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A COMBINATORIAL PROOF OF THE ALL
MINORS MATRIX TREE THEOREM*

SETH CHAIKENT

Abstract. Let (4), {, je V be the matrix with entries —ay; if /#] and diagonal entries such that all
the column sums are zero. Let a; be a variable associated with arc i in the complete digraph G on vertices
V. Let A(W|{J) be the matrix that results from deleting sets of k rows W and columns U from A. The
all minors matrix tree theorem states that [A(W| )| enumerates the forests in (7 that have (a) k trees,
(b) each tree contains exactly one vertex in U and exactly one vertex in W, and (c) each arc is directed
away from the vertex in UJ of the tree containing the arc, We give an elementary combinatorial proof in
which we show that each of the terms in |A(W| )| that corresponds to an enumerated forest occurs just
once and the other terms cancel. The sign of each term is determined by the parity of the linking from U
to W contained in the forest, and is easy to calculate explicitly in the proof.

The results are extended to signed graphs. The theorem provides a coordinatization (linear representa-
tion) of gammoids that is in a certain sense natural,

1. Introduction. This paper describes an elementary, combinatorial proof of the
matrix tree theorem, an extension of it to signed and voltage graphs, and its applicability
to the coordinatization of gammoids. We begin with a statement of the theorem.
Let the variables ay, for 4, j € § and 7 # J be weights on the arcs i of the complete,
loopless directed graph on a finite set of vertices S. Define matrix A by
—ay it i#]

e Ay= ' !
}: Axr ifi= ]
k

A can be regarded as a “special” weighted adjacency matrix in which the jth diagonal
entry is the sum of the weights of arcs directed into vertex j. Let A(W|U) be the
submatrix of A obtained by deleting the rows indexed by the elements of W< § and
the columns indexed by U < 8. Assume § is linearly ordered; for example, it may be
{1,2,- -+, N}. Assume |W|=|U|. When F is a set of arcs, ar denotes the product of
their weights.

(ALL MINORS) MATRIX TREE THEOREM,

) det A(W|U) =& (W, $)e(U, S)%s(w*)ap,

where the () denote signs which are defined in § 2. The sum is over all forests F such
that
() F contains exactly |W|=|U]| trees.
(ii) Each tree in F contains exactly one vertex in U and exactly one vertex in W.
(i) Each arc in Fis directed away from the vertex in U of the tree containing that
arc.
F defines a bijection or matching 7™ W - U so w*(f)=1i if and only if i and j are in
the same tree of F.
The all minors matrix tree theorem was given in a form similar to that here by
W. K. Chen[4]. The rooted, directed forests enumerated in this theorem are sometimes
called branchings, the components of which are called arborescences.
One should observe that every forest enumerated by (2) contains a collection of
|U| disjoint, simple, directed paths each of which starts at a vertex /€ U and ends at
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e,

a vertex w* (i) W. Bach element of U N W comprises a trivial path of one vertex.
7, and therefore the relative signs of the terms in {2) are completely determined by
the pairs defined by the start and end vertices of these paths.

When U =W every path above degenerates to a single vertex. Every sign in (2)
becomes +1. If we replace the a; by Os or 1s, the theorem gives us a way to count
the forests rooted and directed away from the vertices U in an arbitrary directed
graph. The resulting theorem is an easy generalization of the classical directed graph
version of the matrix tree theorem, for which |IJ]=1. The latter was probably first
described by Sylvester [23], [17], and was proved by Borchardt [2] and Tutte [24].
The undirected graph version is a special case for which ay = a;. When ay is given the
value of the electrical conductance of the resistor joining nodes / and j in an electrical
network, (2) for |U]=1 and |U|=2 can be used to solve the electrical network
equations. The use of the duals of these “tree sums” for this purpose was given by
Kirchhoff [9]. Maxwell [14, Ch. 6 and appendix] described this application of (2)
which is called Maxwell’s rule. See [16] for an historical survey and applications. The
application of the matrix tree theorem and similar theorems to electrical network
theory is detailed by Chen [4]. The interested reader should also see [13] and [22].

