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ABSTRACT This paper considers a generahzatlon, called the Shannon switching game on vertices, of a famlhar 
board game called Hex It is shown that determining who wins such a game if each player plays perfectly is very 
hard, m fact, if this game problem is solvable in polynomial time, then any problem solvable in polynomial 
space is solvable m polynomial time This result suggests that the theory of combinatorial games is difficult 

KEY WORDS AND PHRASES. completeness m polynomial space, computational complexity, Hex, Shannon 
switching game 

CR CASE6ORIES 3 69, 5 25, 5 32 

1. Introductton 

Le t  G be  an  a rb i t r a ry  g r a p h  wi th  two d i s t i n g m s h e d  ve r t i ces  s a n d  t. S u p p o s e  t h a t  two 
p layers ,  short and  cut, a l t e r na t e l y  se lec t  ve r t i ces  of  G (excep t  s a n d  t) .  N o  p laye r  is 
a l lowed  to se lec t  a ve r t ex  p rev ious ly  se lec ted  by  a n o t h e r  p laye r  T h e  g a m e  conc ludes  
wi th  short winn ing  if some  of  the  ver t i ces  se l ec ted  by short fo rm a p a t h  b e t w e e n  s a n d  t. 
T h e  g a m e  c o n c l u d e s  wi th  cut w i nn i ng  ff eve ry  p a t h  b e t w e e n  s a n d  t c o n t a i n s  a ve r t ex  

se lec ted  by  cut W e  call th is  g a m e  a Shannon switching game on the vertices of  G In a 
c o m m o n  ve r s ion  of  th is  g a m e  cal led  Hex, G is a d i a m o n d - s h a p e d  sec t ion  of  a p l a n a r  
t r m n g u l a r  grid (F igure  1) T h e  q u e s t i o n  Is w h o  wins  if b o t h  p laye r s  p lay  pe r fec t ly ,  a n d  
w h a t  is the  w inn ing  s t r a t egy?  (Hex  is pecu l i a r  in the  fo l lowing  sense :  I t  is easy  to p r o v e  
t h a t  the  first  p l aye r  can  win,  bu t  no  ef f ic ient  way to d e c i d e  on  the  m o v e s  is k n o w n . )  

If  we a l low the  p layers  to  se lec t  edges  of  G i n s t ead  of  ve r t i ces ,  t he  g a m e  is a Shannon 
switching game on the edges of  G .  Ef f ic ien t  a l g o r i t h m s  exist  for  f ind ing  w inn ing  s t ra teg ies  
for  such  a g a m e  [2, 3]. T h e s e  s t ra teg ies  a re  b a s e d  o n  f ind ing  a pa i r  of  m i n i m u m  
o v e r l a p p i n g  s p a n n i n g  t r ees  of  G ,  a n d  the  fas tes t  a l g o r i t h m  k n o w n  r e q m r e s  O(n 2) t ime  if 
G has  n verUces  [10]. H o w e v e r ,  t he  S h a n n o n  swi tch ing  g a m e  o n  ve r t i ces  s eems  to be  
m u c h  h a r d e r  to solve H e r e  we give t heo re t i ca l  e v i d e n c e  to s u p p o r t  this  v iew.  Specif i-  
cally,  we show t h a t  any  a l g o r i t h m  for  ef f ic ient ly  d e t e r m i n i n g  who  wins  the  g a m e  o n  an  
a rb i t r a ry  g r a p h  G can  be  used  to ef f ic ient ly  ca r ry  o u t  any p o l y n o m i a l - s p a c e  b o u n d e d  
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FIG 1 k×k Hex for k = 5 
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computa t ion  (the game p rob lem is complete in polynomial space). As  a corol lary we 
show that  the Shannon switching game played on the edges  of  a dtrected graph is 
polynomial -space  comple te .  

