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In highly parallel machine architectures. an important issue .is how to inter-

connect components so as to pass data between processors. A crossbar switch

connecting all the processors is very flexible. allowing any interprocessor oon-

nection. Crossbars however have cost proportional to the square of the number

of processors they connect. As a consequence of the advances in mlcrocircui-

try, systems with thousands of processors are now feasible. Several less costly,

and less flexible. processor interconnection networks have been proposed [3].

Of interest are the tradeoffs between the cost and the flexibility of each of the

various interconnection schemes. The flexibility of an interconnection system i.s

measured by counting the number of input to output permutations realizable by

the network. In this note we count precisely the number of possible connection

permutations achieved by the last stage of the Augmented Data Manipulator

(ADM) introduced in [4] as a modification of the data manipulator network of [1].

In the final stage of the ADM network. a linear sequence of.n components is
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connected in such a way that adjacent positions may be interchanged. The con

tents of the first component may also be interchanged with the last. Every set

of interchanges is possible, as long as a single component does not participate in

two different interchanges (else the same datum would go to two places. and the

result would not be a permutation). In addition, left and right circular shifts by

one position are allowed. Eelo~ we calculate precisely P (n). the :qwnber of

diB'erent permutations which an ADM network of length n;;H may achieve in a

single step.

With each permutation performed by an ADM network of length n there is

an associated bit string of length n. Within the bit string. the i th bit is one if and

only if the ith. and the i +1st inputs are interchanged by the associated permuta

tion (see Figure 1).

o >0

Figure 1. A permutation with n=B and associated bit string

Thus. each setting of the network, except the two circular shifts, is associated

with a string of O's and I's with the restriction that adjacent bits may not both

be 1. Let A (n) = the number of different strings of n bits in which no two adja

cent bits are both 1. and the first and last bits are not both 1. Except for the

trivial cases when n=l or 2; P(n)=A (n)+2.
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PROPOSITION 1

P(l) = 1

P(2) = 2

P(n) =A(n) + 2 forn~3

Proof:

P(l) = 1 is obvious. P(2) = 2 since the only two possibilities are the iden

tity permutation and the exch;:mge. For n~3. every different setting of the

ADM network of size n produces a different permutation. Consider two

difJerent settings, 51 which interchanges i and i+1, 52 which does not inter

cbange-i and i+1. 51 maps ito i+1, 52 maps i to either i or i.:.1. For n!5=3.

i,i+l,i-1 are all different mod n, so the two permutations are different. By

the discussion above. there is a one-to-one -corresp0f;ldence between -net-

work settings. excepting the two circular shifts. and the bit ~trings counted

in the definition of A (n).

The function A (n) is easier to analyze using a. similar function B (n), which elim- .

inates the restriction that the first and last bits in a string must not both be 1.

i.e. B(n) = the number of different strings of n bits in which no two adjacent

bits are both 1.

PROPOSITION 2

A (1) = 1

A(2) = 3

A(3) = 4

A (n)=B (n-l)+B (n-3) for n~4

Proof:

The first three cases are verified by counting. For n~4. consider an arbi

trary string of n bits with no two adjacent 1 'so including end around adja-

cency. If the- first bit is O. then the remaining n-l bits may be set in any
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fashion as long as no two adjacent bits are 1. There are B (n -1) such

strings. If the first bit is 1. then the second and last bits must both be O.

but the remaining n-3 may be set in any fashion as long as no two adjacent

bits are 1. There are B (n -3) such strings.

PRoPOSITION 3

B (n) is a shifted Fibonacc(series.

B (l) = 2

B(2} = 3

B (n) = B(n-l) + B(n-2} lor n~3

Proof:

For na3, consider an arbitrary string of n bits with no two adjacent l's. If

the first bit is O. then the remaining n-l bits may be set in any fashion as

long as no two adjacent bits are 1. There are B (n-i) such strings. If the

first bit is 1. then the second bit must be O. but the remaining n-2 bits may

be set in any fashion as long as no two adjacent bits are 1. There are

B (n -2) such strings.

Using equation (15) in [2 §1.2.B] and the above Propositions. we have that

for n.e::6

n+l n-l

P(n}=[~]+[~]+2

where rp is the golden ratio ~(l +..'/'5) and [z] is z rounded to the nearest integer.

In [5] it is shown how to count the total number of permutations produced by an

ADM in terms of P(n) ..

We wi::;h to acknowledge H. J. Siegel and.G. Adams for.bringing the above

problem to our attention. Computer time was supplied by the Department of

Computer Sciences at Purdue University.



References

-5-

•
1. F'ENG. T.. "Data manipulating -functions in parallel processors and their

implementations," iEEE Transactions on Computers C-23(3) pp. 309-318
(1974).

2. KNUTH, D., The Art of Computer Pr,ogramming: Fundamental Algorithms,
Addison-Wesley. Reading, Mass. (1968).

3. SIEGEL, H. J., "Interconnection networks for SIMD machines," Computer
12(6) pp. 57-65 (1979).

4. SIEGEL, H. J. AND SMITH, S. D.. "Study of multistage SIMD interconnection net
works. II PToceedings of the Fifth Annual Symposium on Computer Architec
ture. pp. 223-229 (l976).

5. SMrrn. S. D•• SIEGEL, H. J.., McWI.J:..EN. H. J., AND ADAMS. G. B.• "Use of augmented
data manipulator multistage networks for SIMD machines." Proceedings of
the 19'80 International Conference on Parallel Processing, (19BO).

I.


	A Combinatorial Problem Concerning Processor Interconnection Networks
	Report Number:
	

	tmp.1307986960.pdf.b0SBm