Let G be a directed graph with vertices S. A linking in G from 7 <S§ onto
W <8 is a subgraph of G consisting of |U| disjoint, directed paths each of which
starts at a vertex in U and ends at a vertex in W. If the a; are set to appropriate
values derived from a simple modification of G, a matrix M(S|8) is obtained for
which M (W | U) is nonsingular if and only if there is a linking from [/ onto W in G.
Thus submatrices of M~ are coordinatizations (linear representations) of gammoids
defined by G. The coordinatizations so obtained are such that (up to a (det M y* factor,
which is a polynomial with all positive terms) determinants of their minors are
generating functions for directed forests that contain linkings. These generating func-
tions have the property that the sign of each term is determined by the parity of the
“permutation’” defined by the linking. In § 5 this coordinatization is contrasted with
two other known coordinatizations. See [25] and [21] as general references for matroid
theory and linking systems.

The notion of parity as used above is made precise in § 2. In fact, our proof of
the matrix tree theorem is the result of a modification and strengthening of the linkage
lernma of Ingleton and Piff [8] to take parity into account, along with an application
of the principle of inclusion and exclusion as used by Orlin [19] in a proof of the
theorem for U = W ={N7}.

It is straightforward to extend the matrix tree theorem to graphs with multiple
arcs. We omit these details except in § 4 where the results are extended to signed
graphs. There the results apply nontrivially even to the loops and half-arcs that may
belong to such graphs.

Our proofs are purely combinatorial in that we show every expresgsion we deal
with is a generating function for a set of combinatorial objects. We classify and count,
with sign, the objects that correspond to a given monomial in order to compute its
coeflicient. This way we can see why the subgraphs enumerated by (2} contain linkings
and have no cycles. We also see that the weights of the arcs in the linking only come
from off-diagonal matrix entries and all the other weights come from diagonal entries.
These insights lead us to proofs of extensions of the matrix tree theorem to signed
and voltage graphs ({27], [6] and [7]) which are discussed in § 4.

The author’s study of the matrix tree theorem and the work in §2 and §5 is
mostly from [3], but §8 3 and 4 are new. [1] is a general reference for the elementary
graph theory notions which we do not define explicitly.
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2. Matchings, paths, cycles and signs. Let A and B be equicardinal and not
necessarily disjoint subsets of a set S. All sets in this paper are finite. A bijection
7 A - B is called a matching. A k-path in 7 is a sequence (xp, Xy, * *, X) for which
x06€ A\B, xr € B\A, and 7(x;) = x11 for 027 <k. A O-path or trivial path (xg) in 7
must satisfy xq £ A U B. For nontrivial k-paths, k>0, the elements xq, x4, * +, X are
distinct, and x; € AN B for 0 </ <k. For n>0, an n~-cycle in 7 is a set of distinct x;,
{x1, X2, <+, Xn}, for which 7 (x;) = x5, for 1={<n and #(x,)=x1. Every element of
an n~cycle in 7 belongs to AV B. A 1-cycle is called a trivial cycle.

We can view the matching = as a directed graph on S in which # is an arc if and
only if i€ A and #{(!)=j Given a directed graph G, we say # is a matching in G
when 7 {({} =7 only if if e G. Unless otherwise specified, a cycle or path will always
mean a directed cycle or path. When we use the terms circuit or (connected) component,
we ignore the arc directions.

It is clear that every matching decomposes into disjoint paths and cycles. (To be
technical, we should note that the trivial paths depend upon the underlying set S.)
The outdegree (resp. indegree) of 7 in o is 1 if /€ A (resp. /€ B) and is 0 otherwise.
When A = B there are no nontrivial paths in 7 and we get the familiar decomposition
of a permutation of A into cycles.

For completeness, we state the linkage lemma [8]. A linking of U onto Wis a
collection of |U] disjoint directed paths each of which starts at an element of U and
ends at an element of W.

