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A COMBINATORIAL PROBLEM; STABILITY AND
ORDER FOR MODELS AND THEORIES
IN INFINITARY LANGUAGES

SAHARON SHELAH

Some infinite combinatorial problems of Erdos and Makkai
are solved, and we use them to investigate the connection
between unstability and the existence of ordered sets; we
also prove the existence of indiscernible sets under suitable
conditions.

0. Introduction. In §1 we deal with combinatorial problems
raised by Erdsés and Makkai in [5] (they appear later in Erdos and
Hajnal [3], [18] Problem 71).

Let us define: P2(\, p, @) holds when for every set A of cardi-
nality g, and family S of subsets of A of cardinality \, there are
a,c A, X,e8 for k< a, such that either k, | < a implies a,¢ X, =
E<lork | <aimplies a,e X, =1 k.

Erdos and Makkai proved in [5] that if A > ¢ = ¥, then P2(),
L, @) holds. Assuming G.C.H. for simlicity only, our theorems imply
P2(Wer2, Wss1, W) holds for every g.

In § 2 we mainly generalize results on stability from Morley [9]
and Shelah [12] to models, and theories of infinitary languages. We
first deal with stable models. Let M be a model, L the first-order
language associated with it, 4 a set of formulas of L,+, (for any A\)
each with finite number of free variables. We shall assume 4 is
closed under some simple operations. M is (4, »)-stable, if for each
AcC| M|, |A] £\, the elements of M realize over A no more than »
different 4-types. Let ) e Od, (M) if there is o(%, ¥) € 4 and sequences
@*, k <\, of elements of M such that for every k, I < \, M = @[a*, a']
if and only if & < I.

By Theorem 2.1, if M is not (4, k)-stable £'*' =k, £ = 3, .;(k* + 22,
then : e Od,(M). Theorem 2.2 says that if M is (4, \)-stable, » ¢ Od (M),
| M >N AC| M|, |A| £\, and the cofinality of A is > |4]|, then
in M there is an indiscernible set over A of cardinality > . This
generalizes Theorem 4.6 of Morley [9] for models of totally transcen-
dental theories.

A theory T, T< L;+ ., for some ), is (4, p)-stable, if every model
of T is (4, m)-stable. By Theorem 2.4, if T,4c L;~,{T| =2\, and
¢(n\) € Od(M) for some model M of T, then for every &, T is not (4, k)-
stable. This is a converse of Theorem 2.1. (Morley [9] proved a
particular case of this theorem (3.9) that if T is a first-order, counta-
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ble, complete, totally trancendental theory, (i.e., T is (4, ¥W,)-stable,
where 4 is the set of all formulas of L), then W,¢ Od,(M) for any
model M of T. (In fact he used a little stronger definition for
Ro e 0d,(M).)

By Theorem 2.5, if Tc L;+,, and 4 is arbitrary, and for every
£, T is not (4, k)-stable, then for some 4, C L;+,, |4, £\, T is (4,, £)-
unstable for every k. By Shelah [16], we deduce that for every
£ > |T|+ N, T has 2¢ nonisomorphic models of cardinality «.

NotaTioNs. Let A, &, ¢, X denote cardinals (infinite, if not clear
otherwise). Let a, B, 7, 1,7, k, I denote ordinals and m, n denote
natural numbers. We shall indentify cardinals with initial ordinals,
and W, will be the ath infinite cardinal (Y,-the first). The first in-
finite ordinal is denoted by w. \* ig the first cardinal greater than
N. | A| is the cardinality of the set A.

1. Combinatorial problems. Let A denote a set, S a family
of subsets of A. Let A (—) S be the family {4 — B: Be S}. A" is
the set of sequences of length « of A4; and if @e A%, (@) = a and @;
is the gth element in the sequence. After Erdos and Makkai [5], @
if strongly cut by S if for every g < «, there is X, ¢ S such that
a, € Xy = v< g for every v, 8 <a. FErdos and Makkai [5] proved that
is |[S]|>|A] = W, then there is a sequence @ ¢ A which is strongly
cut by S or by 4 (—) S. They asked several questions ([5] p. 159 and
[3] problem 71 p. 45). We shall here answer some of their questions.

