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aBsTRACT  This paper considers a generalization, called the Shannon switching game on vertices. of a familiar
board game called Hex It 1s shown that determining who wins such a game if each player plays perfectly 1s very
hard, m fact, if this game problem is solvable in polynomial time, then any problem solvable in polynomal
space 1s solvable m polynomal ume Ths result suggests that the theory of combinatonal games 1s difficult
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1. Introduction

Let G be an arbitrary graph with two distinguished vertices s and ¢. Suppose that two
players, short and cut, alternately select vertices of G (except s and t). No player is
allowed to select a vertex previously selected by another player The game concludes
with short winning if some of the vertices selected by short form a path between s and 1.
The game concludes with cut winning if every path between s and ¢ contains a vertex
selected by cut We call this game a Shannon switching game on the vertices of G In a
common version of this game called Hex, G is a diamond-shaped section of a planar
triangular grid (Figure 1) The question 1s who wins if both players play perfectly, and
what 1s the winning strategy? (Hex is peculiar in the following sense: It is easy to prove
that the first player can win, but no efficient way to decide on the moves 1s known.)

If we allow the players to select edges of G instead of vertices, the game is a Shannon
switching game on the edges of G . Efficient algorithms exist for finding winning strategies
for such a game [2, 3]. These strategies are based on finding a par of mmimum
overlapping spanning trees of G, and the fastest algorithm known requires O (n®) time if
G has n vertices [10]. However, the Shannon switching game on vertices seems to be
much harder to solve Here we give theoretical evidence to support this view. Specifi-
cally, we show that any algorithm for efficiently determining who wins the game on an
arbitrary graph G can be used to efficiently carry out any polynomial-space bounded
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computation (the game problem 1s complete in polynomial space). As a corollary we
show that the Shannon switching game played on the edges of a directed graph is
polynomial-space complete.

2. A Polynomual-Space Algorithm

First we shall show that there is a polynomial-space bounded algorithm for determining
who wins the game. By convention we shall assume that short moves first. (This 1s no loss
of generality.) If G has n vertices, only n — 2 moves can be made in any game. Suppose
we construct a game tree T for G [7]. T 1s a directed, rooted tree. Each vertex of T
denotes a position of the game (indicating all moves made so far). The root of T denotes
the imitial position (no moves made). The sons of any vertex v of T denote the positions
reachable from the position v by one move of the player whose turn 1t is. We use v — w
to mean thatw isasonofvin T A leaf of T corresponds to a final game position. We call
a vertex of T a short vertex if it is short’s turn to move, a cut vertex if 1t is cut’s turn to
move.

T clearly has depth at most n — 2 and contains at most Y, 2=2(n — 2)!/i! vertices (many
of which correspond to the same game position but represent different sequences of
moves). For a vertex v in T, let W(v) = 1 if short has a forced win from the position v
denotes, W(v) = 0 otherwise. W(v) 1s easy to calculate if v is a leaf of T. The following
recursive formula defines W(v) for all vertices.

If v 1s a short vertex, W(v) = 1 if there exists v « w such that Ww) = 1; W) = 0
otherwise.

If v is a cut vertex, W(v) = 1 if forallv — w, W(w) = 1; W(v) = 0 otherwise.

We desire the value of W(r) where r 1s the root of 7. It is easy to calculate W(r) by
exploring T 1n a depth-first fashion [7, 9]. We need a stack to store the moves made in
reaching the current position; the total amount of storage required is O(n log n) bats for
the stack plus no more than O(n* log n) bits to store the graph and any work area
required. Thus the search requires polynomial space to determine who wins the game. A
simple modification gives an algorithm for playing the game m a winning fashion. A
similar algorithm solves any Shannon switching game played on the edges of a directed
graph.

There is no obvious way to determine the winner in polynomial time, even if we allow
a nondeterministic algorithm It 1s thus reasonable to suspect that the game problem is
even harder than the NP-complete problems [1, 4, 5], which include such problems as
graph coloring, finding a maximum clique, and finding a Hamiltonian path.

