluated will explain very little phe-
notypic variability and will not be useful for predictive
purposes. For this reason, some filter is needed to de-
cide which sets of genotypic partitions should be re-
tained for further consideration in Step 2 of the CPM
approach (Fig. 1). Many criteria could be used in set-
ting this filter, including criteria based on the signifi-
cance level of an F-test (e.g., MSK/MSW > F[� = 0.005;
k � 1, n � k]), biological significance (e.g., pvK > 0.05),
or some proportion of all of the sets considered (e.g.,
the top 1%, the top 100, or simply the best). In the
application described below, we use a cutoff based on
the distribution of the F statistic.

In addition to the proportion of variability that a
set is predicting, we include an additional criterion in
the evaluation of each set of genotypic partitions. Vari-
able loci that have alleles of low relative frequency are
expected to result in some multilocus genotypes being
represented by only a few individuals in any given
sample. It follows that some of the sets will also have
few individuals in a genotypic partition. Because our
method of evaluating sets is based on both within- and
between-partition sums of squares, sparse partitions
with only one or a few individuals do not have suffi-
cient degrees of freedom to reliably estimate both par-
tition means and partition sums of squares. To avoid
these cases, we set a lower bound on the number of
individuals observed for a partition to be included in
the CPM evaluation. The value of this lower bound is
dependent on the judgement of the investigator. Set-
ting this bound too low could lead to spurious results,
as could be the case if a partition contained one or a
few outliers. However, setting this bound too high
could result in failing to consider sets that could be
useful for predicting phenotypic variability and pro-
viding insights into the trait biology. In the applica-
tion described in this article, we set a lower bound of
five individuals in a valid partition.

Step 2: Validating the Selected Sets of Genotypic Partitions
The next step in the CPM is to validate the retained sets
of genotypic partitions (Fig. 1, Step 2). A very large
number of sets are considered in the process of search-
ing and evaluating the state space of all sets of geno-
typic partitions. This problem is common to the meth-
ods usually applied in the fields of data mining, pattern
recognition, machine learning, and artificial intelli-
gence. These loosely related fields have long struggled
to find appropriate ways to validate the model or col-
lection of models that were constructed as a conse-
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quence of considering the large number of possible re-
lationships that are present within a particular data set
(Ripley 1998, section 2.7). One of the most common
methods of model validation is multifold cross-valida-
tion (Stone 1978), where the number of folds is typi-
cally 10 (Kohavi 1995). This method simulates the pro-
cess of going back into the population of inference and
collecting an independent sample with which to vali-
date the constructed models. Briefly, 10-fold cross vali-
dation is carried out by randomly dividing the sample
into 10 approximately equal-sized groups. The first
group is removed from the sample, and the remaining
nine are used to estimate the parameters of the model,
which in the case of the CPM are the means of the k
genotypic partitions of a set. Then the one group that
was withheld is used to compute a portion of the pre-
dicted within partition sum of squares. This process is
repeated 10 times, with each of the 10 groups being
withheld from the parameter estimation and used to
compute a portion of the predicted within partition
sum of squares exactly once for each of the 10 groups.
The 10 portions of the predicted within partition sum
of squares are then summed to provide an estimate
(SSW,CV) of the cross-validated within partition sum of
squares. To reduce the possibility that a particular ran-
dom assignment of the sample into 10 cross validation
groups might favor one set over another, the random
10-fold random division of the sample and cross vali-
dation is repeated 10 times and the resulting cross-
validated within-partition sums of squares are aver-
aged for each set of genotypic partitions.

This cross-validated estimate (SSW,CV) of the trait
variability within each genotypic partition can then be
used to judge the predictive ability of a given set of
genotypic partitions. For consistency and comparabil-
ity, we use SSW,CV and SSK,CV = SSTotal � SSW,CV in
place of SSW and SSK in the equations above to calcu-
late a cross-validated proportion of variability ex-
plained, denoted as pvK,CV. The larger pvK,CV becomes,
the more predictive the set K is said to be. Note that
SSW,CV must be �SSW, which implies that pvK,CV will be
�pvK.

