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Abstract

In this paper, we give a simple combinatorial explanation of a formula of A. Post-
nikov relating bicolored rooted trees to bicolored binary trees. We also present gen-
eralized formulas for the number of labeled k-ary trees, rooted labeled trees, and
labeled plane trees.

1 Introduction

In Stanley’s 60th Birthday Conference, Postnikov [3, p. 21] showed the following identity:

(n + 1)n−1 =
∑
b

n!

2n

∏
v∈V(b)

(
1 +

1

h(v)

)
, (1)

where the sum is over unlabeled binary trees b on n vertices and h(v) denotes the number
of descendants of v (including v). The figure below illustrates all five unlabeled binary
trees on 3 vertices, with the value of h(v) assigned to each vertex v. In this case, identity
(1) says that (3 + 1)2 = 3 + 3 + 4 + 3 + 3 .
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Postnikov derived this identity from the study of a combinatorial interpretation for mixed
Eulerian numbers, which are coefficients of certain reparametrized volume polynomials
which introduced in [3]. For more information, see [2, 3].

In the same talk, he also asked for a combinatorial proof of identity (1). Multiplying
both sides of (1) by 2n and expanding the product in the right-hand side yields

2n (n + 1)n−1 =
∑
b

n!
∑

α⊆V(b)

∏
v∈α

1

h(v)
. (2)

Let LHSn (resp. RHSn) denote the left-hand (resp. right-hand) side of (2).
The aim of this paper is to find a combinatorial proof of (2). In Section 2 we construct

the sets Fbi
n of labeled bicolored forests on [n] and Dn of certain labeled bicolored binary

trees, where the cardinalities equal LHSn and RHSn, respectively. In Section 3 we give
a bijection between Fbi

n and Dn, which completes the bijective proof of (2). Finally, in
Section 4, we present generalized formulas for the number of labeled k-ary trees, rooted
labeled trees, and labeled plane trees.

2 Combinatorial objects for LHSn and RHSn

From now on, unless specified, we consider trees to be labeled and rooted.
A tree on [n] := {1, 2, . . . , n} is an acyclic connected graph on the vertex set [n] such

that one vertex, called the root, is distinguished. We denote by Tn the set of trees on [n]
and by Tn,i the set of trees on [n] where vertex i is the root. A forest is a graph such that
every connected component is a tree. Let Fn denote the set of forests on [n]. There is
a canonical bijection γ : Tn+1,n+1 → Fn such that γ(T ) is the forest obtained from T by
removing the vertex n + 1 and letting each neighbor of n + 1 be a root. A graph is called
bicolored if each vertex is colored with the color b (black) or w (white). We denote by
Fbi

n the set of bicolored forests on [n]. From Cayley’s formula [1] and the bijection γ, we
have

|Fn| = |Tn+1,n+1| = (n + 1)n−1 and |Fbi
n | = 2n · (n + 1)n−1. (3)

Thus LHSn can be interpreted as the cardinality of Fbi
n .

Let F be a forest and let i and j be vertices of F . We say that j is a descendant of i if
i is contained in the path from j to the root of the component containing j. In particular,
if i and j are joined by an edge of F , then j is called a child of i. Note that i is also a
descendant of i itself. Let S(F, i) be the induced subtree of F on descendants of i, rooted
at i. We call this tree the descendant subtree of F rooted at i. A vertex i is called proper
if i is the smallest vertex in S(F, i) ; otherwise i is called improper. Let pv(F ) denote the
the number of proper vertices in F .

A plane tree or ordered tree is a tree such that the children of each vertex are linearly
ordered. We denote by Pn the set of plane trees on [n] and by Pn,i the set of plane
trees on [n] where vertex i is the root. Define a plane forest on [n] to be a finite ordered
sequence of non-empty plane trees (P1, . . . , Pm) such that [n] is the disjoint union of the
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sets V(Pr), 1 ≤ r ≤ m . We denote by PFn the set of plane forests on [n] and by PFbi
n the

set of bicolored plane forests on [n]. There is also a canonical bijection γ̄ : Pn+1,n+1 → PFn

such that γ̄(P ) =
(
S(P, j1), . . . , S(P, jm)

)
where each vertex jr is the rth child of n + 1

in P . It is well-known that the number of unlabeled plane trees on n + 1 vertices is given
by the nth Catalan number Cn = 1

n+1

(
2n
n

)
(see [4, ex. 6.19]). Thus we have

|PFn| = |Pn+1,n+1| = n! · Cn = 2n (2n − 1) · · · (n + 2) . (4)