Let us define

DerFINITION 1.1. PI(\, f, «) holds, if |S| =2\, |A4| = ¢ implies
there are @, b e A%, Xe S~ such that: for every g, v < «,

d;e X, = bse X, if and only if v < 5.

DEFINITION 1.2. P2\, ¢, «) holds, if |S|=2x,]|A| = ¢ implies
there are @c A%, Xe S* such that:

either 8, v < a implies @;c X, = B8 < v
or

B8, v < a implies @, e X, =— v < 5.
REMARK. This means that @ is strongly cut by Sor by 4 (—) S.

DEFINITION 1.8. P3(A, ¢, «) holds if |S|=2x,|A| = ¢ implies
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there are @ c A%, Xe S* such that for every g, v < &, @€ X, = B < 7.
REMARK. This means @ is strongly cut by S.

NoTATION. In each of P1, P2, P3 we shall always implicitly
assume 2* =\ > . For otherwise, those relations are not interesting.

Clearly, the theorem of [5] is by our notation, that P2(\*, \, ®)
holds. Let us now list the results proved here about those three
properties.

THEOREM 1.1. For every i, P3(A*, N, ®) does mot hold. (This
solves negatively problem 1 in [5], which is the same as problem
71A, in [3] p. 45.) (In fact, we prove a stronger result.)

THEOREM 1.2. If N > Xlesec, (U + 2%) then PI(\, p, x) holds.

THEOREM 1.8. If A > t&2* them P2(\, t, x*) holds. Moreover if
20 = Sozecy 25, N > p1° then P2(\, pt, 7) holds.

THEOREM 1.4. If P1(:n, t, ) and ¥y — (k)i holds, then P2(\, y, £)
holds.

REMARK. (1) yx — (k) is defined in Erdos, Hajnal and Rado [4].
As the proof is straightforward, we leave it to the reader.

(2) We can combine theorems 1.2 and 1.4 to get results about
P2(\, 1, «). For example by Ramsey [11], ¥, — (No)i, hence P2()\, #, w)
holds (which is the result of [5]). (Here, as usual, we implicitly
assume x > ¢ = W,.)

(8) Theorems 1.2, 1.3, 1.4 give partial answer to a question
which naturally arises from [5], and problem 2, [5], and 71B [3] are
the most simple cases of it.

THEOREM 1.5. P2(\, ¢, ® + 1) holds. Moreover, if N> p = &y,
n < @, then P2(\, p, ® + n) holds.

REMARK. This answers problem 3 of [5] (in fact even stronger)
and partially answer problem 2 of [5] (= 71B of [3]). The proof
gives several more results of this kind.

To clarify our results let us assume G.C.H.

COROLLARY 1.6. (G.C.H.) For every regular cardinality p, and
any cardinal y < g, P2(uet, 1, y) holds. Moreover, if p is singular,
% ts less than the cofinality of pt, them P2(u*, p, x) holds. If y is
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not greater than the cofinality of p, Pl(u*, u, x) holds.

Proof. Immediate from Theorems 1.2, 1.8, 1.4, and by [4], 2)* —
(AH)? holds.

The question naturally arises whether those are the best possible
results. Prikry essentially proved this. See [18] Problem. 72.

THEOREM 1.7. Suppose A = pr> 3o, o, 15 = tt, then P2(\, tt, ¥ +
2) does mot holds. (x + 2—this is an ordinal addition). Moreover
P10\, tt,, 7 + 2) does not holds.

In [5], not P2(R, W, @ + 2) was proved; and as the proof is
similar and straightforward we leave it to the reader.

The most simple open problems are: (for simplicity only we
assume G.C.H.)

ProBLEM 1. If W, is regular, does P1(W.:1, Ne W) hold? Does
P2(Mut5, Mo M) hold?

ProBLEM 2. If ¥, singular, ¥; is the cofinality of ., does

PZ(RO{—FI, Ra; R‘B) hOld?
Maybe the answers are independent of ZF 4 AC.

Let us summarize the trivial facts about our properties.

LEmMMA 1.8. (A) If v = : p =4, a = a and P\, o, @) hold,
then P1(n, t, o) holds. The same is ture for P2 and P3.

(B) P3(\n, u, @) implies P2(\, 1, a); P2(\, t, &) implies P1(\, 1, ),
where « is a limit ordinal; and P2(\, ¢, a + 1) tmplies P1(n, p, @).