2. A Polynomtal-Space Algortthm 

First we shall show that  there  is a po lynomia l - space  bounded  a lgor i thm for de te rmin ing  
who wins the game.  By conven t ion  we shall assume that  short moves  first. (This is no loss 
of  genera l i ty . )  If G has n ver t ices ,  only n - 2 moves  can be made  in any game.  Suppose  
we construct  a game tree T for G [7]. T is a d i rec ted ,  roo ted  t ree .  Each  ver tex  of  T 
denotes  a posi t ion of  the game (indicating all moves  made  so far).  The  root  of  T deno tes  
the initial posit ion (no moves  made) .  The  sons of any ver tex  v of  T deno te  the posi t ions 
reachable  f rom the posi t ion v by one  m o v e  of  the player  whose  turn It is. We use v --* w 
to mean  that  w is a son of  v in T A leaf  of  T cor responds  to a final game  posmon .  We call 
a ver tex  of  T a short vertex if it is short's turn to move ,  a cut vertex if it is cut's turn to 
move .  

1l--2 T clearly has depth  at most  n - 2 and contains  at most  ~ ,=0 (n - 2)!/I! ver t ices  (many 
of which cor respond  to the same game p o s m o n  but  represent  d i f ferent  sequences  of  
moves) .  Fo r  a ver tex  v in T,  let W(v) = 1 if short has a forced win f rom the posi t ion v 
denotes ,  W(v) = 0 otherwise .  W(v) is easy to calculate  if v is a leaf  of  T. The  fol lowing 
recurslve formula  defines W(v) for all vert ices .  

If v ts a short ver tex ,  W(v) = 1 if there  exists v ~-  w such that  W(w) = 1; W(v) = 0 
otherwise .  

If v is a cut ver tex ,  W(v) = 1 if for all v ~ w, W(w) = 1; W(v) = 0 o therwise .  
We desire the value of  W(r) where  r is the root  of  T. It  is easy to calculate  W(r) by 

explor ing T in a depth-f irs t  fashion [7, 9]. We need  a stack to store the moves  m a d e  in 
reaching the current  posi t ion;  the total  amoun t  of  s torage requ i red  is O(n log n) bits for 
the stack plus no more  than O(n ~ log n) bits to store the graph and any work  area  
requi red .  Thus the search requires  polynomia l  space to de t e rmine  who  wins the game.  A 
simple modif ica t ion  gives an a lgor i thm for playing the game in a winning fashion.  A 
similar a lgor i thm solves any Shannon switching game played on the edges of  a d i rec ted  
graph.  

The re  is no obvious  way to de te rmine  the winner  in polynomia l  t ime,  even  if we allow 
a nonde te rmin is t i c  a lgor i thm It is thus reasonable  to suspect  that  the game  p rob lem is 
even  harder  than the NP-comple t e  p rob lems  [ 1 , 4 ,  5], which Include such p rob lems  as 
graph color ing,  finding a max imum cl ique,  and finding a Haml l ton ian  path.  

3. The Reductzon 

We shall show that  the Shannon switching g a m e  on vert ices  is log-space comple te  in 
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polynomial space. We need a few definitions. A problem is a set of words over a finite 
alphabet. Let ~,  ~ be finite alphabets and let A C ~*, B C_ 4"  be problems. We say 
A -<log B (A Is log-space reducible to B) if there is a log-space computable function f such  
that x E A ifff(x) E B, for all x ~ E*. Log-space reducibility is reflexive and transitwe. 
Problem A is polynomial-space solvable if there exists a polynomial-space bounded 
Turing machine which accepts A. Problem A is (log-space) complete in polynomial space 
if A is polynomial-space solvable and every polynomial-space solvable proble m is log- 
space reducible to A.  [1, Ch. 10] provides a good discussion of the meaning and conse- 
quences of the notion of  completeness in polynomial space. Meyer and Stockmeyer [6] 
have exhibited several problems complete in polynomml space, including the 

Quantified Boolean formula problem: QBF = {QlxlQ2x2 . . .  QmxmF] the Q, are 
quantlfiers, the x, are Boolean variables, F is a well-formed formula m conjunctwe normal 
form with variables x ~ , . . .  , Xm, and the quantified formula is true}. 

