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ABSTRACT. A combinatorial problem arising from the analysis of a model of interleaved 
memory systems is studied. The performance measure whose calculation defines this problem 
is based on the distribution of the number of modules in operation during a memory cycle, 
assuming saturated demand and an arbitrary but fixed number of modules. 

In general terms the problem is as follows. Suppose we have a Markov chain of n states 
numbered 0, 1, . . .  , n - 1. For each i assume that  the one-step transition probability from 
state ~ to state (i T 1) mod n is given by the parameter a and from state i to any other state is 

= (1 - -  ~)/(n - -  1). Given an initial state, the problem is to find the expected number of 
states through which the system passes before returning to a state previously entered. The 
principal result of the paper is a recursive procedure for computing this expected number of 
states. The complexity of the procedure is seen to be small enough to enable practical numeri- 
cal studies of interleaved memory systems. 
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1. Introduction 

I n  a r ecen t  p a p e r  [1] a mode l  of i n t e r l eaved  m e m o r y  sys tems  was devised  a n d  

ana lyzed .  I n  t he  analys is ,  s e p a r a t e  models  of i n s t ruc t ion  and  d a t a  address ing  were  

p roposed  in o rder  to  consider  possible  i m p r o v e m e n t s  in t he  ave rage  m e m o r y  

b a n d w i d t h ,  defined to  be  t he  average  n u m b e r  of m e m o r y  modules  in ope ra t ion  per  

m e m o r y  cycle. T h e  numer i ca l  s tudies  d e m o n s t r a t e d  t h e  t rade-off  be tw e e n  ins t ruc-  

t ion  and  m e m o r y  cycle  speeds and  also showed t h a t  s ignif icant  increases  in t he  

ave rage  m e m o r y  b a n d w i d t h  can be  o b t a i n e d  b y  s e p a r a t e l y  g roup ing  ins t ruc t ion  a n d  

d a t a  reques t s  when accessing the  memory .  

These  numer i ca l  s tudies  were  based  on m a t h e m a t i c a l  ana lyses  of i n s t ruc t ion  and  

d a t a  address ing  models .  T h e  analys is  of d a t a  address ing  in an  i n t e r l eaved  m e m o r y  

sys t em is of pa r t i cu l a r  i n t e re s t  as a combina to r i a l  p rob lem,  and  i t  forms the  s u b j e c t  

of th is  paper .  
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2. The  Mode l  

The model to be analyzed is shown in Figure 1. There are n identical modules, each 
capable of reading or writing one word per memory cycle. We shall assume tha t  the 
modules operate synchronously and with identical cycle times. In practice, the 
request sequence r l ,  • • • , rk, • • • in the request queue contains conventional storage 
addresses; however, for our purposes only the module number from the address is 
of interest. Thus we will consider the requests r , ,  i = 1, 2, • • • ,  to be integers from 
the set S~ = {0, 1, • • • ,  n - 1}. The scanner operates by  admitting new requests to 
service until i t  a t tempts  to assign a request to a busy memory module. To do this, 
prior to the s tar t  of a given memory cycle (i.e. during the previous memory cycle) 
the scanner inspects the request queue beginning with the request rejected for the 
previous cycle, and determines the maximum length sequence of distinct module 
requests. Tha t  is, it scans the queue to the first repetition of a module request. The 
memory requests in this maximum length sequence are then sent to the appropriate 
memory modules so that  they will be active in the next memory cycle. During this 
next memory cycle the above process is repeated to obtain the requests served in the 
subsequent cycle. 

We shall assume tha t  the request queue always contains more than n requests 
when inspected. In effect, the queue will always be saturated and our interest will 
be in characterizing system capacity. Clearly, the effectiveness of the system is 
determined by the probability mass function (pmf) governing the number of distinct 
requests served in each memory cycle. This pmf is to be found assuming that  the 
probability model is the one defined below. (This model may be regarded as a 
generalization of a simple model studied by  Hellerman [2].) 

