A combinatorial proof of Postnikov's identity and a generalized enumeration of labeled trees

Seunghyun Seo*
Department of Mathematics
Brandeis University, Waltham, MA 02454, USA
shseo@brandeis.edu

Submitted: Sep 16, 2004; Accepted: Dec 16, 2004; Published: Jan 24, 2005
Mathematics Subject Classifications: 05A15, 05C05, 05C30

Abstract

In this paper, we give a simple combinatorial explanation of a formula of A. Postnikov relating bicolored rooted trees to bicolored binary trees. We also present generalized formulas for the number of labeled k-ary trees, rooted labeled trees, and labeled plane trees.

1 Introduction

In Stanley's 60th Birthday Conference, Postnikov [3, p. 21] showed the following identity:

$$
\begin{equation*}
(n+1)^{n-1}=\sum_{\mathfrak{b}} \frac{n!}{2^{n}} \prod_{v \in V(\mathfrak{b})}\left(1+\frac{1}{h(v)}\right), \tag{1}
\end{equation*}
$$

where the sum is over unlabeled binary trees \mathfrak{b} on n vertices and $h(v)$ denotes the number of descendants of v (including v). The figure below illustrates all five unlabeled binary trees on 3 vertices, with the value of $h(v)$ assigned to each vertex v. In this case, identity (1) says that $(3+1)^{2}=3+3+4+3+3$.

[^0]Postnikov derived this identity from the study of a combinatorial interpretation for mixed Eulerian numbers, which are coefficients of certain reparametrized volume polynomials which introduced in [3]. For more information, see [2, 3].

In the same talk, he also asked for a combinatorial proof of identity (1). Multiplying both sides of (1) by 2^{n} and expanding the product in the right-hand side yields

$$
\begin{equation*}
2^{n}(n+1)^{n-1}=\sum_{\mathfrak{b}} n!\sum_{\alpha \subseteq V(\mathfrak{b})} \prod_{v \in \alpha} \frac{1}{h(v)} \tag{2}
\end{equation*}
$$

Let LHS_{n} (resp. RHS_{n}) denote the left-hand (resp. right-hand) side of (2).
The aim of this paper is to find a combinatorial proof of (2). In Section 2 we construct the sets $\mathcal{F}_{n}^{\text {bi }}$ of labeled bicolored forests on $[n]$ and \mathcal{D}_{n} of certain labeled bicolored binary trees, where the cardinalities equal LHS_{n} and RHS_{n}, respectively. In Section 3 we give a bijection between $\mathcal{F}_{n}^{\text {bi }}$ and \mathcal{D}_{n}, which completes the bijective proof of (2). Finally, in Section 4, we present generalized formulas for the number of labeled k-ary trees, rooted labeled trees, and labeled plane trees.

2 Combinatorial objects for $L H S_{n}$ and RHS_{n}

From now on, unless specified, we consider trees to be labeled and rooted.
A tree on $[n]:=\{1,2, \ldots, n\}$ is an acyclic connected graph on the vertex set $[n]$ such that one vertex, called the root, is distinguished. We denote by \mathcal{T}_{n} the set of trees on $[n]$ and by $\mathcal{T}_{n, i}$ the set of trees on $[n]$ where vertex i is the root. A forest is a graph such that every connected component is a tree. Let \mathcal{F}_{n} denote the set of forests on $[n]$. There is a canonical bijection $\gamma: \mathcal{T}_{n+1, n+1} \rightarrow \mathcal{F}_{n}$ such that $\gamma(T)$ is the forest obtained from T by removing the vertex $n+1$ and letting each neighbor of $n+1$ be a root. A graph is called bicolored if each vertex is colored with the color \mathbf{b} (black) or \mathbf{w} (white). We denote by $\mathcal{F}_{n}^{\mathrm{bi}}$ the set of bicolored forests on [n]. From Cayley's formula [1] and the bijection γ, we have

$$
\begin{equation*}
\left|\mathcal{F}_{n}\right|=\left|\mathcal{T}_{n+1, n+1}\right|=(n+1)^{n-1} \quad \text { and } \quad\left|\mathcal{F}_{n}^{\mathrm{bi}}\right|=2^{n} \cdot(n+1)^{n-1} \tag{3}
\end{equation*}
$$

Thus LHS_{n} can be interpreted as the cardinality of $\mathcal{F}_{n}^{\text {bi }}$.
Let F be a forest and let i and j be vertices of F. We say that j is a descendant of i if i is contained in the path from j to the root of the component containing j. In particular, if i and j are joined by an edge of F, then j is called a child of i. Note that i is also a descendant of i itself. Let $S(F, i)$ be the induced subtree of F on descendants of i, rooted at i. We call this tree the descendant subtree of F rooted at i. A vertex i is called proper if i is the smallest vertex in $S(F, i)$; otherwise i is called improper. Let $\operatorname{pv}(F)$ denote the the number of proper vertices in F.