Step 3: Select the ’Best’ Sets of Genotypic Partitions and Make
Inferences about the Relationship between Phenotypic
and Genotypic Variation
Steps 1 and 2 provide a strategy for identifying sets of
genotypic partitions that predict variation in quantita-
tive trait levels. The third and final step in this ap-
proach (Fig. 1) is to select some subset of the validated
sets of genotypic partitions on which inferences can be
made. The utility of information about these sets de-
pends on the goals of the investigator and the ques-

tions that are being asked. One use could be to identify
the overall “winner,” for eaxmple, the set of partitions
that best predicts phenotypic variation. However,
many other goals cannot be addressed by considering
only one “best” set. For instance, if we are interested in
enhancing our understanding of the relationship be-
tween phenotypic variability and genotypic variability
at multiple loci, there may be information about the
penetrance function or norm of reaction to be gained
by scrutinizing a subgroup of multiple sets of geno-
typic partitions that may be almost as predictive as the
overall best predictive set. When making inferences
about such a group of multiple sets, we may ask the
following questions: How much trait variability does
each of the selected sets explain? Which combinations
of loci are involved in the selected subgroup of all pos-
sible sets? If there are multiple combinations of loci
represented in these selected sets, how do the genoty-
pe–phenotype relationships in one combination com-
pare with another? Are the selected loci acting addi-
tively on the variance of the trait? How do the geno-
type–phenotype relationships observed in the selected
sets compare with the relationships expected using tra-
ditional multilocus models? What criteria should be
used in making the subjective decision of how many
sets should be selected for drawing inferences about
genotype–phenotype relationships? An application of
the CPM to illustrate it’s utility in providing analytical
results to deal with these questions is presented next.

Example Application

Sample
To illustrate the combinatorial partitioning method,
we present an application to identify sets of genotypic
partitions of two-locus combinations of 18 diallelic loci
(16 single nucleotide polymorphism [SNPs] and two
insertion-deletions [InDels]) located in six candidate
CHD susceptibility gene regions (Table 1) that predict
interindividual variability in plasma triglycerides (Trig)
levels, a known CHD risk factor. The sample used here
comes from the Rochester Family Heart Study (RFHS),
a population-based study of multigeneration pedigrees
sampled without regard to health status from the
Rochester, Minnesota, population (Turner et al. 1989).
Because the genetic influence on variation in most
quantitative trait levels is influenced by age (Reilly et
al. 1992; Zerba et al. 1996; Jarvik et al. 1997; Nelson et
al. 1999), we restricted our analyses to adults ages 20–
60 yr. From 281 pedigrees, we selected 188 males for
this sample application. All individuals were within
the prescribed age window and had Trig measurements
and complete genotypes for all 18 variable loci. In this
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sample, the distribution of Trig was right skewed
(skewness = 2.7) and leptokurtic (kurtosis = 9.6). In ac-
cordance with common practice in the study of lipid
metabolism, we applied a natural logarithm transfor-
mation (lnTrig). This transformation greatly reduced
both the skewness (0.83) and the kurtosis (1.04). Fi-
nally, to reduce the influence of age and body size on
lnTrig variability, we adjusted lnTrig using a linear re-
gression model that included age, height, and weight
(each up to third-order polynomial terms) and waist-
to-hip ratio and body mass index.

Analysis
The single-locus contribution to adjusted lnTrig
(henceforth referred to as lnTrig) variability (pv) is
shown in Table 1 for each of the 18 diallelic loci. The
bias-corrected estimate of the proportion of lnTrig vari-
ability explained ranges from 0.000 for nine of the loci
to 0.021 for the StuI locus in the LDLR gene. The vari-
ability among single-locus genotypes was not statisti-
cally significant at the level of � = 0.01 for any of the
18 variable loci.