3. The Reduction N

We shall show that the Shannon switching game on vertices 1s log-space complete n
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polynomial space. We need a few definitions. A problem is a set of words over a finite
alphabet. Let 2, A be finite alphabets and let A C 3*, B C A* be problems. We say
A =4 B (A 15 log-space reducible to B) if there is a log-space computable function f such
that x € A iff f(x) € B, for allx € 3*. Log-space reducibility is reflexive and transitive.
Problem A 1s polynomial-space solvable if there exists a polynomial-space bounded
Turing machine which accepts A. Problem A is (log-space) complete in polynomial space
if A is polynomial-space solvable and every polynomial-space solvable problem is log-
space reducible to A. [1, Ch. 10] provides a good discussion of the meaning and conse-
quences of the notion of completeness in polynomial space. Meyer and Stockmeyer [6]
have exhibited several problems complete in polynomal space, including the

Quantified Boolean formula problem: QBF = {Qix;Q:x; . .. Qux,F| the Q, are
quantifiers, the x, are Boolean variables, F is a well-formed formula 1n conjunctive normal
form with variables x,, . . . , x,,, and the quantified formula is true}.

To show that the game problem is complete in polynomial space, we exhibit a
construction which, given any quantified Boolean formula ( Q,x,)F, will produce a game
graph G such that (Q,x,)F is true if and only if short wins on G. We describe the
construction informally; it will be obvious that the construction is log-space computable.
The construction produces a graph with two parts: a tree (actually a combination of two
smaller kinds of trees) and a ladder. Consider a graph of the form shown in Figure 2.
It consists of a binary tree B with its root joined to s and some or all of its leaves joined to
t. Short wins in this graph if and only if ¢ is joined to all the leaves of the tree. Forif ¢ is
joined to all the leaves of the tree, short wins by the following strategy:

First play the root.

On succeeding moves play one of the sons (in the tree) of the vertex you last played.
Pick a son which 1s the root of a subtree containing no moves by cut.

If ¢ is not joined to all the leaves of the tree, cut wins by the following strategy.

If some unplayed vertex will cut all remaining paths from s to ¢, play 1t.

Otherwise play one of the sons of the vertex last played by short. Find a son which 1s
the root of a subtree having a leaf not connected to ¢, and play the other son.

The idea here is that short can force completion of a path from the root to some leaf,
but cut can choose the leaf and in addition block paths from the root to other leaves. It is
easy to prove by induction that these strategies work. We shall use such a tree B to
represent the conjunction in the formula F.

Consider, now, a graph of the form shown in Figure 3. It is a tree with three levels
(root, sons, grandsons). The root is connected to s One son of the root is a leaf and is
connected to ¢. The other sons each are connected to two grandsons of the root, an g-
grandson and a b-grandson. All the a-grandsons, and possibly some of the b-grandsons,
are connected to ¢. It is easy to see that short wins in this graph if and only if f is connected
to at least one of the b-grandsons. We shall use such a tree to represent each clause
(disjunction of literals) in the formula F.

The last part of the construction is a ladder. Consider a graph of the form shown in
Figure 4. This graph consists of a set of foursomes of the form {x,(1), x,(2), x,(1), ¥.(2)}. If
short moves first, he can play to occupy either {x,(1), x,(2)} or {x,(1), x,(2)} for each
foursome. For instance, if he wants to occupy {x,(1), x2(2), x2(1), ¥2(2), X5(1), ¥3(2), - - -}
the play is:

short x,(1) x4(2) X2(1) £2(2) %3(1) %5(2) ...
cut  £,(2) £,(1) x2(2) x2(1) x3(2) x5(1) ...

All cut’s moves are forced.

On the other hand, if cut moves first, he can play to occupy either {x,(1), x,(2)} or {x,(1),
X.(2)} for each foursomes. For instance, if he wants to occupy {x,(1), x,(2), ¥2(1), ¥,(2),
x3(1), x5(2), ...}, the play is:
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cut  xy(1) x4(2) Xx(1) £2(2) x5(1) x3(2) ...

short %1(1) x,(2) x(1) x2(2) x3(1) £3(2) ...

All short’s moves are forced.