The request sequences are modeled by the parameter  a whose meaning is given 
as follows. The first request in the request queue addresses a module at random. 
Thereafter ,  the i th  request, i >_ 2, addresses the next module in sequence (modulo n) 
with stationary probability a, and addresses any one of the modules out of sequence 
with probability ~ = (1 - a ) / ( n  - 1). Formally, let r~, • • • , r , ,  • • • denote the 
contents of the request queue. Then 

Pr  (rl = m )  = l / n ,  m E S,, = {0, 1, . . .  , n -  1}; 

Pr ( r ,+ l  = ( r , +  1 ) m o d n )  = ~, i =  1,2,  . . .  ; (1) 

Pr  (r,+l = m) = ~, m E S~, m ¢ (r, -4- 1) modn,  i = 1, 2, . . .  

For example, in a system having n > 7 modules, the initial subsequence 0,5,6,2,3 
would have probability (1/n)a2~ 2. 

FIG. 1 

ion 
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Let  w,,  i = 1, 2, . . . ,  be the random variable whose value is the number of 
requests served on the i th memory cycle. A little reflection convinces us tha t  the 
distribution for w~ is independent of the value of the first request inspected in the 
(i - 1)th cycle. I t  follows that  the distributions of the w,'s are the same for all i. 
Thus we shall drop the subscript i and adopt the notation P,~(w _< k) ,  1 < k < n, 
as the common, cumulative distribution function for an n-module system. The 
mean value of this distribution is given by 

B,~ = ~ P , , ( w  L2 k)  (2) 
k~l  

with the units of words per memory cycle. The remainder of the paper is devoted to 
the computation of B~, the average memory bandwidth. 

In general terms the problem can be restated as follows. Suppose we have a 
Markov chain of n states, 0, 1, .. • , n - 1. For each i suppose that  the one-step 
transition probability from state i to state (i W 1 ) mod n is given by  the parameter 
a and from state i to any other state is fl = (1 - a ) / ( n  - 1). Given an initial 
state, the problem is to find the expected number of states through which the system 
passes before returning to a state previously entered. 

3. Computation of B~ 

We begin by observing that  P ,  (w > k) is simply the probability tha t  the first k 
requests found in the request queue are distinct. Next, in computing B~ it is con- 
venient to have the following characterization of request sequences. For the se- 
quence, r = r l ,  • • • , rk, we shall say that  (r,, r,+l), 1 < i < k, is an a-transition 
if r,+l = (r, W 1) mod n; otherwise, it will be called a E-transition. 

Assuming an n-module system, we let c~ (j, k) denote the number of k-length 
sequences of distinct integers for which the number of a-transitions is j and which 
begin with the request r~ = 0. We have chosen the first request to be 0 merely for 
convenience; clearly, the number of such sequences beginning with r, = i is the same 
as the number beginning with any j ~ i. I t  follows easily tha t  we can write 

n k--1 

S,, ~ x~ a'°k-~-lc "" = ~ ~ a ~ ,  k)  (3)  
k~l  3=0 

and our problem is now to find the numbers c~ (j, k). 

We first register the fact tha t  there are (k  - 1 )  possible orderings of the a 
/ \ 

a n d  
J \ 

/F-transitions in k-length sequences with j a-transitions. Let  c. ° (j, k) denote the 
number of sequences of distinct integers for which the first j transitions are a-transi- 
tions and the remaining k - j - 1 are ~-transitions. For example, if j = 6 and 

_ ca (6, 10) denotes the number of sequences of length 10 having k = 10 < n, then 0 
the form 0, 1, 2, 3, 4, 5, 6, rs, r9, r~0 in which the only a-transitions are the 6 pres- 
ent in the initial subsequence 0, 1, 2, 3, 4, 5, 6. 

Note immediately that  c~(0, k) = c~°(0, k) and c~(k - 1, k) = c~°(k - 1, k). 
Also, since there is only one sequence of k consecutive integers beginning with 0 
we have 

c~°(k - 1, k)  = 1, 1 <_ k < nn. (4)  

The total  number of k-length sequences of distinct integers drawn from S~ and 
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beginning wi th  0 is (n - 1)k.-1 = (n - 1 ) ( n  - 2) • . .  (n - k + 1). (We define 
(n - 1)0 = 1.) Hence,  

k--1 
(n - 1 )k-1 ffi (j ,  k ) .  (5 )  

Sg0 

T h e  following resul t  s ignificantly simplifies the  c o m p u t a t i o n  of B~.  I t  follows 
f rom the fact  (which we shall  p rove )  t h a t  the  n u m b e r  of k- length sequences wi th  
one ordering of j a - t rans i t ions  and  k - j - 1 f l- transi t ions is the  s ame  as t h a t  for 
any  o ther  ordering of the  same  number s  of a and  H-transit ions.  