Step 1: Evaluation of the State Space of Sets of Genotypic Partitions
As discussed above, we limited the state space in this
application to all possible sets of genotypic partitions
(K: k = 2, 3, …, 9) defined by all possible pairs (m = 2) of
the l = 18 diallelic loci. We set five as the lower bound
for the number of individuals that must be present to

constitute a valid partition. Sets containing a partition
with fewer than five individuals were excluded from
further evaluation. To filter the potentially millions of
valid sets of genotypic partitions for validation in Step
2, we selected a criterion based on the test-wise signifi-
cance of each set. All sets with an F statistic that ex-
ceeded the 0.995 quantile of the F distribution corre-
sponding to each k considered, that is, F(� = 0.005;
k � 1, n �k), were retained for further validation.
This combination of criteria for k = 2, 3, …, 9 resulted
in the consideration of 794,699 sets and the retention
of 7710 sets (1.0%).

The number of sets considered is much lower than
the 3,235,338 possible sets associated with all two-
locus combinations of 18 diallelic loci. There are two
reasons for this. The first is that for most of the pair-
wise combinations of loci, fewer than nine two-locus
genotypes were observed, such that the total number
of enumerable sets of genotypic partitions for this
sample is 1,001,270. The second reason is that 206,571
sets were not evaluated because they contained parti-
tions with fewer than five individuals. The proportion
of variability explained by each of the retained sets is
displayed in Figure 3. Each line in the plot corresponds
to the retained sets for a different number of partitions
(k = 2, 3, …, 8). The retained partitions for each k are
sorted by the proportion of variability explained for
each set, with the sets that explain the least at the left

Table 1. Variable Diallelic Loci Used in the Example Application

Locus
Relative

frequencya pv Location Reference

APOB 2p24
InDel 0.683 0.000 Exon 1 Boerwinkle and Chan 1989
XbaI RFLP 0.525 0.002 Exon 26 Berg et al. 1986
MspI RFLP 0.899 0.009 Exon 26 Priestley et al. 1985
EcoRI RFLP 0.871 0.000 Exon 29 Shoulders et al. 1985

PONl 7q22
L54M 0.629 0.000 Exon 3 Humbert et al. 1993
R192N 0.718 0.010 Exon 6 Humbert et al. 1993

LPL 8p22
PvuII RFLP 0.526 0.000 Intron 6 Li et al. 1988
HindIII RFLP 0.721 0.012 Intron 8 Heizmann et al. 1987
BstNI RFLP 0.703 0.000 Intron 9 Funke et al. 1988

APOAl-C3-A4 11q23
InDel 0.548 0.010 5� of APOAl Coleman et al. 1986
PstI RFLP 0.943 0.010 3� of APOAl Kessling et al. 1985
SstI RFLP 0.907 0.000 Exon 4, APOC3 Rees et al. 1983

LDLR 19p13
TaqI RFLP 0.911 0.017 Intron 4 Yamakawa et al. 1987
StuI RFLP 0.955 0.021 Exon 8 Kotze et al. 1986
HincII RFLP 0.556 0.000 Exon 12 Leitersdorf and Hobbs 1987
AvaII RFLP 0.552 0.000 Exon 13 Hobbs et al. 1987

APOE 19p13.2
C112R 0.833 0.000 Exon 4 Rall et al. 1982
R158C 0.922 0.000 Exon 4 Rall et al. 1982

aFor the most common allele.
Loci are shown with the proportion of lnTrig variability (pv) that they explain independently.
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of the plot and the sets that explain the most at the
right.