A plane tree or ordered tree is a tree such that the children of each vertex are linearly ordered. We denote by \mathcal{P}_{n} the set of plane trees on $[n]$ and by $\mathcal{P}_{n, i}$ the set of plane trees on $[n]$ where vertex i is the root. Define a plane forest on $[n]$ to be a finite ordered sequence of non-empty plane trees $\left(P_{1}, \ldots, P_{m}\right)$ such that $[n]$ is the disjoint union of the
sets $V\left(P_{r}\right), 1 \leq r \leq m$. We denote by $\mathcal{P F}_{n}$ the set of plane forests on $[n]$ and by $\mathcal{P} \mathcal{F}_{n}^{\text {bi }}$ the set of bicolored plane forests on $[n]$. There is also a canonical bijection $\bar{\gamma}: \mathcal{P}_{n+1, n+1} \rightarrow \mathcal{P F} \mathcal{F}_{n}$ such that $\bar{\gamma}(P)=\left(S\left(P, j_{1}\right), \ldots, S\left(P, j_{m}\right)\right)$ where each vertex j_{r} is the r th child of $n+1$ in P. It is well-known that the number of unlabeled plane trees on $n+1$ vertices is given by the nth Catalan number $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ (see [4, ex. 6.19]). Thus we have

$$
\begin{equation*}
\left|\mathcal{P} \mathcal{F}_{n}\right|=\left|\mathcal{P}_{n+1, n+1}\right|=n!\cdot C_{n}=2 n(2 n-1) \cdots(n+2) . \tag{4}
\end{equation*}
$$

A binary tree is a tree in which each vertex has at most two children and each child of a vertex is designated as its left or right child. We denote by \mathcal{B}_{n} the set of binary trees on $[n]$ and by $\mathcal{B}_{n}^{\text {bi }}$ the set of bicolored binary trees on $[n]$.

For $k \geq 2$, a k-ary tree is a tree where each vertex has at most k children and each child of a vertex is designated as its first, second, \ldots, or k th child. We denote by \mathcal{A}_{n}^{k} the set of k-ary trees on $[n]$. Clearly, we have that $\mathcal{A}_{n}^{2}=\mathcal{B}_{n}$. Since the number of unlabeled k-ary trees on n vertices is given by $\frac{1}{(k-1) n+1}\binom{k n}{n}$ (see [4, p. 172]), the cardinality of \mathcal{A}_{n}^{k} is as follows:

$$
\left|\mathcal{A}_{n}^{k}\right|=n!\cdot \frac{1}{(k-1) n+1}\binom{k n}{n}=k n(k n-1) \cdots(k n-n+2) .
$$

Now we introduce a combinatorial interpretation of the number RHS_{n}. Let \mathfrak{b} be an unlabeled binary tree on n vertices and $\omega: V(\mathfrak{b}) \rightarrow[n]$ be a bijection. Then the pair (\mathfrak{b}, ω) is identified with a (labeled) binary tree on $[n]$. Let $\Pi(\mathfrak{b}, \omega)$ be the set of vertices v in \mathfrak{b} such that v has no descendant v^{\prime} satisfying $\omega(v)>\omega\left(v^{\prime}\right)$, i.e., $\omega(v)$ is proper.

Let \mathcal{D}_{n} be the set of bicolored binary trees on $[n]$ such that each proper vertex is colored with \mathbf{b} or \mathbf{w} and each improper vertex is colored with \mathbf{b}.
Lemma 1. The cardinality of \mathcal{D}_{n} is equal to RHS_{n}.
Proof. Let \mathcal{D}_{n}^{\prime} be the set defined as follows:

$$
\mathcal{D}_{n}^{\prime}:=\left\{(\mathfrak{b}, \omega, \alpha) \mid(\mathfrak{b}, \omega) \in \mathcal{B}_{n} \text { and } \alpha \subseteq \Pi(\mathfrak{b}, \omega)\right\}
$$

There is a canonical bijection from \mathcal{D}_{n}^{\prime} to \mathcal{D}_{n} as follows: Given $(\mathfrak{b}, \omega, \alpha) \in \mathcal{D}_{n}^{\prime}$, if a vertex v of \mathfrak{b} is contained in α then color v with \mathbf{w}; otherwise color v with \mathbf{b}. Thus it suffices to show that the cardinality of \mathcal{D}_{n}^{\prime} equals RHS_{n}.