In the complete construction we use a ladder to represent the variables of the Boolean
formula, with a few extra vertices to represent quantifiers. We use a binary tree to
represent the conjunction in the formula, with a leaf for each clause. Each leaf of this
binary tree is the root of a three-level tree which represents the corresponding clause.
The binary tree contains 3m extra leaves, each representing a dummy clause (x, \/ x,).
Each possible dummy clause (x, \/ X)) is represented three times.

Suppose (Q.x;)F is a quantified Boolean formula with F in conjunctive normal form,
having m variables and & clauses. We can assume without loss of generahty that O, = Q,,
= 3. Let G be a graph containing the following vertices:

S

Fic 2 A binary tree representing a conjunction

Fic 3. A three-level tree representing a disjunction
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5, t;

x,(1), x,(1) x.(2), x,(2) for 1 < i =< m, called vaniable veruces;

q, for each Q, # Q,,,, called quantifier vertices;

2(k + 3m) — 1 vertices forming a binary tree B with k + 3m leaves, designated by, [2,
co s Dievams

0), 1l =j =k + 3m;

¥(0, j), y(a, j), y(b, j) for each literal y occurring in clause j, 1 = j = k (these vertices,
together with /,(0) and /,, form a three-level tree which represents the jth clause);

x(0, k + 1), x(a, k + 1), x,(b, k + i)
x0,k+m+i),xa,k+m+i),xb, k+m-+i) forl =i =m.
x0,k+2m+0),xa,k+2m+1),xb,k+2m+1)

(For example, [+, [+.(0), x (0, k + 1), x.(a, k + 1), andx,(b, k + 1) form a three-level tree
which represents the first, out of three, dummy clauses (x, \/ x,).).

In addition to the edges of B, G has the following edges:

(s, x1(1)), (s, X:(1)), (£, x4(2)), (¢, x:(2));

(x:(2), X,:41(2)), (i(2), X.144(2)), K(2), x144(2)), (K(2), X,41(2)) for 1 =1 < m;

(x(2), x,(1)), &£,(2), x,(1)) for 1 =1 = m;

(xx(1), r), (x,,(1), r) where r is the root of B;

(1), x141(1)), (6i(1), Xps1(1), K1), X,44(1)), (6(1), X141(1)) I @, # T OF Oy # V;

1), g, &), q.) if Q, # Quis

(@Go Xe1(D), (@ X)) I Q, = 3, Qi =V

@ x(2), (g, x.2NIEQ, =V, Oy = 35

(,L,0) forl =y <k + 3m;

(,(0), x,,(2)), 4,(0), xn(@)) for 1l =j < k + 3m;

Fic 4 A ladder
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&, y0,7)), (0,1, y@, /), ¥©0,7), y®, /), @, )), xwu(2)), (@, 1), £u(2)), (b)), y(2))

for each literal y occurring in clausej, 1 <j < k;

Uk+nmee X0, kK + hm + i), &, (0, k + hm + i), x,(a, k + hm + 1)),
w0, k + hm + i), x,(b, k + hm + i), (x,(a, kK + hm + i), x,(2)),

(xa, k + hm + i), £.(2), (x(b, k + hm + i), x,(2)), (x(b, k + hm + i),
x2forl=si=m,0<h =2,

Figure 5 illustrates this construction for Ix Vy 3z((x \V/ z) N\ (€ V y)).

If we use some simple rule to choose one of the several possibilities for B, this
construction defines a function from formulas to graphs. The function is clearly log-space
computable. We must show that (Q,x)F is true if and only if short wins on G.

First we describe a normal way of playing the game and show that short wins if and

.

Fic 5 Game graph for 3x Yy 3z((¢ Vy) /A (x V z)) For clanty, most of the three-level trees, except those
fory = 1,2, and 7, are not shown
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only if (Q,x,) F is true. Second we show that cut cannot gain by deviating from the normal
play. Third we show that short cannot gain by such a deviation.