There are a few notable features of the plot in Fig-
ure 3. First, the number of sets retained varies greatly
by k, ranging from 11 (k = 8) to 2911 (k = 4). Second,
the sets that explain the greatest proportion of variabil-

ity for each k range from pvK = 0.073 (k = 8) to
pvK = 0.093 for (k = 3). Recall that the retained sets that
explain the least proportion of variability in lnTrig cor-
respond to the minimum established by the F distribu-
tion with the appropriate degrees of freedom for each
k. The third notable feature in Figure 3 is the shape of
the lines. There are many sets of genotypic partitions
near the cutoffs that explain roughly the same propor-
tion of variability, and relatively few that explain sub-
stantially more. For example, for k = 3, 1357 (94%) of
the retained sets explain between 0.045 and 0.069
(lower 50% of the range in pvK), while 81 (6%) ex-
plained between 0.070 and 0.093 (upper 50% of the
range in pvK), and only 12 (0.8%) explained within the
upper 25% of the range.

While Figure 3 provides a useful description of the
proportion of variability being explained by the re-
tained sets of genotypic partitions, it contains no in-
formation about which pairs of loci are involved. This
information is presented in Figure 4 for k = 2, 3, 4, 5.
The remaining k are not presented because of limita-
tions in space and, as it will be shown by cross valida-
tion in the next section, all of the sets for k = 6, 7, 8
lack the ability to predict lnTrig variability. In Figure 4,
there is one panel corresponding to each k. The Y-axis

Figure 3 Plot of the proportion of variability explained by the
7710 retained sets of genotypic partitions. The sets are sorted by
the proportion of variability explained and connected by a col-
ored line corresponding to the number of partitions in each set.

Figure 4 Plot of the proportion of variability explained by the same sets shown in Figure 3, after grouping by the pairs of variable loci
included in each set and sorting groups by the proportion of variability explained by the best partition for each group.

Nelson et al.

464 Genome Research
www.genome.org



corresponds to the proportion of variability as in Fig-
ure 3. The X-axis corresponds to each pair of loci with
a retained set of genotypic partitions, sorted on the
basis of the maximum value of pvK for each pair. The
greatest proportion of variability is explained by a set
with k = 3 defined by the pair {InDel (APOA1-C3-A4),
HincII (LDLR)}. The set of genotypic partitions that ex-
plains the greatest proportion of ln Trig variability not
involving the InDel and HincII pair of loci also corre-
sponds to k = 3 and is defined by {InDel (APOA1-C3-
A4), AvaII (LDLR)} with pvK = 0.076. Note that HincII
and AvaII are both located within LDLR, are separated
by a single intron, and have previously been shown to
be in very strong linkage disequilibrium in this popu-
lation (Zerba et al. 1998). As a result, the most explana-
tory sets defined by these variable loci have very simi-
lar assignments of genotypes (and individuals) to those
of partitions. The next most explanatory set also cor-
responds to k = 3 defined by the pair {InDel (APOA1-
C3-A4), R192N (PON)}, where pvK = 0.068. In addition
to the most explanatory set overall, the pair {InDel

(APOA1-C3-A4), HincII (LDLR)} identified the most ex-
planatory set of genotypic partitions for all k. The most
explanatory set in k = 4 explains nearly as much as the
best set overall (pvK = 0.090 versus pvK = 0.093). The
most explanatory sets with two and five partitions had
pvK of 0.082 and 0.087, respectively.

Step 2: Validate Retained Sets of Genotypic Partitions
The 7710 sets of genotypic partitions retained in Step 1
were validated using the repeated 10-fold cross-
validation method discussed above. The cross-valida-
tion was carried out on each of the retained sets 10
times. Using the predicted within-partition sum of
squares (SSW,CV) obtained from averaging the 10 cross-
validation results, pvK,CV, a measure of the predictive
ability of each retained set was obtained. The sets were
then sorted by pvK,CV and plotted in Figure 5, which,
analogous to Figure 3, plots a nondecreasing line con-
necting the ranked sets for each number of partitions
with pvK,CV on the Y-axis. The values of pvK,CV range