(C) If a < w, N> pt then P3(\, ¢, &) holds.

(D) If ecf (V) =<, (Y <N) = P2y, tt, ) then not P2(\, ¢, a).

Proof. Immediate. We use (D) for (B).
Let us now prove the theorems.

DEFINITION 1.4. Ded(y) is the first cardinal A such that there
is no ordered set of cardinality » with a dense subset of cardinality /.

REMARK. Clearly g+ < Ded(y) < (2¢)*. By Mitchell [8] it is con-
sistent with ZF + AC that Ded(3,) < (2¥)*.

THEOREM 1.9. If ¢t < A\ < Ded(rt) then P3(\, ¢, ®) does not hold.

RemARk. Clearly Theorem 1.1 is an immediate conclusion of this
theorem.
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Proof. Let a tree mean a pair of a set and a well ordering of the
set, which is not necessarily a total ordering. A branch of a tree is a
maximal ordered subset. It can be easily shown that there is a tree
{4, <> (A—the set, <-—the ordering) such that |A| = ¢ and the
tree has =\ branches. Let S, be the family of the branches of the
tree and S= A (—) S,. Clearly |S| =), |A| = ¢ and S is a family
of subsets of 4. So it suffices to show that there is no @ e A” which
is strongly cut by S.

So suppose @ e A¢ is strongly cut by S. By using Ramsey theo-
rem ([11]) we know there is an infinite subsequence of @, b, such
that exactly one of the following conditions is fulfilled

(1) for every n < m < w, b, < b,, (in the tree)

(2) for every n < m < w, b, = b,

(3) for every n < m < @, b, > b,

(4) for every n < m < @, b,b,, are incomparable, i.e., b, # b,,
not b, > b,, and not b, < b,.

Now clearly also b is strongly cut by S. Hence (2) cannot be
fulfilled. As < is a well ordering (3) cannot be fulfilled. Now as b
is strongly cut by S, there is a branch of {4, <) which contains
two of the b,’s and so they are comparable, in contradiction to (4).
So (1) is fulfilled. As b is strongly cut by S, there is Xe S such
that b,e X, b,¢ X. But A — X is a branch of the tree, b,c 4 — X,
b, < b,, hence b,e A — X, a contradiction.

THEOREM 1.2. IFf A > Slceer (¢° + 2°%) then P1(:, tt, x) holds.

Proof. Let S be a family of subsets of A4,[S| =X, |4]| = p.
We should prove there are @, b€ A” and X e S” such that, for every
a, B< Y e Xy =b,e X, iff g < a.

Let us define, for every 7' S, an equivalence relation E, on A: aF),
b holds if and only if for every Xe T, ac X =be X. Clearly E, is an
equivalence relation, and the number of equivalence classes is < 271,

Let us also define that T S fizes XeS if for every a,be A,
aF.b implies a ¢ X =be X. Clearly the number of Xe¢S which are
fixed by T cannot be more than the number of subsets of the set of
the E,-equivalence classes. Hence | {X: Xe S, X is fixed by T}| < 20",

Let us now define by induction the families S, for 0 < £ <y
such that:

(1) S.c8, |8 |

(2) &£ <k, implies S, C S,

(3) if BCCA,|B|=k,|C|<k, and there is Xe S such that
Bc X,CNX =0, then there is Y¢S, such that BCY,CNY =0.

Clearly we can define the S,. We shall now prove that
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(x) there is Y e S such that for any T, Tc S, 0= <y |T| <
k, Y is not fixed by T.
Suppose (x) does not hold and we shall get a contradiction. So

S=U UI{X:XeS Xis fixed by T}.
02y TCSg
1Tisk

We have proved that |{X:XeS, X is fixed by T}| =< 2¢"', and
by its contruction |[S.| < #*. Hence

=Sl >3 2

0€r<y TCSg
[FEY

S (S x 2 = 3 (S.] +2%)

02x<y

> (# +27) <\

0se<y

IA

A

a contradiction. So (x) holds.

Now we shall define by induction a,, b,, X, for & < y such that:

(A) a,ed, b,eA, and X, €8,

(B) ifl<Fk then ;e X, a;,eY,0,¢X,, and b,¢ Y

(C) if I < k, then a,¢ X, if and only if b, ¢ X,.