T H E O R E M  1. 

cn( j ,k )  = ( k - 1 ) c , ° ( j , k ) . j  (6)  

PROOF. Le t  Eq denote  the  set  of k- length sequences of dis t inct  integers  which  

h a v e t h e q t h  ( q =  1 , 2 , . .  ( k - l )  • , j ) ordering of j a - t r ans i t ions  and  k j 1 

~- transi t ions.  ~ Le t  q' index an  ordering t h a t  differs f rom the  qth  only  b y  a single 
t ranspos i t ion  of ad jacen t  e lements  ( t rans i t ions) .  I t  is well known t h a t  any  two 
p e r m u t a t i o n s  of j a ' s  and  k - j - 1 ~'s  can be  obgained f rom one ano the r  b y  
sequences of t ranspos i t ions  of ad jacen t  e lements .  T h u s  the  t h e o r e m  will follow easily 
if we can show t h a t  [ Eq[ = I Eq, I. T o  show this  we will p roduce  a one- to-one 
m a p p i n g  f rom Eq onto  Eq, . 

Le t  r l ,  • • • , rk be  a sequence in Eq and suppose  t h a t  the  order ing of t rans i t ions  in 
sequences of Eq differs f rom t h a t  of seque.nces in Eq, only  in the  i t h  and  (i + 1 ) th  

? 
t ransi t ions• In  par t icu lar ,  if r t ,  • • • , rk is in Eq, let us suppose  t h a t  ( r , ,  r,+t) = ' 

, r,+2) = a and  (r ,+l ,  r,+2) (r, ' ,  ' = r ,+l)  = ~. W e  m a p  r l ,  . . .  , r~ into a new 
! ! 

sequence r~, • • • ,  r~ as follows. 
m '  _ ' L e t  r, = m and r,+2 = . T h e n  for each j (1 < j < k) ,  re is ob ta ined  f rom r 

according to the  integer  m a p p i n g  f : S .  --~ S~ : 

(m '  + 1) m o d n ~ ( m '  + 1) m o d n  

(m--  1) m o d n - - ~ ( m -  1) modn  

m - , m  
I 

1 
(m + 1) m o d n  ~ ( m '  - 1) m o d n  

(m + 2) m o d n - ~ ( m +  1) modn  

( m ' - -  1) m o d n ~ ( m ' - -  2) m o d n  

(7) 

Figure  2 shows two examples  for j = 4, k -- 6, and  n = 10. I t  is immedia t e ly  
ev iden t  f rom (7) t h a t  (r,', r:+l) = ~, (r:+l , r:+2) = a, and  the  re' are dist inct .  W e  
now ver i fy  t h a t  (r/, r~+l) = (re, r~+l) for a l l j  ~ i a n d 3  > i + 1, in order  to  show 
t h a t  the  new sequence is indeed a lways in Eq,. 

I n  the  following we assume j ~ i or j > i -t- 1, and  hence rj ~ m, re ~ m W 1, 
r~+l ~ m + 1, and  rj+l ~ m'. Clearly,  if re and  r~+l are  b o t h  unchanged  or if 1 is 
sub t r ac t ed  (mod n )  f rom both ,  then  (re, re+i ) = ( r / ,  r~+1).I W h e n  they  are not  

1 We  do not r e s t r i c t  t h e  f irst  e l e m e n t  of  t h e  s e q u e n c e s  in  Eq. 
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r l  r2 r3 r4 r5 rs r7 

43 

qth ordering: a B a ~ ~ oL 
0 1 6 7 8 4 5 

(q')th ordering" a ~ a /~ a a 
9 0 6 7 3 4 5 

= 4 ,  m = 7 ,  m '  = 4 

qth ordering: ~ a a ~ a a 
4 1 2 3 5 6 7 

(q')th ordering: ~ ~ /~ a a 
3 1 2 4 5 6 7 

z = 3 ,  m = 2, m' = 5 

F I G .  2 

affected the  same wa y  only two cases can arise: 