LEMMA. Suppose G is a directed graph of S. Let G'= G U{ii|i e S}. Suppose U,

"W 8. Then, there is a linking in G from U onto W if and only if there is a matching
T S\W->S\Uin G'.

For a proof, see [25].

Now suppose A and B are linearly ordered; for example, suppose A and B are
sets of integers. The pair {i, j}< A is an inversion in 7 if i<j and 7 (i) > w(j). Let
n{sr) denote the number of inversions in 7. We define the sign e{7) of the matching
by

() = (=1)"™.

When 7 is a permutation, it is well known that e{#) is its sign, that ¢(sr) does
not depend on the ordering of A = B, and that when 7 is decomposed into cycles,

_ _qyn—1
(3} 8('}7‘) B nwg:les ( 1> ’

Tet Y be alinearly ordered set and X = Y. We define
n(X, Y)=[{i i< ie Y\X, jeX}|
and
e(X, V)= (-1)"*"

When Y ={1,2,-+,N}, n(X, Y) equals ¥ X —[X|—(5). Hence (X, Y)s(X', Y)
commonly appears as (—1)** "% when |X|=|X|.

Suppose S, T are linearly ordered sets and $(1 T =¢. Suppose 7:A~ B and
7' A - B are matchings where A< S, A =S\A, B< T, and B = S\B. We can combine
7 and 7' to form a matching @ =’ 8§ - T for which

r/ [ ificA
@ ": '.Tiz} 1 .,,’
TOmd {w'(i) i A
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It is easy to prove by induction on n(A, §)+rn (B, T) that
e(m@n')=¢e(A, S)e(B, T)e(m)e(n’).

CoOROLLARY. Suppose S is linearly ordered, A= S, A=S\A, B< S, and B = S\B.
Letw: A~ Band w': A - B be maichings. Then

4 e(r®nY=8(A, $)e(B, Selm)e(n’).

Proof. Let T be a disjoint copy of S. Redefine B, B appropriately and apply the
above remark. il

Let A and B be subsets of a linearly ordered set § and #: A~ B be a matching.
The paths in 7 determine a matching =*: A - B as follows: For each (possibly trivial)
path (xp, x4, * * -, X&), we have ¥(x;) = xo. The linkage lemma asserts that there is a
matching 7 : A > B in a certain digraph G’ if and only if there is a linking in G from
B onto A which defines #* as shown. Our strengthening of this lemma shows how the
signs of any such pair o, 7* must be related.

THEOREM. Suppose w:A - B and =*: A - B are given as above. Then

(5) e(m)=¢e(m*)e (4, S)s(B, §) k-;l;\]:ths (=1)* CI;II D"

Proof. m®w*:85~§ is a permutation. Its cycles consist of one (k +1)-cycle for
each k-path in 7, along with all the n-cycles of 7. Hence, when we apply (3) we obtain
s(r@n*)= I] (D" T ()"

k-.palhs n-cycles in 7
in T
The identity follows immediately from (4). 0
The matrix tfee theorem will be an easy consequence of the decomposition of =
into paths and cycles, formula (5), and the definition of the determinant
det M(A|B)= 3 e(m) 1 My

wiA-»B feA

The sum is taken over all matchings 7: A~ B.

3. Proof of the matrix tree theorem. For convenience, we here restate the matrix
tree theorem.
ALL MINORS MATRIX TREE THEOREM.
THEOREM. Suppose A(S|S) is given by (1), the () are defined in §2, and U,
W< S with |{U|=|W|. Then
) det A(W| D) =e(W, e (U, 8) Y e(n®ax
F
where the sum is over all forests F on S such that
() F contains exactly |U|=|W]| trees.
(ii) Each tree in F contains exactly one vertex in U and exactly one vertex in W.
(1) Each arc in Fis directed away from the vertex in U of the tree containing that
arc.
F defines a matching w*: W - U so w*(j)=1iif and only if i and j are in the same tree
of F.
Proof. By definition of det A(W| ),

6) det A(W|U)= 2, elm) I Avn.