Suppose a,, b; and X, has been defined for every [ < k. Let
1+|k| =%, and T ={X:l < k}. Clearly TcS,, |T] < k. Hence, by
the definition of Y, it is not fixed by 7. So there are a,, b, A such
that: ¢,¢Y,b,¢Y and «,Eb, i.e., for every I <k a,cX; if and
only if b,e X;,. Clearly {ap ISk Y, {eplZkiNY =0, |{apl=k =
k, |{b:1 < k}| < £; hence by the definition of S, there is X, ¢ S, such
that

lapl <X, bel<knX,=0.

Clearly <a,: k < 1>, <b: k < >, and {X,: k < x> are the required
sequences, and so Theorem 1.2 is proved.

THEOREM 1.8. If 3 = Socrcy 25, A > ¢©, them P2(\, &, x) holds.

Proof. As the proof is very similar to the proof of Theorem 2,
we shall only sketch it.

Suppose S is a family of subsets of A, |S| =), ]A| =p. It is
easy to find S, S, |S,| < ¢*° such that:

(1) if BCA, |B|=250=e<y,and TS, |T|<rand YeS
then there is Xe S, such that: (A) XNB=YNB (B)if C is an
E-equivalence class then Cc X=CcYandCNX=0=CNY=0.

(2) f X k<a<yl<y, YL k< <ypl<y and Z,1<)
are sets from S,, and there is X e S such that: for every I <y’
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XN ﬂszﬂ ﬂ (A— sz)zzlﬂ ankn ﬂ(A-— sz)
k<aj k<pBy k<ay k<8
then there is X e.S,, which satisfies this condition.
Now we can repeat a construction similar to that which appears
in the proof of Theorem 1.
As Theorem 1.4 is trivial, it remains to prove only

THEOREM 1.5. (A) If N> pt then P2(\, 1, ® + 1) holds.

(B) If v>pu=2uz, a2y and P2(\, #, @) holds then
P2(\, ¢, ¢ + 1) holds. Hence for every m, if in addition « <y,
P2(\, ¢, « + n) holds. (By 1.8D we can assume cf(n) > p).

(C) If N > %%, then P2(\, tt, @ + m).

REMARK. (1) Clearly (A) cannot be improved by [5] P2(W,,
W0, @ + 2) does not hold.

(2) Part of the proof is a generalization of a proof of A. Maté
which appeared in [5].

Proof. As the proof of (B) is obvious from the proof of A, we
shall prove 4 only. (C follow from B).

So let S be a family of subsets of 4, |S| =\, 4] =

First, there is a°c A such that S, = {X: Xe S, a’e X} is of cardi-
nality > p¢. Otherwise

A=|8S=1U{X:XeS,aeX}U {0}
acd
=X XeS,ace X} +1=pp+1=pIn

a contradiction. Similarly there is a¢'e A such that S, = {X: Xe§,
a'¢ X} is of cardinality > g#. Now at first we assume

(x) there is A'C A4, and S'c{Y N A" YeS;} such that [S'| > ¢4
and for every Xe S,

HYnX:YeSY|<p.

Then it can be easily seen that if X, ---, X, e S, X=X U---UX,
then

[{YNX:YeSY| = .

So we can easily find S*— S*, | S*| < ¢ such that: if X, ---, X, e S?
XeStand Xc X, U.---UX, then XeS%andifa, --+,a,c 4, Xe S,
then there is Y e S* such that {a, -+, a, )N X={a, -+, a,}N Y.
Now let Y°e S, Y°¢ S (Y° exists as |S'| > ¢ =|S*])). Now we
shall define by induction on =, a,, X, such that: a,€ Y°, X, € S? and
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0, & X, 0,8X, -, 0,8 X, a, +++,a,,€ X,. Suppose a,, X, has been
defined forevery n < m < w. As Y°¢ 8%, Y°¢Z X, U ++- U X, hence
there is ¢,€ Y% 0,6 X, U »++ U X™ ' Also there is X, € §* such that
{ag, o, a N X, ={a, -+, N Y"

Now clearly if we define a, = a', clearly {a,|a < @ + 1>e A+
and is strongly cut by S; so the conclusion of theorem holds.