Given an unlabeled binary tree \mathfrak{b} and a subset α of $V(\mathfrak{b})$, let $l(\mathfrak{b}, \alpha)$ be the number of labelings ω satisfying $\alpha \subseteq \Pi(\mathfrak{b}, \omega)$. Then for each $v \in \alpha$, the label $\omega(v)$ of v should be the smallest among the labels of the descendants of v. If we pick a labeling ω uniformly at random, the probability that $\omega(v)$ is the smallest among the labels of the descendants of v is $1 / h(v)$. So the number of possible labelings ω is $n!/ \prod_{v \in \alpha} h(v)$. Thus we have

$$
\begin{aligned}
\left|\mathcal{D}_{n}^{\prime}\right| & =\sum_{\mathfrak{b}} \sum_{\alpha \subseteq V(\mathfrak{b})} l(\mathfrak{b}, \alpha) \\
& =\sum_{\mathfrak{b}} \sum_{\alpha \subseteq V(\mathfrak{b})} n!\prod_{v \in \alpha} \frac{1}{h(v)},
\end{aligned}
$$

which coincides with RHS_{n}.

Figure 1: The map f. (Right improper vertices are in italics.)

3 A bijection

In this section we construct a bijection between $\mathcal{F}_{n}^{\text {bi }}$ and \mathcal{D}_{n}, which gives a bijective proof of (2).

Given a vertex v of a bicolored binary tree B, let $L(B, v)$ (resp. $R(B, v)$) be the descendant subtree of B, which is rooted at the left (resp. right) child of v. Note that $L(B, v)$ and $R(B, v)$ may be empty, but $L(B, v)$ or $R(B, v)$ is nonempty when v is improper. For any kind of tree T, let $m(T)$ be the smallest vertex in T. By convention, we put $m(\emptyset)=\infty$. For an improper vertex v of B, if $m(L(B, v))>m(R(B, v))$, then we say that v is right improper; otherwise left improper.

For a vertex v of B, define the flip on v, which will be denoted by f_{v}, by swapping $L(B, v)$ and $R(B, v)$ and changing the color of v. Note that the flip satisfies $f_{v} \circ f_{v}=i d$ and $f_{v} \circ f_{w}=f_{w} \circ f_{v}$. For a bicolored binary tree D in \mathcal{D}_{n}, let \mathbf{f} be the map defined by

$$
\mathbf{f}(D):=\left(f_{v_{1}} \circ \cdots \circ f_{v_{k}}\right)(D)
$$

where $\left\{v_{1}, \ldots, v_{k}\right\}$ is the set of right improper vertices in D. (See Figure 1.)
Let \mathcal{E}_{n} be the set of bicolored binary trees E on $[n]$ such that every improper vertex v is left improper, i.e., $m(L(E, v))<m(R(E, v))$.

Lemma 2. The map \mathbf{f} is a bijection from \mathcal{D}_{n} to \mathcal{E}_{n}.
Proof. For a bicolored binary tree E in \mathcal{E}_{n}, let \mathbf{f}^{\prime} be the map defined by $\mathbf{f}^{\prime}(E):=\left(f_{u_{1}} \circ\right.$ $\left.\cdots \circ f_{u_{j}}\right)(E)$, where $\left\{u_{1}, \ldots, u_{j}\right\}$ is the set of white-colored improper vertices in E. Then the map \mathbf{f}^{\prime} is the inverse of \mathbf{f}.