5
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Suppose in (6), for each matching 7, we distinguish the diagonal entries, which have
the form Ay, from the off-diagonal entries of A. If we apply the definition of 4, we
obtain

) det AGW| )= T g(ﬁ)[n a,] T (~ay) .

(ar.0r) feo ar{f)=j
it
Here, the determinant is expressed as a sum of terms =*az, one for each pair (, o)
such that 7 is a matching or: W - U and o is a set of arcs consisting of one and only
one arc i for sach j such that 7 (j) =7
Let H be any subgraph defined by a pair (a, o) as above. In H, for all j € S,

1 ifjel,
8 indeg(/)= | :
(8 indeg(/) 0 #jeU

The indegrees in H are all at most one. Hence, any circuit in H must be a
(directed) cycle. Furthermore, the cycles in H are disjoint. Now consider any path P
in 7 as a subgraph of H. No arc in P can belong to a cycle in H. This is because the
indegree in P of each vertex in P is equal to its indegree in H. Therefore, only arcs
in P may be directed into vertices in P. We conclude that each cycle in H either
belongs to o or is a nontrivial cycle in .

. We can now conclude that if A has no cycles, then H is a forest F that satisfies
(), (i1), and (iii). Let us therefore write det A(W|U) as ¥ cuaz. The theorem will
be proved when we show that ¢z = 0 when H contains a cycle, that ¢y is given by (2)
otherwise, and that there is a pair {m, o) that defines H =F for every forest that
satisfies (i), (1), and (ii). )

Let 7* be the matching =* : W -» U defined in (2) by the paths in 7. When we
apply (5) to (7) we obtain

O dtAT|0)==(W, $)e(0,9) T elr)- 1)“‘"’[{1 aq] M ay

ifeo ar{f)=f
ig

where cy{(sr) is the number of nontrivial cycles in =

Let H be a subgraph with K cycles that is defined by some (74, o1). Let us
consider all pairs (w, o) that define H. In each pair, 7 has the same paths as 1. All
the arcs that are neither in a cycle nor in a path in 7 belong to ¢. Each cycle in H
can be either a nontrivial cycle in « or a cycle in ¢. Hence, there are 2% pairs (m, o)
that define H and

+1 #XK=0,
0 HK#0.

It is easy to see £(W, $)e(U, §)=¢&(W, §)s(U, §) when |W|=|U|. Hence, cy is
given by (2).

Finally, suppose F is a forest that satisfies (i), (ii), and (iii). F is defined by the
pair (s, o) for which #r has the paths linking U to W in F, 7 has no nontrivial cycles,
and o consists of all the arcs in F not in these paths. 0

The last step in the proof tells us each F counted by (2) is due to just one matching
7 in (6). The weights of the arcs in the linking only come from the off-diagonal entries
of A. All the other arc weights come from diagonal entries which correspond to trivial
cycles in 7.

- . X /
car = (W, 8)6(0, S)e(r®) T -1(,) =#1-15 =]
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/ 4. Extension to signed graphs. A signed graph is a graph to which each arc has

been given a sign. See [27] for a systematic treatment of the definitions, properties,
and applications of signed graphs. Broadly speaking, signed graphs differ from ordinary
graphs in the matroids they define. For example, a circle (i.e., a circuit in the underlying
graph) is a circuit in the signed graphic matroid only if it is positive—that is, the
product of the signs is + (see [77), otherwise the circle is an independent set.

A signed directed graph is like an ordinary directed graph, except each arc ¢ is
given a sign s(e)e{+, —}, and, this time, we allow multiple arcs, loops (arcs of the
form e =1i), and half-arcs (e =1; the sign of a half-arc is undefined). As in an ordinary
directed graph, arc e =i is said to be directed “out” from / and “into™ j (even if
i=j). If e=1i e is said to be directed into i A directed k-path is a sequence of arcs
(e1= xpX1, €2 = X1X2, - * *, €& = Xr—1Xx) in which all the x; are distinct. A directed n-cycle
is a set of n arcs {e;=x1%3, €3 =2XpXs3, * * *, €, == X,%;} incident on » distinct vertices.
Note half-arcs cannot appear in {directed) k-paths or r-cycles, while a loop is a
1-cycle. A signed directed graph differs from a signed graph (as in [27]) in that the
fixed order of the endpoints of each arc allows us to define directed paths and cycles
in directed graphs. These definitions must not be confused with those involving oriented
signed graphs [26].