Similarly the conclusion of the theorem holds if

(xx) there is A'cC A and S*c{Y N A: Ye S;} such that | S*} > g,
and for every Xe St

{YN(A' — X): YeS)} | <p.

Hence we can assume (x) and (xx) do not hold. So there is
X°e S, such that S, = {Y N X% Ye S} is of cardinality > g. (Other-
wise, taking A' = A, S!'= 8, (x) holds.) Similarly there is X'e S,
such that S, ={Y N (X°— X*): YeS;} is of cardinality > g (other-
wise taking A' = X° S'=S,, (x%) holds). Now |S,|>pu=]|X'"-X"|,
and S, is a family of subsets of X° — X*'. Hence there is ae (X° —
XY¢ which is strongly cut by S, or by (X° — X)(—) S,. Taking as
@,, a’ or a' (accordingly), we get a sequence from A¢+' which is
strongly cut by S or A(—)S. So we prove Thorem 1.5A.

Naturally the question arises on the finite case. More exactly

DEFINITION 1.5. For natural numbers m, n let f(m, n) be the
first ordinal « such that P3(a, m, n) holds.

The result is fim, n) =1 + >0t (?:) The proof follows from a

little more complex result, of Perles and Shelah.
Another natural generalization is the relation P4(\, y, y) which is

DEFINITION 1.5. PA4(\, &, x) holds if whenever | S| =), | A] = 4,
and S is a family of subsets of A, there exists Bc A, |B| =, such
that for every C c B there is Xe¢ S such that XN B = C.

Clearly P4(\, t, y) implies P3(n, £, x) and P3(n, ¢, o) for every
a < y*. The only result known to me is that if » = Ded(y), » is
regular and y is finite, then P,(\, £, ¥) holds. (see Shelah [15]).
Perles and I prove that if ¢ and y are finite P4(n, #, X) holds if and

only if » > 31zt <‘Z) Later and independently Sauer [19] proved it.

2. On stable models and theories. In this section we shall
apply a combinatorial theorem from §1 to get results in the theory
of models.

Let L be a first-order language; L;, will be its extension by
permitting conjunctions on sets of < ) formulas, provided that in the
conjunction, only finitely many variables appear free. L..., will be



A COMBINATORIAL PROBLEM; STABILITY AND ORDER FOR MODELS 255

the class of formulas |, L,,. T will denote a set of sentences from
L... 4 will denote a set of formulas @(%) from L., (more exactly,
4 is a set of pairs {p, Z) where @¢ L..,, T is a finite sequence of
variables, and every free variable of @ appears in Z). 4 is closed if
it is closed under negation, finite conjunction (hence all connective),
adding dummy variables and changing the order of the variables.
4 is the closure of 4. M, N shall denote models (L-models, if not
said otherwise). | M| is the set of elements of M. If Ac| M|, p is
a (4, m)-type over A iff p is a set whose elements are of the form
P(%, @) where T = (&, +++, Tu_, P&, J) € 4 and @€ A (or more exactly
&y, @, + -+ € A).
For ¢e| M|, the d-type ¢ realizes over 4, p(c, A, M, 4) is

{p, a):ac A, @, y)ed, M= ple, al} .
Let
S™A, M, 4) = {p(¢, A, M, 4):ce | M|"}.

The model M is called (4, A)-stable if | A|<) implies | S*(4, M, 1)<
A; otherwise M is (A, 4)-unstable.

Let ve Od (M) if there is n < @, and sequences a@'c | M|, I < »\;
and a formula @(Z, ¥)e 4 such that M = @[a*, a'] if and only if k<!
for every k, I < .

THEOREM 2.1. Suppose M is (4, k)-unstable, 4 =4, £ = S oepe; (K*+
2" and & = . Then »e Od'(M).

Proof. Let 4 = {py (e, ¥*): k < |41}, 4, = {pulz, ¥5)}. As M is (4,
r)-unstable, there is Ac|M|,|A] <k such that |S'(4, M, 4)| > .
If for every k < | 4], |SYA, M, 4,)| < £ then

R84, M A) | < | TT S, M, 40| = TL IS4, M, 49| <6 = &
<i4 <[4l

a contradiction. Hence there is & < & such that |S' (4, M, 4,)] > «.

Let ¢ = ;. Now clearly SYA4, M, 4,) is a set of subsets of

o = {pu(z, @):@c A, @ is of the length of %%} .