A binary tree is a tree in which each vertex has at most two children and each child
of a vertex is designated as its left or right child. We denote by Bn the set of binary trees
on [n] and by Bbi

n the set of bicolored binary trees on [n].
For k ≥ 2 , a k-ary tree is a tree where each vertex has at most k children and each

child of a vertex is designated as its first, second, . . . , or kth child. We denote by Ak
n the

set of k-ary trees on [n]. Clearly, we have that A2
n = Bn. Since the number of unlabeled

k-ary trees on n vertices is given by 1
(k−1)n+1

(
kn
n

)
(see [4, p. 172]), the cardinality of Ak

n is
as follows:

|Ak
n| = n! · 1

(k − 1)n + 1

(
kn

n

)
= kn (kn − 1) · · · (kn − n + 2) .

Now we introduce a combinatorial interpretation of the number RHSn. Let b be an
unlabeled binary tree on n vertices and ω : V(b) → [n] be a bijection. Then the pair (b, ω)
is identified with a (labeled) binary tree on [n]. Let Π(b, ω) be the set of vertices v in b

such that v has no descendant v′ satisfying ω(v) > ω(v′) , i.e., ω(v) is proper.
Let Dn be the set of bicolored binary trees on [n] such that each proper vertex is

colored with b or w and each improper vertex is colored with b.

Lemma 1. The cardinality of Dn is equal to RHSn.

Proof. Let D′
n be the set defined as follows:

D′
n := { (b, ω, α) | (b, ω) ∈ Bn and α ⊆ Π(b, ω) } .

There is a canonical bijection from D′
n to Dn as follows: Given (b, ω, α) ∈ D′

n , if a vertex
v of b is contained in α then color v with w; otherwise color v with b. Thus it suffices to
show that the cardinality of D′

n equals RHSn.
Given an unlabeled binary tree b and a subset α of V (b), let l(b, α) be the number of

labelings ω satisfying α ⊆ Π(b, ω) . Then for each v ∈ α , the label ω(v) of v should be
the smallest among the labels of the descendants of v. If we pick a labeling ω uniformly
at random, the probability that ω(v) is the smallest among the labels of the descendants
of v is 1/h(v). So the number of possible labelings ω is n!/

∏
v∈α h(v) . Thus we have

|D′
n| =

∑
b

∑
α⊆V(b)

l( b, α)

=
∑
b

∑
α⊆V(b)

n!
∏
v∈α

1

h(v)
,

which coincides with RHSn.
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f(D) = 3

6 7

1 5 4

8 2 9

Figure 1: The map f . (Right improper vertices are in italics.)

3 A bijection

In this section we construct a bijection between Fbi
n and Dn, which gives a bijective proof

of (2).
Given a vertex v of a bicolored binary tree B, let L(B, v) (resp. R(B, v) ) be the

descendant subtree of B, which is rooted at the left (resp. right) child of v. Note that
L(B, v) and R(B, v) may be empty, but L(B, v) or R(B, v) is nonempty when v is im-
proper. For any kind of tree T , let m(T ) be the smallest vertex in T . By convention, we
put m(∅) = ∞ . For an improper vertex v of B, if m

(
L(B, v)

)
> m

(
R(B, v)

)
, then we

say that v is right improper ; otherwise left improper.
For a vertex v of B, define the flip on v, which will be denoted by fv , by swapping

L(B, v) and R(B, v) and changing the color of v. Note that the flip satisfies fv ◦ fv = id
and fv ◦ fw = fw ◦ fv . For a bicolored binary tree D in Dn, let f be the map defined by

f(D) := (fv1 ◦ · · · ◦ fvk
)(D) ,

where {v1, . . . , vk} is the set of right improper vertices in D. (See Figure 1.)
Let En be the set of bicolored binary trees E on [n] such that every improper vertex

v is left improper, i.e., m
(
L(E, v)

)
< m

(
R(E, v)

)
.

Lemma 2. The map f is a bijection from Dn to En.

Proof. For a bicolored binary tree E in En, let f ′ be the map defined by f ′(E) := (fu1 ◦
· · · ◦ fuj

)(E) , where {u1, . . . , uj} is the set of white-colored improper vertices in E. Then
the map f ′ is the inverse of f .