4. Normal Play

Initially short has the initiative. He plays in the ladder, choosing vertices to represent the
truth values of the first few (existentially quantified) variables. Cut’s replies are forced.
Short then plays the first quantifier vertex (which marks the beginning of a block of
universally quantified variables). This play gives cur the initiative. Cut plays vertices
representing the truth values of these universally quantified variables; short’s replies are
collaborative. Cut then plays the next quantifier vertex (which marks the beginning of a
block of existentially quantified variables). This play returns the initiative to short. Play
continues in this way, with short choosing vertices for existentially quantified variables
and cut choosing vertices for universally quantified variables, until the ladder is ex-
hausted. When this happens the root of B is connected to s and the leaves of B
representing true clauses each have at least one b grandson connected to ¢. Short wins in
the tree if and only if F is true, given the selected truth assignments.

Within this framework of normal play, short can win if the formula is true in the
following way.

If the next unoccupied foursome in the ladder corresponds to 3x,, pick a truth value
for x, which makes the formula true and play the corresponding two vertices on
successive moves. Cut’s replies are forced.

If the next unoccupied foursome corresponds to Vx,., and the last occupied foursome
corresponds to 3x,, play ¢,. Then reply to cut’s moves on foursomes corresponding to the
next block of universally quantified variables.

If the entire ladder is occupied, formula F must be true, given the selected truth
values. Use the previously described strategy to form a path from the root of B to a leaf!;
which 1s the root of a three-level tree containing no moves by cut. Then win in this three-
level tree.

Similarly, cut can win if the formuia is false, as follows.

If the next unoccupied foursome in the ladder corresponds to Vx,, pick a truth value
for x, which makes the formula false and play the corresponding two vertices on
successive moves.

If the next unoccupied foursome corresponds to Jx,,, and the last occupied foursome
corresponds to Vx,, play ¢,. Then reply to short’s moves on foursomes corresponding to
the next block of existentially quantified variables.

If the ladder is full, then the chosen truth values must make the formula faise. Using
the previously described strategy, block all paths in B except one from the root to aleaf/,
representing a false clause. Then beat short in the three-level tree rooted at this leaf.

5. Cut Cannot Win if Formula True

Assume that the formula is true and cut tries to force a win by deviating from normal
play. Our purpose is to show that this cannot be done.

If cut has the initiative while play is in a universal quantifier block and he does not
proceed by playing the next foursome in the normal way, short plays the rest of the
foursomes in the block, picking truth values for the variables arbitrarily. All cut’s
responses are forced. Finally, short plays the next quantifier vertex and wins. If any one
of cut’s responses in the block has been played before, the initiative returns to cut and the
play returns to normal. If cut’s nonnormal move is in the next quantifier, then once all
foursomes of the block are played the game returns to normal.

The previously described strategy for short’s play in the B tree and the three-level trees
is sufficient to win even if cut deviates from normal play.

6. Short Cannot Win If Formula False

Several safeguards have been put in the construction to prevent short from forcing a win
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by deviating from normal play, when the formula is false. These include vertices /i,
through /.3, and the three-level trees.

If shore’s first nonnormal move is made while play is on a universal block, then cut
breaks the lower or upper part of the ladder (by playing x,(j) if his previous move was
X.(), and £,(j) if his previous move was x,(j)). If the lower part of the ladder is cut, all
paths from s to t are blocked and cut has won. If the upper part of the ladder is cut, there
are still paths cut should block. They all go through some vertices of the tree, and we
shall discuss cut’s strategy to block them shortly. However, before cut can make his first
move to do this, short has already made two nonnormal moves.

If short’s nonnormal move is made while play is on an existential block, cut’s strategy is
again to try and cut the graph at the lower part of the ladder on the lower two vertices of
the next foursome or on the next quantifier vertex (or root of B), if the previously played
foursome is the last one in the existential block. If this cannot be done, then cut tries to
cut the upper part of the ladder on the upper two vertices of the next foursome. Short can
block such a cut strategy by responding to cut’s moves in a normal fashion, except that cut
has the initiative although the block is existential. This continues until either short makes
another nonnormal move, in which case cut achieves one of the goals described above, or
until the foursome or the quantifier vertex in which short has made his nonnormal move
1s reached and the play returns to normal, or until the end of the existential block is
reached and cut, who has the initiative, takes the empty quantifier vertex (which may
also be the root of B). In all cases, either play returns to normal, or cut wins immediately
by breaking the lower part of the ladder, or cut breaks the upper part of the ladder. In
the last case short will have made three nonnormal moves before cut has a chance to play
again.