Figure 5 Plot of the cross-validated proportion of variability explained by the 7710 retained sets of genotypic partitions. The sets are
sorted by the proportion of variability explained and connected by a colored line corresponding to the number of partitions in each set
(smooth, nondecreasing lines). The proportion of variability explained for each set before cross-validation is shown by the jagged lines
of corresponding colors.
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from �0.023 (k = 8) to 0.067 (k = 3). All of the sets for
k = 6, 7, 8 fall below 0.020, and on the basis of our
inspection of Figure 5, we chose to consider these sets
as not predictive. The greatest difference between the
lines displaying pvK,CV in Figure 5 and those in Figure
3 is that instead of slowly sloping toward the lower
bound, there is a small proportion for each k that is
noticeably less predictive than the rest, shown by the
sharp drop-off at the left side of each line. As in Figure
3, a majority of the sets fall within a very narrow range
of the line. This is particularly pronounced for k = 3, 4,
5. The right-hand portion of the plot showing the best
sets for each k again shows that they are outliers from
the rest. This is a useful feature for the selection of a
subset of sets of genotypic partitions on which to make
inferences, focusing attention on just a few sets from
among the many possibilities.

To display the relationship between pvK and
pvK,CV, the values of pvK for each retained set are also
included in Figure 5 (jagged lines), where the color of
the line is used to differentiate among k. Though the
two measures are correlated, the relationship between
them is not one to one. There are many sets with high
values of pvK that do not have correspondingly high
values of pvK,CV. In this particular case, the set with the

highest overall value of pvK also had the highest overall
value of pvK,CV.

The predictive ability of each of the retained sets of
genotypic partitions sorted according to combinations
of variable loci, analogous to Figure 4, is shown in Fig-
ure 6 for k = 2, 3, 4, 5. In comparison to Figure 4, the
ranking of the pairs of variable loci is unchanged
among the top three combinations. As noted previ-
ously, for each k, the top three combinations of loci are
{InDel (APOA1-C3-A4), HincII (LDLR)}, {InDel (APOA1-
C3-A4), AvaII (LDLR)}, and {InDel (APOA1-C3-A4),
R192N (PON)}.

Step 3: Select the Best Sets of Genotypic Partitions and Make
Inferences about the Relationship between Phenotypic
and Genotypic Variation
Here we are faced with the challenge of restricting our
attention to some subset of the 7710 retained sets with
which we can make inferences. Our focus for this task
is on the results plotted in Figures 5 and 6, based on the
cross-validated proportion of variability explained
(predictive ability). Clearly, sets that take on negative
values for pvK,CV, which occurs when SSW,CV is greater
than SSTotal, have no predictive ability and would not
be useful for making inferences. Rather than select

Figure 6 Plot of the proportion of cross-validated variability explained by the same sets shown in Figure 5, after grouping by the pairs
of variable loci included in each set and sorting groups by the proportion of variability explained by the best partition for each group.
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some predetermined level of pvK,CV as being ad-
equately predictive for inferential purposes, we instead
can benefit from the information contained in the dis-
tribution of the cross-validated results. Combining the
information contained in Figures 5 and 6, we see that
there are three sets of genotypic partitions that stand
out above the remaining 7707 sets. The values of pvK,CV

for these three best sets are 0.062 (k = 2), 0.065 (k = 3),
and 0.067 (k = 3), with corresponding values of pvK of
0.081, 0.092, and 0.093, respectively. Each of these sets
are partitions of nine two-locus genotypes defined by
{InDel (APOA1-C3-A4), HincII (LDLR)}. In fact, there
are 57 sets defined by these two loci that predict lnTrig
variability better than the best set defined by the next
best pair of loci, {InDel (ApoA1-C3-A4), AvaII (LDLR)}.