(a) r~ C { (m + 2) mod n, . . .  , (m' - 1) rood nl and  
r~+l E { (m' + 1) mod  n, . . .  , m}, 

t I 
in which casere = ( r e -  1 ) m o d n a n d r e + l  = r e + l ; o r  
(b)  re E lm' ,  " "  , (m - 1 ) m o d  n} and  

re+lE {(m + 2) m o d n ,  . . - ,  ( m ' -  1 ) m o d n } ,  
i ? 

in which c a s e r  e = r e a n d r e + l  = (re+l--  1 ) m o d n .  

I n  either case it is readily verified tha t  (r~, re+l) = ( r / ,  re+l ) '  = ~ for all valid 
! g • 

choices of r e and re+~. Hence,  r l ,  • • • ,  rk is a sequence in Eq,. 
I t  is easily seen t h a t  (7) generates a mapping  of sequences f '  :Eq "--> Eq, t h a t  is 

bo th  one-to-one and onto.  Since the inverse mapping  is one-to-one onto  we have  
also taken  care of the  assumpt ion  (r , ,  r,+,) = f~ and (r,+l, r,+2) = ~x. 

Since we are now free to  choose the ordering of transit ions,  we choose the  one in 
which all of the a- t rans i t ions  appear  first. Restr ic t ing to sequences beginning wi th  0, 

( k  - 1 )  possible orderings of j (6) follows f rom the observat ion t h a t  there are j 

a - t rans i t ions  and  k - j - 1 fl-transitions. | 
Using Theorem 1 we can develop the  main  result. 

T H E O R E M  2 .  

B~ = ~ k -  1 Xk_j.~_jaeiSk-:-i (8)  
k = l  .7=0 j 

where 

xk,~ = ( n - -  1 ) k - l - -  ~ k -- 1 
ell j Xk--~.~--: (9)  

m which the summat,ion is defined to be 0 i f  k = 1. 
PROOF. First,  it is easily seen tha t  

0 • 0 
c~ (3, k)  = c~_1(3--  1, k - -  1), 1 _<.7 _< k - -  1 _< n - -  1. (10) 

For  by  dropping the last a - t rans i t ion  and considering S~-1 instead of S~, we ob- 
tain the same number  of (k - 1)-length sequences for the  parameters  j - 1 and 
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n - 1 as we had k-length sequences for j and n. One boundary condition is pro- 
vided by (4): 

c~°(0, 1) = 1; (11) 

and another is provided by the observation that  in a sequence of two requests 
beginning with 0 and having a single E-transition, we must have r2 ~ 0 and r2 ~ 1 : 

From (10) we obtain 

c~°(0, 2) = n -- 2. (12) 

cO • 0 = cn-~ (0, k j ) .  (3, k )  - (13)  

Next, using (5) and (6) we get 

) c,~(O,k) cn°(O,k)=(n 1 ) k - i - E 2  k - 1  . . = - cn ( ~ ,  k )  
$-1 j 

whereupon substitution of (13) gives 

)° cn°(o, k) = (n - 1)~-1 - ~ k -j 1 c,~_~(O,k - j ) .  

Introducing the simpler notation xk,~ ~ c~°(0, k) we get (9). Using (6) and (13) 
in (3) we obtain (8). | 

Bn 
15 

14 

13 

12 

11 

10 

n = 24 r / 1 6  

/ / 

.J 4 

• 1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

FIG.  3 
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4. Final Remarks 

The complexity of a procedure for evaluating B~ for given a and n is dominated by  
the computat ion of the xk,,,. The xk,~ are evaluated in the order Xn, " " ,  Xl,,, 
x2~, • • • , x2~, x33, . . . . . .  , x~-i.~, and require a total  of 0 (n 3) simple additions. 

Figure 3 illustrates the behavior  of Bn as a function of c~ for various n. The  limiting 
case o~ = l~ = 1/n corresponds to Hellerman's  random addressing model, 
while a = 1 obviously gives B~ = n. For a more complete numerical s tudy including 
different methods of handling instruction and data  accessing, see [1] and [3]. 
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