It remains to be shown that cut can block all paths (through tree vertices) in the case
where he has cut the upper part of the ladder by playing some x;(2) and £2), even if short
has made as many as three nonnormal moves in the meantime.

Let us call vertices y(0, j), y(b, j) special and decide on cut’s strategy according to the
following: Has short used at least two of his (three) nonnormal moves to play on special
vertices? In case he has not, all paths from the upper part of the upper ladder to the rest
of the graph are simply cut by complementary play on the y(0, ), y(b, j) pairs. (All paths
through edges (x(2), #,(1)) or (¥4(2), x4(1)) for k < i have been cut previously in the
course of normal play.) In case short has used two of his nonnormal moves to play special
vertices, he has made at most one move elsewhere. Cut can win by the following strategy:

(1) Respond to short moves in the tree to cut B in its root, or elsewhere, or allow a
path in B to a dead vertex, i.e. li4s, O lyimri, OF litom+s- In the latter case, choose one
whose three-level tree has no moves of short on 1t.

(2) Respond to short moves on variable vertices by complementary play as follows: If
short plays y(k), play y(3 — k).

(3) Respond to short moves on quantifier vertices by complementary play as follows:
If short plays a universal quantifier, play the preceding existential vertex, and vice versa.
Note that the quantifier vertex for a block of variables follows rather than precedes the
block in the ladder. The first nonnormal move must have been made when playing an
existential block; thus the pairing does not include previously played vertices. If the first
nonnormal move has been made when playing a universal block, short has made no
nonnormal moves other than the two on special vertices, and cut takes, on his first move,
the next universal quantifier vertex.

7. Remarks

It is not hard to define these strategies rigorously and to prove that they work. Thus the
Shannon switching game on vertices 1s log-space complete in polynomial space.

To show that the Shannon switching game on the edges of a directed graph is complete
in polynomial space, we modify the construction above slightly. First we convert each
undirected edge in the game graph G into a directed edge leading from s toward ¢ (from
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00 =€
v Yot = ot

Fic. 6 Modifications for play on edges (a) edge transformation, (b) vertex transformation

bottom to top in Figure 5). Next we replace each edge by the configuration indicated in
Figure 6(a). Clearly short can force a path from v to w n such a configuration even if cut
moves first (if play 1s on the edges). Last we replace each vertex except s and ¢ in the
original graph G by two vertices joined by a single edge, as indicated by Figure 6(b).

It 1s not hard to see that short wins by playing on the edges in the modified graph if and
only if short wins by playing on vertices in the original graph. Thus the Shannon
switching game on the edges of a directed graph is also log-space complete in polynomial
space.

A further question of interest 1s whether the game problems remain complete in
polynomial space even for graphs of restricted degree. By modifying the main construc-
tion, we can show that the Shannon switching game on vertices 1s complete even for
undirected graphs all of whose vertices are of degree five or less. We can also show that
the Shannon switching game on edges 1s complete even for directed graphs all of whose
vertices have in-degree less than or equal to 3 and out-degree less than or equal to 2, or
out-degree less than or equal to 3 and in-degree less than or equal to 2. Since these
bounds are probably improvable, we do not include the details of these constructions.

If either game problem has a polynomial-time algorithm, our results imply that any
problem solvable mn polynomial space 1s solvable in polynomial time. This seems
unlikely. The construction we have given also suggests that what makes “games’ harder
than ‘“‘puzzles” (e.g. NP-complete problems) is the fact that the initiative (the ‘“move’’)
can shift back and forth between the players. Such a shift corresponds to an alternation
of quantifiers in a Boolean formula (the NP-complete problems correspond to Boolean
formulas with no quantifier alternation). For any game with a sufficiently rich structure,
a construction like that outlined here can probably be made Recently, Schaefer [8] has
proved several other combinatorial games complete 1n polynomial space.
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