A path or cycle will be called positive if the product of the signs of its arcs is +;
it is negative otherwise.

In this chapter we extend the matrix tree theorem and our proof to signed directed
graphs. Then, in the same way the undirected graph version of the matrix tree theorem
was obtained from the directed graph version, we obtain an extension of the matrix
tree theorem to signed graphs by Zaslavsky [27]. We further extend the theorem to
voltage graphs [6] over an abelian group.

As for the matrix tree theorem, we assign a weight a, to each arc in the signed
directed graph. One must not confuse the weight of an arc with its sign. Matrix A(S|S)
is defined as follows.

(103) Ifi #]‘, Agj = —Z S(E)a

where the sum is over all arcs ¢ = 7.

(10b) Ap=Ya.+32a+Y ap
e ! h

where e ranges over arcs ij directed into j for which 7 # j, [ ranges over negative loops
ji, and h ranges over half-arcs into J.

MATRIX TREE THEOREM FOR SIGNED DIRECTED GRAPHS. Let G be a signed
directed graph on S and A(S|S) be as above. Suppose U, W < S, |U|=|W|. Then

(1) det AW [ D)= (U, )e(W, 8) L e (m)(-1)" 72" Ve

where the sum is over all sets of arcs F in G such that
(i) F contains |U|=|W/| components that are trees.
(ii) Each tree from (i) contains exactly one vertex in U and one vertex in W.

(i) Each arc in each tree from (i) is directed away from the vertex in U of the tree
containing that arc. Hence these trees together contain a linking from U onto W. This
linking defines ¥ : W > U as in the matrix tree theorem. np (F) is the number of negative
paths in this linking.

(iv) Each of the remaining components of F contains exclusively either just one
half-arc or just one negative (directed) cycle. There are no other circles and each
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remaining arc is directed away from the half-arc or (directed) cycle of its component.
nc{F) is the number of negative cycles.
Proof. 1t is easy to verify that

dBtA(W‘ [}‘)’:Z CrQry,
H

where the sum is over some subgraphs H in which for all j e &, (8) is satisfied. Since
our task is to determine cg, we can set a, =0 for e€ H and write our proof as in § 3.
Please note that i/ designates a particular arc in H = G with a given sign. Equation
(7) becomes (6y=1if i=j, 6;=0if i #}, and &;=0)

(12) det A(W|U)= ¥, s('rr)[H (1+8,-1-)a5,-:,[wﬂ (——s{z’j)aif)}

(m o) ffeor (iy=j
if
where we have abused the notation because ¢ may contain a half-arc. Still, any
nontrivial directed cycle in H is either a nontrivial eycle in 7 or a nontrivial directed
cycle in o The arc sign factors s(+) only occur for arcs in 7, so the extension of (9) is

det A(W|U)=¢e(W, $)e(U,S)

(13) - 3 el 0T =1 e T ase] [ 1T a]-
(m o) ifeo w{{)=]
it]
where nc'(m) and np{7) are respectively the numbers of negative nontrivial cycles
and negative paths in #. If H has K, positive nontrivial directed cycles and K, negative
nontrivial directed cycles, there are 25 K, pairs {1, o) that define H. For each trivial
cycle jj in H, jfeo and #{j)=] for each (m, o) that defines H, and so the factor
(1+8;)=2 occurs in each term for H in (13). Let K, be the number of trivial cycles
in H.
We conclude

(14) crr = 5(W, $)&(T, ) (m*)(~1)" 25 (L+ 1) (1~ 1)%.