Let Gn (resp. Qn) be the set of bicolored trees (resp. bicolored plane trees) on [n + 1]
such that n + 1 is the root colored with b. Note that the map γ (resp. γ̄) given at the
beginning of Section 2 can be regarded as a bijection γ : Gn → Fbi

n (resp. γ̄ : Qn → PFbi
n ).

For a vertex v of Q ∈ Qn , let (w1, . . . , wr) be the children of v, in order. Then for each
i = 1, . . . , r − 1, we say that wi+1 is the right sibling of wi. The set Gn can be viewed as
a subset of Qn satisfying the following condition: Suppose that v is the right sibling of u
in Q ∈ Qn. Then m

(
S(Q, u)

)
< m

(
S(Q, v)

)
holds.

Recall that Bbi
n denotes the set of bicolored binary trees on [n]. Clearly we have En ⊆

Bbi
n . Let Φ be a bijection from Bbi

n to Qn, which maps B to Q as follows:
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B = 3

6 7

1 5 4

8 2 9

Φ

Q = 10

3 7 4

6 5 9

1 8 2

Figure 2: The bijection Φ.

1. The root of B is the first child of n + 1 in Q.

2. v is the first child of u in Q iff v is a left child of u in B.

3. v is the right sibling of u in Q iff v is a right child of u in B.

4. The color of v in Q is the same as the color of v in B.

Note that here Φ is essentially an extension of a well-known bijection, which is described
in [5, p. 60], from binary trees to plane trees.

Lemma 3. The restriction φ of Φ to En is a bijection from En to Gn.

Proof. For any improper vertex v of E ∈ En, we have m(L(E, v)) < m(R(E, v)). This
guarantees that m(S(G, v)) < m(S(G, w)) in G = Φ(E), where w (if it exists) is the
right sibling of v in G. Thus Φ(E) ∈ Gn, i.e., Φ(En) ⊆ Gn. Similarly we can show that
Φ−1(Gn) ⊆ En. So we have Φ(En) = Gn, which implies φ is bijective.

From Lemma 3, we easily get that γ ◦ φ is a bijection from En to Fbi
n . Combining this

result with Lemma 2 yields the following consequence.

Theorem 4. The map γ ◦ φ ◦ f is a bijection from Dn to Fbi
n .

Figure 3 shows how the bijection in Theorem 4 maps a bicolored binary tree D in D11

to a bicolored forest F on [11]. From equation (3) the cardinality of Fbi
n equals LHSn and

from Lemma 1 the cardinality of Dn equals RHSn. Thus Theorem 4 is a combinatorial
explanation of identity (2).

4 Generalized formulas

Theorem 4 implies the set Dn of binary trees on [n] such that each proper vertex is colored
with the color b or w and each improper vertex is colored with the color b has cardinality
|Dn| = 2n (n + 1)n−1 . In this section we give a generalization of this result.
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D = 6
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γ ◦ φ

= F
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Figure 3: The bijection from Dn to Fbi
n .

For n ≥ 1, let an,m denote the number of k-ary trees on [n] with m proper vertices.
By convention, we put a0,m = δ0,m . Let

an(t) =
∑
m≥0

an,m tm =
∑

T∈Ak
n

tpv(T ) ,

where pv(T ) is the number of proper vertices of T . It is clear that for a positive integer
t the number an(t) is the number of k-ary trees on [n] such that each proper vertex is
colored with the color 1̄, 2̄, . . . , or t̄ and each improper vertex has one color 1̄. Let A(x)
be denote the exponential generating function for an(t), i.e.,

A(x) =
∑
n≥0

an(t)
xn

n!
.

Lemma 5. The generating function A = A(x) satisfies the following differential equation:

A′ = k xAk−1A′ + t Ak, (5)

where the prime denotes the derivative with respect to x.

Proof. Let T be an k-ary tree on [n] ∪ {0}. Delete all edges going from the root r of T .
Then T is decomposed into T ′ = (r; T1, . . . , Tk) where each Ti is a k-ary tree and [n]∪{0}
is the disjoint union of V (T1), . . . , V (Tk) and {r}. Consider two cases: (i) For some
1 ≤ i ≤ k, Ti has the vertex 0 ; (ii) r = 0. Then we have

an+1(t) =

k∑
i=1

∑
n1+···+nk=n−1

(
n

1, n1, . . . , nk

)
an1(t) · · · ani+1(t) · · · ank

(t)

+ t
∑

n1+···+nk=n

(
n

n1, . . . , nk

)
an1(t) · · · ank

(t) .