Let \mathcal{G}_{n} (resp. \mathcal{Q}_{n}) be the set of bicolored trees (resp. bicolored plane trees) on $[n+1]$ such that $n+1$ is the root colored with \mathbf{b}. Note that the map γ (resp. $\bar{\gamma}$) given at the beginning of Section 2 can be regarded as a bijection $\gamma: \mathcal{G}_{n} \rightarrow \mathcal{F}_{n}^{\text {bi }}$ (resp. $\bar{\gamma}: \mathcal{Q}_{n} \rightarrow \mathcal{P} \mathcal{F}_{n}^{\mathrm{bi}}$). For a vertex v of $Q \in \mathcal{Q}_{n}$, let $\left(w_{1}, \ldots, w_{r}\right)$ be the children of v, in order. Then for each $i=1, \ldots, r-1$, we say that w_{i+1} is the right sibling of w_{i}. The set \mathcal{G}_{n} can be viewed as a subset of \mathcal{Q}_{n} satisfying the following condition: Suppose that v is the right sibling of u in $Q \in \mathcal{Q}_{n}$. Then $m(S(Q, u))<m(S(Q, v))$ holds.

Recall that $\mathcal{B}_{n}^{\text {bi }}$ denotes the set of bicolored binary trees on $[n]$. Clearly we have $\mathcal{E}_{n} \subseteq$ $\mathcal{B}_{n}^{\text {bi }}$. Let Φ be a bijection from $\mathcal{B}_{n}^{\text {bi }}$ to \mathcal{Q}_{n}, which maps B to Q as follows:

Figure 2: The bijection Φ.

1. The root of B is the first child of $n+1$ in Q.
2. v is the first child of u in Q iff v is a left child of u in B.
3. v is the right sibling of u in Q iff v is a right child of u in B.
4. The color of v in Q is the same as the color of v in B.

Note that here Φ is essentially an extension of a well-known bijection, which is described in [5, p. 60], from binary trees to plane trees.

Lemma 3. The restriction ϕ of Φ to \mathcal{E}_{n} is a bijection from \mathcal{E}_{n} to \mathcal{G}_{n}.
Proof. For any improper vertex v of $E \in \mathcal{E}_{n}$, we have $m(L(E, v))<m(R(E, v))$. This guarantees that $m(S(G, v))<m(S(G, w))$ in $G=\Phi(E)$, where w (if it exists) is the right sibling of v in G. Thus $\Phi(E) \in \mathcal{G}_{n}$, i.e., $\Phi\left(\mathcal{E}_{n}\right) \subseteq \mathcal{G}_{n}$. Similarly we can show that $\Phi^{-1}\left(\mathcal{G}_{n}\right) \subseteq \mathcal{E}_{n}$. So we have $\Phi\left(\mathcal{E}_{n}\right)=\mathcal{G}_{n}$, which implies ϕ is bijective.

From Lemma 3, we easily get that $\gamma \circ \phi$ is a bijection from \mathcal{E}_{n} to $\mathcal{F}_{n}^{\text {bi }}$. Combining this result with Lemma 2 yields the following consequence.

Theorem 4. The map $\gamma \circ \phi \circ \mathbf{f}$ is a bijection from \mathcal{D}_{n} to $\mathcal{F}_{n}^{\mathrm{bi}}$.
Figure 3 shows how the bijection in Theorem 4 maps a bicolored binary tree D in \mathcal{D}_{11} to a bicolored forest F on [11]. From equation (3) the cardinality of $\mathcal{F}_{n}^{\text {bi }}$ equals LHS_{n} and from Lemma 1 the cardinality of \mathcal{D}_{n} equals RHS_{n}. Thus Theorem 4 is a combinatorial explanation of identity (2).

4 Generalized formulas

Theorem 4 implies the set \mathcal{D}_{n} of binary trees on $[n]$ such that each proper vertex is colored with the color \mathbf{b} or \mathbf{w} and each improper vertex is colored with the color \mathbf{b} has cardinality $\left|\mathcal{D}_{n}\right|=2^{n}(n+1)^{n-1}$. In this section we give a generalization of this result.

Figure 3: The bijection from \mathcal{D}_{n} to $\mathcal{F}_{n}^{\text {bi }}$.