Clearly |@ | < £. Hence by Theorem 1.2, there are p, € S'(4, M, 4,)
@', b'e| Al for I < nsuch that o(z, @) e p; = @, b) e p; if and only
if j<I. Let p,=n@E, A M, 4,), and d' =@ ~b'~& (the juxta-
position of the three sequences). Clearly M & o[é?, @] = @[e, b'] if
and only if j <I. As 4= 4, we can easily find (%, 7) € 4 such that
for k, 1 < x; M E y[d* d'] if and only if k < I. Hence »e Od,(M).
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DEFINITION 2.1. Let A, Cc|M]|. C is 4-indiscernible over A in
M if for every =, and every n different elements ¢, -+, ¢,_, of C, and
every additional n different elements ¢, «++, ¢** of C

p(<00) . .) c%*—'1>} AY M’ A) = p(<co7 . .’ C%—1>, A! M’ A) hd

THEOREM 2.2. Suppose M is (4, \)-stable, & Odi(M), AcC|M|,
Cc|M|,|Al €N <|C|, and the cofinality of N is greater than |4].
Then there exists C,c C,|C,| > N such that C, is Ad-imdiscernible in
M over A.

REMARK. Taking a Souslin tree, we can see that the condition
A & Od3(M) is necessary. (More exactly, this is consistent with ZF +
AC.) Instead ¢f(\) > | 4! we can demand Ip << A, & Odz(M).

Morley in [9] Theorem 4.6 proved a similar theorem for models
of a complete, first-order, countable, totally transcendental theory. In
[12] this was generalized to models of stable theories, and in [13],
Theorem 3.1 to models with stable finite diagram. Another generaliza-
tion is Theorem 5.9A of Shelah [15]. Theorem 2.2, in fact, implies all
these theorems. (For 5.9A [15] we should note that if 4 is finite, then
there is a finite 4,, 4 < 4, 4, such that for any M, \; M is (4,, \)-
stable if and only if it is (4, )\)-stable.)

Proof. As the proof is very similar to the proof of Theorem 3.1
[13], we omit it.

DErFINITION 2.2. T is (4, \)-stable if every model of T is (4, )\)-
stable. T is 4-stable, if for at least one )\ it is (4, A)-stable, T is
(4, »)-unstable [4-unstable] if it is not (4, \)-stable [4-stable]. Let
Ne Od(T) if for at least one model M of T, ne Od(M). T is stable
if it is 4-stable for every 4; otherwise-unstable.

REMARK. If T has no model of cardinality > A, then it is (4, \)-
stable, and hence stable.

THEOREM 2.3. Suppose T, 4C Ly+,, [T\, | L] =\, T 45 (4, k)-
unstable, £*% = k. Then T is d-unstable.

REMARK. (1) p(n) is the first cardinality such that if a sen-
tence of a language Li+ , has a model of cardinality p()), it has models
in any cardinalty = \.

(2) We can demand only: T, 4 Ly, | T+ 14] £\, and for
every p < p(n) there is £ = k* such that T is (4, x¥)-unstable.

(3) We can demand only T,4C L+, | T| SN, [ L] < pN), £ =



A COMBINATORIAL PROBLEM; STABILITY AND ORDER FOR MODELS 257
e £ and T is (4, £)-unstable.

Proof. Here we use Ehrefeucht-Mostowski models (see [2]) and
the method of Morley [10]. All the results we use appeared in Chang
[1]. As T is (4, k)-unstable, T has a model M and Ac|M| such
that |S' (A4, M, 4)| >k =|A|. It is well known that y < p(\) implies
27 < p(\); hence y < #(\) implies 2% < g(\). So £ = 3. (K7 + 27).
As 4] £ L+, 1 < V), exactly as in the proof of Theorem 2.1, this
implies that there are sequences @*, b*, k < p(\) from A and ¢, < | M|,
k< p¢(\) and a formula @(x, )< 4 such that:

for every k, I < p(\), M = @le,, @] = @[e,, b*] if and only if I < k.

Now we add to M the one place relation P¥ = {¢,: k < ¢(y)}, and the
functions F, F’ defined by F"(@*) = c;, F¥"(b*) = ¢*, and otherwise
FlM(C_L) $ P.M, FzM e Pll[.