To show that the game problem Is complete in polynomial space, we exhibit a 
construction which, given any quantified Boolean formula (Q,x , )F ,  will produce a game 
graph G such that (Q,x , )F is true If and only If short wins on G. We describe the 
construction informally; it will be obvious that the construction is log-space computable. 
The construction produces a graph with two parts: a tree (actually a combination of two 
smaller kinds of trees) and a ladder. Consider a graph of the form shown in Figure 2. 
It consists of a binary tree B with its root joined tos  and some or all of its leaves joined to 
t. Short wins in this graph if and only if t is joined to all the leaves of the tree. For ff t is 
joined to all the leaves of the tree, short wins by the following strategy: 

First play the root. 
On succeeding moves play one of the sons (in the tree) of the vertex you last played. 

Pick a son which is the root of  a subtree containing no moves by cut. 
If t is not joined to all the leaves of  the tree, cut wins by the following strategy. 
If some unplayed vertex will cut all remaining paths from s to t, play It. 
Otherwise play one of the sons of the vertex last played by short. Fred a son which is 

the root of  a subtree having a leaf not connected to t, and play the other son. 
The idea here is that short can force completion of a path from the root to some leaf, 

but cut can choose the leaf and in addition block paths from the root to other leaves. It is 
easy to prove by induction that these strategies work. We shall use such a tree B to 
represent the conjunction in the formula F. 

Consider, now, a graph of the form shown in Figure 3. It is a tree with three levels 
(root, sons, grandsons). The root is connected to s One son of the root is a leaf and is 
connected to t. The other sons each are connected to two grandsons of the root, an a- 
grandson and a b-grandson. All the a-grandsons, and possibly some of the b-grandsons, 
are connected to t. It is easy to see thatshort wins in th~s graph if and only ift is connected 
to at least one of the b-grandsons. We shall use such a tree to represent each clause 
(disjunction of  literals) m the formula F. 

The last part of  the construction is a ladder. Consider a graph of the form shown in 
Figure 4. This graph consists of  a set of foursomes of the form {x~(1), x~(2), £~(1), £,(2)}. If 
short moves first, he can play to occupy either {x~(1), x,(2)} or {x-~(1), £,(2)} for each 
foursome. For instance, if he wants to occupy {x~(1), x2(2), £2(1), £2(2), £3(1), £3(2), • • • } 
the play is: 

short xl(1) x,(2) £2(1) .f2(2) £3(1) .f3(2) . . .  

c u t  £1(2) £1(1) X2(2) X2(1) X3(2) X3(1) . . .  

All cut's moves are forced. 
On the other hand, if cut moves first, he can play to occupy either {x,(1), x,(2)} or {x-,(1), 

£,(2)} for each foursome,. For instance, if he wants to occupy {x1(1), x1(2), £~(1), £2(2), 
xs(1), x3(2) . . . .  }, the play is: 
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cut xl(1) x~(2) .~2(1) ;2(2) Xz(1) Xa(2) . . .  

713 

short .~(1) ; , (2)  xz(1)x2(2) ;3(1) .~3(2) . . .  

All  short's moves are forced. 
In the complete construction we use a ladder  to represent  the variables of the Boolean 

formula,  with a few extra vertices to represent quantifiers.  We use a binary tree to 
represent  the conjunction in the formula, with a leaf for each clause. Each leaf of this 
binary tree is the root of a three-level tree which represents  the corresponding clause. 
The binary tree contains 3m extra leaves, each representing a dummy clause (x, V.f ,) .  
Each possible dummy clause (x, ~/.f,) is represented three times. 

Suppose (Q ,x , )F  is a quantified Boolean formula with F in conjunctive normal form, 
having m variables and k clauses. We can assume without loss of generahty that Q~ = Qm 
= 3.  Let  G be a graph containing the following vertices: 

t 

$ 

FiG 2 A binary  tree represen t ing  a conjunct ion  

FIG 3. A three-level  tree represen t ing  a dis junct ion 
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s , t ;  
x,(1), :f,(1)x,(2), .f,(2) for 1 "~ i --< m,  called varmble veruces; 
q, for each Q, ~ Q,+~, called quanufier  vertices; 
2(k + 3m) - 1 vertices forming a binary tree B with k + 3m leaves, designated by 1~, 12, 