For $n \geq 1$, let $a_{n, m}$ denote the number of k-ary trees on $[n]$ with m proper vertices. By convention, we put $a_{0, m}=\delta_{0, m}$. Let

$$
a_{n}(t)=\sum_{m \geq 0} a_{n, m} t^{m}=\sum_{T \in \mathcal{A}_{n}^{k}} t^{\operatorname{pv}(T)},
$$

where $\operatorname{pv}(T)$ is the number of proper vertices of T. It is clear that for a positive integer t the number $a_{n}(t)$ is the number of k-ary trees on $[n]$ such that each proper vertex is colored with the color $\overline{1}, \overline{2}, \ldots$, or \bar{t} and each improper vertex has one color $\overline{1}$. Let $A(x)$ be denote the exponential generating function for $a_{n}(t)$, i.e.,

$$
A(x)=\sum_{n \geq 0} a_{n}(t) \frac{x^{n}}{n!}
$$

Lemma 5. The generating function $A=A(x)$ satisfies the following differential equation:

$$
\begin{equation*}
A^{\prime}=k x A^{k-1} A^{\prime}+t A^{k} \tag{5}
\end{equation*}
$$

where the prime denotes the derivative with respect to x.
Proof. Let T be an k-ary tree on $[n] \cup\{0\}$. Delete all edges going from the root r of T. Then T is decomposed into $T^{\prime}=\left(r ; T_{1}, \ldots, T_{k}\right)$ where each T_{i} is a k-ary tree and $[n] \cup\{0\}$ is the disjoint union of $V\left(T_{1}\right), \ldots, V\left(T_{k}\right)$ and $\{r\}$. Consider two cases: (i) For some $1 \leq i \leq k, T_{i}$ has the vertex 0 ; (ii) $r=0$. Then we have

$$
\begin{aligned}
a_{n+1}(t)= & \sum_{i=1}^{k} \sum_{n_{1}+\cdots+n_{k}=n-1}\binom{n}{1, n_{1}, \ldots, n_{k}} a_{n_{1}}(t) \cdots a_{n_{i}+1}(t) \cdots a_{n_{k}}(t) \\
& +t \sum_{n_{1}+\cdots+n_{k}=n}\binom{n}{n_{1}, \ldots, n_{k}} a_{n_{1}}(t) \cdots a_{n_{k}}(t) .
\end{aligned}
$$

Multiplying both sides by x^{n} / n ! and summing over n yields (5).
To compute $a_{n}(t)$ from (5) we need the following theorem.

Theorem 6. Fix positive integers a and b. Let $u=1+\sum_{n=1}^{\infty} u_{n} x^{n} / n$! be a formal power series in x satisfying

$$
\begin{equation*}
u^{\prime}=a x u^{b} u^{\prime}+t u^{b+1} . \tag{6}
\end{equation*}
$$

Then u_{n} is given by

$$
u_{n}=t \prod_{i=1}^{n-1}((b i+1) t+a(n-i)), \quad n \geq 1
$$

Proof. Adding $(b t-a) x u^{b} u^{\prime}$ to both sides of (6) yields

$$
\left(1+(b t-a) x u^{b}\right) u^{\prime}=t\left(b x u^{b-1} u^{\prime}+u^{b}\right) u
$$

Since $\left(1+(b t-a) x u^{b}\right)^{\prime}=(b t-a)\left(b x u^{b-1} u^{\prime}+u^{b}\right)$, we have

$$
(b t-a) \log u=t \log \left(1+(b t-a) x u^{b}\right) .
$$

Taking the exponential of both sides and the substitutions $x=y^{b}$ and $y u\left(y^{b}\right)=\hat{u}(y)$ yield

$$
\begin{equation*}
\hat{u}(y)=y\left(1+(b t-a) \hat{u}(y)^{b}\right)^{t /(b t-a)} . \tag{7}
\end{equation*}
$$

Applying the Lagrange Inversion Formula (see [4, p. 38]) to (7) yields that

$$
\begin{aligned}
{\left[y^{b n+1}\right] \hat{u}(y) } & =\frac{1}{b n+1}\left[y^{b n}\right]\left(1+(b t-a) y^{b}\right)^{\frac{t(b n+1)}{b t-a}} \\
& =\frac{1}{b n+1}(b t-a)^{n}\binom{\frac{t(b n+1)}{b t-a}}{n} \\
& =\frac{t}{n!} \prod_{i=1}^{n-1}(t(b n+1)-(b t-a) i)
\end{aligned}
$$

Since $u_{n}=n!\left[y^{b n+1}\right] \hat{u}(y)$, we obtain the desired result.
Since (5) is a special case of (6) $(a=k, b=k-1)$, we can deduce a formula for $a_{n}(t)$.
Corollary 7 (k-ary trees). For $n \geq 1, a_{n}(t)$ is given by

$$
\begin{equation*}
a_{n}(t)=t \prod_{i=1}^{n-1}((k i-i+1) t+k(n-i)) . \tag{8}
\end{equation*}
$$