Now using Morley’s method we get (in fact we need an improve-
ment of Chang [1]):

(x) for every ordered set I, there is a model M; of T, in which

there are ¢, @,, b, for every se I such that: for every s, tel
M, = 9le, @) = [e,, b,] if and only if t <s.

Let y be any cardinality, and we shall prove T is (4, y)-unstable.
We can find easily an ordered set I, |I| > y, with a dense subset J,
[J| =y (If x, = inf {x,;: 2" > y}, then I can be the set of sequences of
ones and zeroes of length y,, ordered lexicographically.) Let M = M,,
and let 4 = {Ranga, URangb,;:seJ}. Clearly |A| < W, + |J| =
%. On the other hand we shall show that ¢ =4, ¢, t;e I implies
ple,, A, M, 4) = ple.,, A, M, 4). Hence |S'(4, M, 4)| >y, so T is (4, %)-
unstable.

Suppose t, #= by, t, t,€ I. Without loss of generality suppose #, <
t.. As J is a dense subset of I, there is seJ, ¢, < s < t,. By the
definition of M,,

M F: g)[ctly ds] = [ctly Z;s]

M = — (Ple,, @) = Ple., b)) .
Hence
P(x, @) e ple, A, M, 4) if and only if @(x, b,)e ple., A, M, 4)
and
P(x, @) € ple,, A, M, 4) if and only if @(x, b,) & pc,, 4, M, 4) .

So p(e.,, A, M, 4) = plc,, A, M, 4), and as noted before this implies T
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is (4, y)-unstable, for every .
Similarly we can prove

THEOREM 2.4. (1) If T,4C Lyt;|T| + |4] £ N, and for every
£E < p(\), k€ Od(T), then every ke OdT).
(2) If every ke Od(T), then T is d-unstable.

REMARK. In 2.4.2 we use the following fact: if M is (4, \)-stable,
AC|M|,|Al £\, m < @ then |S™(4, M, )| .

THEOREM 2.5. Suppose T Ly+,,, | T SN, | L| ZE N, and T is un-
stable. Then there exists 4, Ly+ .., | 4] = X such that T is 4,-unstable.

Proof. As in the proof of Theorem 2.3, we depend on the method
of Morley [10], Chang [1]. So let T be d-unstable. Without loss of
generality, let 4 =4 and 4c L,+,. From Theorem 2.1 it follows
that every e Od(T) [as T is (4, 28 +4+12) ynstable]. Let \' =
pn + | T|+£+[4)+|L]). So T has a model M such that \'e Od (M).
We expand now M to M* in the following way:

(1) For every subformula @(%) of a formula from T U4 (in-
cluding the formulas form 4 themselves) we add to M the relation
R = {@: M = plal}.

(2) M*' has Skolem function for every first-order formula in its
language.

Let L' = L{M") be the first-order language associated with M.
Clearly |L(MY| S |L|+ |T|+ 14|+ &+ As \NeOd (M), there
are a@*, k < \' from M* and there is @,(Z, ¥) € 4 such that M* = ¢ [a*, @]
if and only if & < I. For simplicity we shall assume the sequences a*
are of length one, and @* = {a,>.

Hence there is a model N and a,c|N| for se I, which satisfy
the following properties:

(1) the first-order language associated with N is L.

(2) N, M' are elementarily equivalent.

(3) N is a model of T, and for every subformula »(Z) of a
formula from T U 4, N = (v@)[e(Z) = R.(%)].

(4) I is an ordered set isomorphic to the rationals (s, ¢ will
denote elements of I).

(5) for each s, te I, N &= @ja,, o] if and only if s < ¢.

(6) for each ce N, there are s, < -++ < s,(e€l) and a term B
of L' such that

Nl: ¢ = B[asls ”.yasn] *

(7) for every @(x, «-+, ®,)E L}, s, < +++ <s,, and ¢, < «v0 < ¢,
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the following holds:
N E #la,, «--, a,] if and only if N ¢la,, +--a,].

As I is dense, by [7], [17], this holds also for every ¢ L., ..

Let Z° = (&, 2., T' = {&,, 2.