The partitioning of the multilocus genotypes into
the three best sets is shown in Figure 7. The genotypes
are represented by a 3 � 3 grid, and the assignment of
each genotype to a partition is indicated by shade, with
the lightest shade for the partition with the lowest
mean lnTrig and the darkest shade for the partition
with the greatest mean lnTrig. In all three sets, the
partition corresponding to the lightest shade (lowest
mean) is unchanged. Also unchanged is the presence
of (DD,��) and (ID,+�) in the same partition as well
as(ID,++) and (II,+�). The only difference between the
two sets with k = 3 is the change of(II,��) from the
darkest partition to the intermediate partition. This
change has only a minor effect on both pvK and pvK,CV.
It is not surprising that this two-locus genotype is the
least frequent of the nine, containing seven individu-

als. For the set with k = 2, the multilocus genotypes
within the intermediate and high mean ln Trig in the
k = 3 sets are combined into a single partition, which
results in a moderate decrease in both pvK and pvK,CV.

To obtain an estimate of the statistical significance
of the most predictive set, we performed a permutation
test (Edgington 1995). The objective of a permutation
test is to produce the distribution of the test statistic of
interest under the null hypothesis, which in this case is
proportion of variability explained by the most predic-
tive set of genotypic partitions identified by the CPM.
The test was carried out by disassociating the geno-
types and phenotypes in the data set, randomly reas-
signing the phenotypes to genotypes via sampling
without replacement, and then performing the CPM
on this randomized data. This process was repeated
1000 times, and for each permutation, the set that ex-
plained the greatest proportion of variability was ob-
tained. The proportion of permutations with results
greater than the observed estimate of 0.093 for the
most predictive set was 0.14.

DISCUSSION
The CPM is being developed to simultaneously iden-
tify variable loci and model the statistical relationship
between interindividual variability in quantitative trait
levels and the selected loci. The CPM addresses three
limitations of traditional statistical genetic methods. It
considers, first, a model free strategy for evaluating
combinations of a large number of variable loci; sec-
ond, the detection of nonadditivity of locus effects,

even in the absence of marginal effects of
the loci being considered; and third, rela-
tionships between phenotypic variability
and genotypic variability that are not con-
strained by a priori genetic models.

The example application presented in
this article illustrates the fundamental
steps involved in the CPM (Fig. 1) and
demonstrates several of its advantages.
First, the CPM identified combinations of
loci with small marginal effects that com-
bined to predict the greatest amount of
trait variation. The best partition of the
genotypes defined by the InDel and HincII
loci predicted 9% of trait variability (Fig. 7),
but each locus predicted <1% variability
when considered separately (see Table 1).
Second, the CPM identified multiple pre-
dictive sets of genotypic partitions. The
best three sets of genotypic partitions, each
predicting >8% of trait variability, were de-
fined by the InDel and HincII loci. Third,
comparison of the best sets of genotypic
partitions enhances our understanding of
the relationship between phenotypic vari-

Figure 7 The three selected sets of genotypic partitions with the greatest pro-
portion of cross-validated variability explained are represented by a 3 � 3 grid of
nine two-locus genotypes with shading to represent the partition each genotype
belongs to. Below each partition is a smoothed histogram showing the ln Trig
distribution within each partition (indicated by shading) and the mean and sample
size of each partition.
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ability and genotypic variability at multiple loci. The
best three sets of partitions identified by the CPM in
the example application suggest that the dominance
effects of the HincII alleles are dependent on the con-
text defined by genotypes at the InDel locus.

None of the loci considered predicted >2% of trait
variability, yet many two-locus combinations pre-
dicted >5% of trait variation. The implication of the
kind of nonadditivity observed here is that methods
for identifying variable loci that influence quantitative
trait variability that rely on independent marginal ef-
fects will underestimate the contribution of genetic
variation to determining the genetic architecture of a
quantitative trait. If such gene-by-gene interaction
proves to be a common theme, as we expect (Temple-
ton 2000), the common practice of searching for influ-
ential loci one at a time will overlook the contribution
of many important variable loci.