Clearly, substituting $t=1$ in (8) yields the number of k-ary trees on [n], i.e.,

$$
a_{n}(1)=k n(k n-1) \cdots(k n-n+2)=\left|\mathcal{A}_{n}^{k}\right| .
$$

For some values of k, we can get interesting results. In particular when $k=2$ we have

$$
a_{n}(t)=t \prod_{i=1}^{n-1}((i+1) t+2(n-i)) \xrightarrow{t=2} 2^{n}(n+1)^{n-1}
$$

so this is a generalization of $\left|\mathcal{D}_{n}\right|=2^{n}(n+1)^{n-1}$, i.e., identity (2).
In fact Theorem 6 has more applications. For $n \geq 1$, let $f_{n, m}$ denote the number of forests on $[n]$ with m proper vertices and let $p_{n, m}$ denote the number of plane forests on $[n]$ with m proper vertices. Let

$$
f_{n}(t)=\sum_{m \geq 1} f_{n, m} t^{m} \quad \text { and } \quad p_{n}(t)=\sum_{m \geq 1} p_{n, m} t^{m}
$$

Let $F(x)$ and $P(x)$ be the exponential generating function for $f_{n}(t)$ and $p_{n}(t)$, respectively, i.e.,

$$
F(x)=1+\sum_{n \geq 1} f_{n}(t) \frac{x^{n}}{n!} \quad \text { and } \quad P(x)=1+\sum_{n \geq 1} p_{n}(t) \frac{x^{n}}{n!} .
$$

Similarly to Lemma 5, we can get two differential equations:

$$
\begin{align*}
& F^{\prime}=x F F^{\prime}+t F^{2}, \tag{9}\\
& P^{\prime}=x P^{2} P^{\prime}+t P^{3} \tag{10}
\end{align*}
$$

Since (9) and (10) are special cases of (6) ($a=b=1$ and $a=1, b=2$, respectively), we have the following results.
Corollary 8. Suppose $f_{n}(t)$ and $p_{n}(t)$ are defined as above. Then we have

1. For $n \geq 1, f_{n}(t)$ is given by

$$
\begin{equation*}
f_{n}(t)=t \prod_{i=1}^{n-1}((i+1) t+(n-i)) \tag{11}
\end{equation*}
$$

2. For $n \geq 1, p_{n}(t)$ is given by

$$
\begin{equation*}
p_{n}(t)=t \prod_{i=1}^{n-1}((2 i+1) t+(n-i)) . \tag{12}
\end{equation*}
$$

Note that (11) and (12) are generalizations of (3) and (4), respectively. Moreover, from these formulas, we can easily get

$$
\begin{aligned}
\sum_{T \in \mathcal{I}_{n+1}} t^{\mathrm{pv}(T)} & =t \prod_{i=0}^{n-1}((i+1) t+(n-i)) \\
\sum_{P \in \mathcal{P}_{n+1}} t^{\mathrm{pvv}(P)} & =t \prod_{i=0}^{n-1}((2 i+1) t+(n-i)),
\end{aligned}
$$

which are generalizations of $\left|\mathcal{T}_{n+1}\right|=(n+1)^{n}$ and $\left|\mathcal{P}_{n+1}\right|=(n+1)!C_{n}$.
Remark. In spite of the simple expressions, we have not proved (8), (11) and (12) in a bijective way. Also a direct combinatorial proof of Theorem 6 would be desirable.

Acknowledgment

The author thanks Ira Gessel for his helpful advice and encouragement. The author also thanks the referees for useful comments and suggestions.

References

[1] A. Cayley, A theorem on trees, Quart. J. Math. 23 (1889), 376-378.
[2] J. Pitman and R. P. Stanley, A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, Discrete Comput. Geom. 27 (2002), no. 4, 603-634.
[3] A. Postnikov, Permutohedra, associahedra, and beyond, Retrospective in Combinatorics: Honoring Richard Stanley's 60th Birthday, Massachusetts Institute of Technology, Cambridge, Massachusetts, June 22-26, 2004, slide available at: http://www-math.mit.edu/~apost/talks/perm-slides.pdf
[4] R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, Cambridge, 1999.
[5] D. Stanton and D. White, Constructive Combinatorics, Springer-Verlag, New York, 1986.

[^0]: *Research supported by the Post-doctoral Fellowship Program of Korea Research Foundation (KRF).