Let {24, (Z° B, Yo, = +Yur): ® < @, k< | L]} be the list of the atomic
formulas of L. Let

@”(EO, fly Yoy * %y Yn—1y Ry ** zn—l) =
:l~</|\L\ (g)k,n(foy Ely Yoy ** yn—l) = Py n(foy %—1’ Ry 0y zn-—l))

@(9?0, Ofi) =
= (AYV2.32,VY,, YV 232V Y5, ** *, I2nV2nT 200V omits ** *mco
[_‘ A @n(foy Ely Yoy ***y Ynoy R0y *° z’n~1)] .

n<w
By Shelah [14], for every L-model M, and @, be|M, |, M, = &[a, b]
if and only if @ and b realizes different L. .-types (i.e., there is
@(z°) € L., such that

M = @[d], M E— 97[5]) .

REMARK. The definition of the satisfaction of ®@[a, b] is self-
evident. Discussion about languages with such expressions can be
found in Keisler [6].

Hence we can find functions F, --., F,, «+-- whose domains and
ranges are | N|, each with a finite number of places such that:

(x) if N, is a submodel of a reduct of N, whose associated first
order language include L, and | N,| is closed under the functions {F,:
n < w} then for every @, be | N, [}, N = ®[a, b] implies N, = @[a, b].

Now as in the downward Lowenheim-Skolem theorem, we can find
a model N, such that:

(A) |NJcC|N|,{a;:seI}c|N,|,IIN,|| £x and N, is a submodel
of a reduct of N.

(B) |N,| is closed under {F,: n < w}

(C) if @e|N,|,p(x,7)is a subformula of 4y € T, and N = (3z)p(x, @),
then for some be|N,|, N = @[b, @]. Hence N, is a model of 7.

(D) if s, < «ov <8, 6, << ve- <t,, B is a term from I', and
B'[a,, +++,a,]€|N,|, then B[a,, ---, a, ] €|N,]|.

REMARK. Notice that by property (7) of N, if BY[a,, <+, a,] =
Bla,, +++, a,] then Blla,, ---, a, | = Bla,, +++, a,].

(E) The language of N,, L}, contains, L, is of cardinality X, is
contained in L', and for each ce€ | N, | there is a term B from L’ such
that ¢ = B"[a,., +++, a, ] for some s, < «++ <o,
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It is easy to prove that N, satisfies properties (6) and (7) of N,
with L' replaced by L:. It is also clear, by (C), that N, is a model
of T. Let s <t, we know that N = oia,, a;], but N =— @)la,, a.].
Hence <a,, a,), {a., a,> do that satisfy the same L. ,type in N. By
(+) and (B), <a,, a,», <a,, a,> also do not realize the same L. ,-type in
N,. As || N,|| £, by Chang [1] it follows that <a,, a,>, {a., a,> do not
realize the same L;+ ,type in N,. So there is a formula @,(x, ) € L+,
such that N, E @[a,, a.], N, £ = @[a,, a,]. Let 4, = {p.(x, )}, 4, = 4,
We shall prove that T is 4,-unstable, and so prove the theorem.

By Theorem 2.4.2 it suffices to prove that for every «, £ € Od, (T).
Let £ be any cardinal, and J a dense order set, I .J, and J contain
a subset with order-type £. We shall define now N, as an extension
of N, such that:

(o) {a,:sed}C|N:|

(B) for every element ¢ of N, there are s, < ---s,¢J and term
Be I? such that

c= BNZ[a/sl, T asn]

(v) if @(x, ---, x,) is an atomic formula, s, < ++ - <5, € J, {, <+ <
t, € J then

N, & #[a,, +--, a, ] if and only if N, = @[a,, -+, a,] .

It can be easily seen that N, exists. We can also show by in-
duction on formulas of L,+, that N, is an L;+ .,-elementary extension
of N.. (See [7], [17].) Hence N, is a model of 7. It is also clear
that for every s, teJ, N; &= @a,, a,] if and only if s < ¢t. By the
definition of J and 4, this implies x ¢ Od,(N,) hence £ e Od,(T), and
by 2.4.2, this implies T is 4,-unstable, where | 4,| < )\, |4, | C L;+ .

THEOREM 2.6, If T is unstable, TC Lyt,, t > X+ |T|, then T
has exactly 2* mon-isomorphic models of cardinality f. (For most
cases it suffices to demand = x4+ | T| + W)

Proof. By Theorem 2.5, and Shelah [16].
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