The example application also brings to attention
issues that must be addressed to take full advantage of
the CPM. An investigator is faced with the subjective
decision of establishing the criteria for the size of the
selected subgroup of sets of partitions that will be con-
sidered in making inferences. This decision becomes
more complicated when the best sets of genotypic par-
titions are defined by multiple independent pairs of
variable loci. This was not an issue in the example ap-
plication presented here but has appeared in other data
sets to which we are applying this method. Partition
comparison methods such as the Rand index (Hubert
and Arabie 1985) that compare the distributions of in-
dividuals among partitions between sets may prove
useful in resolving this issue. Further work on methods
of validating the selected sets of genotypic partitions is
needed to guard against artifacts that may influence
the 10-fold cross-validation strategy. Work is ongoing
in our group to apply alternative methods of model
validation, particularly randomization tests (Edging-
ton 1995; Efron and Tibshirani 1997) and comparing
the inferences drawn using the different methods such
as CART (Breiman et al. 1984) and neural networks
(Ripley 1998).

The full potential of the CPM to investigate epis-
tasis and genotype-by-environment interaction will
not be achieved if only pairs of variable loci (or other
discrete variables) are considered. It is therefore of great
interest to extend the CPM to larger numbers of loci (l),
combinations of loci (m), and sample sizes (n). At what
point is this method no longer computable? As dis-
cussed above, the two operations in Figure 1, Step 1
involve two levels of combinatorics that we need to be
concerned about. The first level involves choosing sub-
sets M of set L. For each combination of loci M, various
sums of squares and sample statistics must be updated,
which require O(n) time to accomplish (for a review of
big-O notation, see Knuth 1997, pp. 107–111). The sec-

ond level of combinatorics involves searching over the
state space of sets of genotypic partitions for each
choice of M for those sets we wish to retain for further
validation. With the initial sums of squares and other
statistics computed for a particular M, calculating the
necessary statistics to judge the proportion of variabil-
ity explained by a particular set K using efficient up-
dating algorithms is accomplished in O(gM) time,
which is short for the relatively small values of m that
would be of interest. However, the number of possible
K for each combination of variable loci becomes very
large very quickly. Heuristic optimization methods
such as simulated annealing (Kirkpatrick et al. 1983)
and genetic algorithms (Goldberg 1989) might prove
effective for finding the sets of genotypic partitions
that are best for predicting quantitative trait variabil-
ity.

Most traits of interest in human genetics have a
complex multifactorial etiology. Variation in such
traits is influenced by variation in many factors, in-
cluding multiple interacting genetic loci and environ-
mental exposures. However, most studies of the ge-
netic basis of such traits ignore this reality, relying on
methods that have been effective in the arena of sim-
pler Mendelian traits that consider the relationship be-
tween trait variability and genotypic variability on a
locus-by-locus basis, assuming context invariance. This
general tendency toward oversimplification was clearly
stated by Franklin and Lewontin (1970):

The models of population genetics, which have remained
almost unchanged for forty years, are most commonly criti-
cized for ignoring the “natural” unit of selection, the geno-
type, in favor of the gene. This criticism is really an attack
on one of the basic assumptions of population genetics
theory, namely that the genotypic array in a random mating
population, and evolutionary changes in that array, can be
described in terms of gene frequencies at the individual loci.

This criticism continues to be relevant to the concep-
tual models of genotype–phenotype relationships that
most current analytical methods are based on. Efforts
to advance the available methods for studying the re-
lationships between phenotypic variability and geno-
typic variability must consider the entire genotypic ar-
ray, however complex, and identify the combinations
of variable loci that define multilocus genotypes that
predict quantitative trait variability. The CPM is one
step in the direction toward the development of meth-
ods that embrace a more realistic perspective on the
role that genotypic variability plays in interindividual
variation in quantitative traits that have a complex
multifactorial etiology.
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