Multiplying both sides by xn/n! and summing over n yields (5).

To compute an(t) from (5) we need the following theorem.
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Theorem 6. Fix positive integers a and b. Let u = 1 +
∑∞

n=1 un xn/n! be a formal power
series in x satisfying

u′ = a x ubu′ + t ub+1. (6)

Then un is given by

un = t
n−1∏
i=1

(
(bi + 1) t + a (n − i)

)
, n ≥ 1 .

Proof. Adding (bt − a) xubu′ to both sides of (6) yields

(
1 + (bt − a) xub

)
u′ = t

(
b x ub−1u′ + ub

)
u .

Since (1 + (bt − a) xub)′ = (bt − a) (b x ub−1u′ + ub), we have

(bt − a) log u = t log( 1 + (bt − a) xub ) .

Taking the exponential of both sides and the substitutions x = yb and yu(yb) = û(y) yield

û(y) = y
(
1 + (bt − a) û(y)b

)t/(bt−a)
. (7)

Applying the Lagrange Inversion Formula (see [4, p. 38]) to (7) yields that

[
ybn+1

]
û(y) =

1

bn + 1

[
ybn

] (
1 + (bt − a) yb

) t (bn+1)
bt−a

=
1

bn + 1
(bt − a)n

( t (bn+1)
bt−a

n

)

=
t

n!

n−1∏
i=1

(
t (bn + 1) − (bt − a) i

)
.

Since un = n! [ybn+1] û(y) , we obtain the desired result.

Since (5) is a special case of (6) (a = k, b = k− 1), we can deduce a formula for an(t).

Corollary 7 (k-ary trees). For n ≥ 1 , an(t) is given by

an(t) = t

n−1∏
i=1

(
(ki − i + 1) t + k (n − i)

)
. (8)

Clearly, substituting t = 1 in (8) yields the number of k-ary trees on [n], i.e.,

an(1) = kn (kn − 1) · · · (kn − n + 2) = |Ak
n| .
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For some values of k, we can get interesting results. In particular when k = 2 we have

an(t) = t
n−1∏
i=1

(
(i + 1)t + 2(n − i)

) t=2−→ 2n(n + 1)n−1 ,

so this is a generalization of |Dn| = 2n (n + 1)n−1, i.e., identity (2).
In fact Theorem 6 has more applications. For n ≥ 1, let fn,m denote the number of

forests on [n] with m proper vertices and let pn,m denote the number of plane forests on
[n] with m proper vertices. Let

fn(t) =
∑
m≥1

fn,m tm and pn(t) =
∑
m≥1

pn,m tm .

Let F (x) and P (x) be the exponential generating function for fn(t) and pn(t), respectively,
i.e.,

F (x) = 1 +
∑
n≥1

fn(t)
xn

n!
and P (x) = 1 +

∑
n≥1

pn(t)
xn

n!
.

Similarly to Lemma 5, we can get two differential equations:

F ′ = xF F ′ + t F 2 , (9)

P ′ = xP 2P ′ + t P 3 . (10)

Since (9) and (10) are special cases of (6) (a = b = 1 and a = 1, b = 2, respectively), we
have the following results.

Corollary 8. Suppose fn(t) and pn(t) are defined as above. Then we have

1. For n ≥ 1, fn(t) is given by

fn(t) = t
n−1∏
i=1

(
(i + 1) t + (n − i)

)
. (11)

2. For n ≥ 1, pn(t) is given by

pn(t) = t
n−1∏
i=1

(
(2i + 1) t + (n − i)

)
. (12)

Note that (11) and (12) are generalizations of (3) and (4), respectively. Moreover,
from these formulas, we can easily get

∑
T∈Tn+1

tpv(T ) = t

n−1∏
i=0

(
(i + 1) t + (n − i)

)
,

∑
P∈Pn+1

tpv(P ) = t
n−1∏
i=0

(
(2i + 1) t + (n − i)

)
,

which are generalizations of |Tn+1| = (n + 1)n and |Pn+1| = (n + 1)! Cn .

Remark. In spite of the simple expressions, we have not proved (8), (11) and (12) in a
bijective way. Also a direct combinatorial proof of Theorem 6 would be desirable.
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