. . . .  lk+3m ; 
l,(0), 1 - < j - < k  + 3m; 
y(O, ]), y(a, ]), y(b, j) for each literal y occurring in clause j, 1 -< j -< k (these vertices, 

together with 1~(0) and l~, form a three-level tree which represents the j th  clause); 

x,(O, k + I), x~(a, k + t), x,(b,  k + i) 
x,(O, k + m + i), x,(a, k + m + i), x,(b , k + m + i) I f °r  l -< i <- m" 
x,(O, k + 2m + t ) , x , ( a , k  + 2m + t ) , x , ( b , k  + 2m + t) 

(For example,  lk+,, Ik+,(0), x~(O, k + t), x,(a, k + t), andx,(b,  k + t) form a three-level tree 
which represents the first, out of  three, dummy clauses (x, V.f,).).  

In addition to the edges of  B,  G has the following edges: 

(s, x,(1)), (s, ,z~(1)), (t, x,(2)), (t, £~(2)); 
(x,(2), x,+~(2)), (x,(2), . f , ( 2 ) ) ,  (.f,(2), x,+~(2)), (.f,(2), .f,+~(2)) for 1 ~ t < m ; 

(x,(2), £,(1)), (£,(2), x,(1)) for 1 -< ~ -< m ; 

(x,n(1), r), (.f,n(1), r) where r is the root of B; 

(x,(1), x,+l(1)), (x,(1), £ , ( 1 ) ) ,  (.f,(1), x , ( 1 ) ) ,  (£,(1), £,+1(1)) if Q, 4= 3 or Q,+, -4= V; 

(x,(1), q,), (£,(1), q,) if Q, ~ Q,+i ; 

(q,, x,+~(1)), (q,, £,+1(1)) if Q, = :1, Q,+i = V; 

(q,, x,(2)), (q,, ~?,(2)) if Q, = v ,  Q,+i = :1; 

(l~, 1~(0)) for 1 -< 1 ~ k + 3m; 

(Ij(O), xm(2)), (lj(O), ,fro(Z)) for 1 ~ j -< k + 3m ; 

FIG 4 A ladder 
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(l.  y(O, j)), (y(O, l), y(a, j)), (y(O, l), y(b, j)), (y(a,j), x,.(2)), (y(a,I), .fro(2)), (y(b ,j),  y(2)) 
for each literal y occurring in clause/ ,  1 - j  -< k;  

(lk+nra+,, x,(O, k + hm + i)), (x,(O, k + hm + i), x,(a, k + hm + i)), 
(xt(O, k + hm + i), x,(b, k + hm + i)), (x,(a, k + hm + i), xm(2)), 
(x~(a, k + hm + i), ~ ( 2 ) ) ,  (x,(b, k + hm + i), x,(2)), (x~(b, k + hm + i), 
./,(2)) f o r l _ < i _ < m , 0 _ < h _ < 2 .  

Figure 5 illustrates this construction for 3x Vy 3z((x V z) A (.f V.f)). 
If we use some simple rule to choose one of the several possibilities for B, this 

construction defines a function from formulas to graphs. The function is clearly log-space 
computable. We must show that (Q,x,)F is true if and only ff short wins on G.  

First we describe a normal way of playing the game and show that short wins if and 

\ 

FIG 5 Game graph for 3x Vy 3z((£ V f) A (x V z)) For clarity, most of the three-level trees, except those 
forj = 1, 2, and 7, are not shown 
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only if (Q,x~)F is true. Second we show that cut cannot gain by deviating from the normal 
play. Third we show that short cannot gain by such a deviation. 

4. Normal  Play 

Initially short has the initiative. He plays in the ladder, choosing vertices to represent the 
truth values of the first few (existentially quantified) variables. Cut's replies are forced. 
Short then plays the first quantifier vertex (which marks the beginning of a block of 
universally quantified variables). This play gives cut the initiative. Cut plays vertices 
representing the truth values of these universally quantified variables; short's replies are 
collaborative. Cut then plays the next quantifier vertex (which marks the beginning of a 
block of existentially quantified variables). This play returns the initiative to short. Play 
continues in this way, with short choosing vertices for existentially quantified variables 
and cut choosing vertices for universally quantified variables, until the ladder is ex- 
hausted. When this happens the root of B is connected to s and the leaves of B 
representing true clauses each have at least one b grandson connected to t. Short wins in 
the tree if and only if F is true, given the selected truth assignments. 

Within this framework of normal play, short can win if the formula is true in the 
following way. 

If the next unoccupied foursome in the ladder corresponds to 3x,, pick a truth value 
for x, which mikes  the formula true and play the corresponding two vertices on 
successive moves. Cut's replies are forced. 

If the next unoccupied foursome corresponds to Vx,+l and the last occupied foursome 
corresponds to 3x,, play q,. Then reply to cut's moves on foursomes corresponding to the 
next block of universally quantified variables. 

If the entire ladder is occupied, formula F must be true, given the selected truth 
values. Use the previously described strategy to form a path from the root of B to a leafl~ 
which is the root of a three-level tree containing no moves by cut. Then win in this three- 
level tree. 

Similarly, cut can win if the formula is false, as follows. 
If the next unoccupied foursome in the ladder corresponds to Vx,, pick a truth value 

for x~ which makes the formula false and play the corresponding two vertices on 
successive moves. 

If the next unoccupied foursome corresponds to 3x,+1 and the last occupied foursome 
corresponds to Vx,, play q,. Then reply to short's moves on foursomes corresponding to 
the next block of existentially quantified variables. 

If the ladder is full, then the chosen truth values must make the formula false. Using 
the previously described strategy, block all paths in B except one from the root to a leafl~ 
representing a false clause. Then beat short in the three-level tree rooted at this leaf. 

5. Cut Cannot Win i f  Formula True 

Assume that the formula is true and cut tries to force a win by deviating from normal 
play. Our purpose is to show that this cannot be done. 

If cut has the initiative while play is in a universal quantifier block and he does not 
proceed by playing the next foursome in the normal way, short plays the rest of the 
foursomes in the block, picking truth values for the variables arbitrarily. All cut's 
responses are forced. Finally, short plays the next quantifier vertex and wins. If any one 
of  cut's responses in the block has been played before, the initiative returns to cut and the 
play returns to normal. If cut's nonnormal move is in the next quantifier, then once all 
foursomes of the block are played the game returns to normal. 

The previously described strategy forshort 's  play in the B tree and the three-level trees 
is sufficient to win even if cut deviates from normal play. 

6. Short Cannot Win I f  Formula False 

Several safeguards have been put in the construction to prevent short from forcing a win 
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by deviating from normal play, when the formula is false. These include vertices lk+~ 
t h r o u g h  lk+am and the three-level trees. 

If short's first nonnormal  move is made  while play is on a universal block,  then cut 
breaks the lower or  upper  part  of  the ladder  (by playing x,q) if his previous move was 
.f,q), and £,q) if his previous move was x,q)).  If the lower part  of  the ladder  is cut, all 
paths from s to t are blocked and cut has won. If the upper  part  of the ladder  is cut, there 
are still paths cut should block. They all go through some vertices of  the tree,  and we 
shall discuss cut's strategy to block them shortly. However ,  before cut can make his first 
move to do this, short has already made two nonnormal  moves.  

Ifshort's nonnormal  move is made while play is on an existential block, cut's strategy is 
again to try and cut the graph at the lower part  of the ladder  on the lower two vertices of 
the next foursome or  on the next quantifier vertex (or root  of B) ,  if the previously played 
foursome is the last one in the existential block. If this cannot be done,  then cut tries to 
cut the upper  part  of the ladder  on the upper  two vertices of the next foursome. Short can 
block such a cut strategy by responding to cut's moves in a normal fashion, except that cut 
has the initiative although the block is existential.  This continues until either short makes 
another  nonnormal  move,  in which case cut achieves one of the goals described above,  or  
until the foursome or the quantifier .vertex in which short has made his nonnormal  move 
is reached and the play returns to normal ,  or  until the end of  the existential  block is 
reached and cut, who has the initiative, takes the empty quantifier vertex (which may 
also be the root  of B).  In all cases, ei ther play returns to normal,  or cut wins immediately 
by breaking the lower part  of the ladder ,  or  cut breaks the upper  part  of the ladder .  In 
the last case short will have made three nonnormal  moves before cut has a chance to play 
again. 

It remains to be shown that cut can block all paths (through tree vertices) in the case 
where he has cut the upper  part  of the ladder  by playing some xt(2) and ~,(2), even if short 
has made as many as three nonnormal moves in the meantime.  

Let us call vertices y(O, 1), y(b, j) special and decide on cut's strategy according to the 
following: Has short used at least two of his ( three) nonnormal  moves to play on special 
vertices9 In case he has not,  all paths from the upper  part  of the upper  ladder  to the rest 
of the graph are simply cut by complementary play on t hey (0 , j ) ,  y(b,j)  pairs. (All paths 
through edges (xk(2), $k(1)) or ($~(2), xk(1)) for k < i have been cut previously in the 
course of normal play.)  In case short has used two of his nonnormal  moves to play special 
vertices, he has made at most one move elsewhere.  Cut can win by the following strategy: 

(1) Respond to short moves in the tree to cut B in its root ,  or  elsewhere,  or  allow a 
path in B to a dead vertex, i.e. le+~, or  lk+m+t, or  lk+2m+t. In the lat ter  case, choose one 
whose three-level tree has no moves of  short on ~t. 

(2) Respond to short moves on variable vertices by complementary  play as follows: If 
short plays y(k), play p(3 - k). 

(3) Respond to short moves on quantifier vertices by complementary  play as follows: 
If short plays a universal quantifier,  play the preceding existential vertex, and vice versa. 
Note that the quantifier vertex for a block of variables follows rather  than precedes the 
block in the ladder.  The first nonnormal  move must have been made when playing an 
existential block; thus the pairing does not include previously played vertices. If the first 
nonnormal  move has been made when playing a universal block,  short has made no 
nonnormal  moves other  than the two on special vertices, and cut takes,  on his first move,  
the next universal quantifier vertex. 

7. Remarks 

It is not hard to define these strategies rigorously and to prove that they work.  Thus the 
Shannon switching game on vertices is log-space complete  in polynomial  space. 

To show that the Shannon switching game on the edges of a directed graph is complete  
in polynomial  space, we modify the construction above slightly. First  we convert  each 
undirected edge in the game graph G into a directed edge leading from s toward t (from 
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FIG. 6 
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ModfflcaUons for play on edges (a) edge transformaUon, (b) vertex transformation 

bottom to top in Figure 5). Next we replace each edge by the configuration indicated in 
Figure 6(a). Clearly short can force a path from v to w m such a configuration even if cut 
moves first (if play is on the edges). Last we replace each vertex except s and t in the 
original graph G by two vertices joined by a single edge, as indicated by Figure 6(b). 

It is not hard to see that short wins by playing on the edges in the moddied graph if and 
only if short wins by playing on vertices in the original graph. Thus the Shannon 
switching game on the edges of a directed graph is also log-space complete in polynomial 
space. 

A further question of interest ~s whether the game problems remain complete in 
polynomial space even for graphs of restricted degree. By moddymg the main construc- 
tion, we can show that the Shannon switching game on vertices ~s complete even for 
undirected graphs all of whose vertices are of degree five or less. We can also show that 
the Shannon switching game on edges is complete even for directed graphs all of whose 
vertzces have in-degree less than or equal to 3 and out-degree less than or equal to 2, or 
out-degree less than or equal to 3 and in-degree less than or equal to 2. Since these 
bounds are probably improvable, we do not include the detatls of these constructions. 

If either game problem has a polynomial-time algorithm, our results imply that any 
problem solvable m porynomial space IS solvable in polynomial time. This seems 
unlikely. The construction we have given also suggests that what makes "games" harder 
than "puzzles" (e.g. Npocomplete problems) is the fact that the initiative (the "move")  
can shift back and forth between the players. Such a shift corresponds to an alternation 
of quantifiers m a Boolean formula (the NP-complete problems correspond to Boolean 
formulas with no quantifier alternation). For any game with a sufficiently rich structure, 
a construction like that outhned here can probably be made Recently, Schaefer [8] has 
proved several other combinatorial games complete tn polynomial space. 
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