Thus, if H has no positive cycles, ¢y i given by (11). Finally, suppose F is given
which satisfies (i), (i}, {iii), and (iv) with K, negative nontrivial directed cycles. Again,
we set all the as but those in ap to zero. Then there are 2%+ pairs (m, ¢) that define
F. In all of them, = contains the linking described in (ili) and o contains the negative
trivial directed cycles and all arcs neither in a cycle nor the linking. Each negative,
nontrivial directed cycle belongs to either # or o exclusively. Thus ar appears
in (11). o

For a signed (undirected) graph G on S, A(S|S) is a symmetric matrix [27]. To
represent G by a signed directed graph G, we represent each undirected arc e =1if
by a pair of directed arcs ij and ji with identical weights a. and signs, even if i =].
Half arcs in the undirected graph are represented by only one arc in the directed
graph. Hence the analogue of (10) is

i), Ay =2 5(€)0, A=Y a. +2{]4az+%ah.

The factor of 4 makes more sense when A is written A =DED' where D is a signed
incidence matrix of G and E is the diagonal matrix of arc weights.
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MATRIX TREE THEOREM FOR SIGNED (UNDIRECTED) GRAPHS [27].
(15) det A(A| 0)= (U, )e (W, $) T & (r*)(~1)* 4" Pa.
F

The sum is over all sets of arcs F that satisfy conditions similar to (i), (ii), {ii) and (iv).
The new conditions are obtained by deleting the “‘directed” qualifier everywhere from
the old conditions.

Proof. Suppose we apply the directed graph version of the theorem to G'. Suppose
T is a tree in G that, according to the conditions, contains u € I or a half arc. Then
there is exactly one directed tree T” in G7, with ar = ap, that satisfies the corresponding
conditions, and conversely. Now suppose T is a subgraph in G that, according to
condition (iv), contains a unique circle (which is negative). Then there are just two
subgraphs 7' in G, with ar = ay- that satisfy the corresponding conditions, and
conversely. The directed cycles in these two subgraphs are directed oppositely while
all the other directed arcs are identical. Thus, each undirected graph F that satisfies
(@), (i), (i) and (iv) with ne(F) negative circles is counted 2" times by directed
graphs F' in G’ with ar = ap. The coefficient for each directed graph F’ is 2"
(and is constant), so ¢ in (15) is £2"¢FpneE) — pgnel® ]

A voltage graph ([27], [6]) is a graph to which each 4arc has been given an element
of a group. Signed graphs are a special case of voltage graphs. Our method can be
used to prove a version of the matrix tree theorem for voltage graphs over an abelian
group I'. It is necessary to extend the ring of coefficients for the polynomials in the
arc weights to the group ring of T'. A directed cycle is positive when the product of
the voltages on its arcs is 1, the identity of I'. Suppose we define matrix A for a
voltage graph as in (10) except s{e) now stands for the voltage of arc ¢ and the
coefficient of a; in Ay when [ is a loop /=fj is (1—~s(])). When E is a set of arcs, let
s{E) denote the product of their voltages. The voltage directed graph version goes
through as for the signed directed graph theorem except that the notion of positivity
is replaced with the notion of positivity for voltage graphs and expression (11) becomes

det A(W|U)=¢&(U, S)&(W, S) ; e(m®)s(P) zg (1-s(Char

Here, P is the linking from U onto W in condition (iii). C ranges over the nonpositive
directed cycles in F.

5. Gammoids. The matrix tree theorem can be used to give a coordinatization
{i.e., representation of a matroid by the column vectors of a matrix over a field) of
gammoids that is “natural” with respect to sign in a way that other known coordinatiz-
ations are not. We discuss this below. The books by Welsh [25] and Schrijver [21]
are our references for matroids and linking systers.

Let G be a directed graph on vertices S and let a; be an indeterminate when #f
is an arc in G and be zero otherwise. The matrix tree theorem implies that A(W|17)
is nonsingular only if there is a linking in G of U onto W.

Now let —B be the same matrix as A except that its main diagonal entries are
all zero. Let I be the identity matrix and T =7 -~ B. The linkage lemma of Ingleton
and Piff [8] asserts that det T(W | UJ) is nonzero if and only if there is a linking in G
of U onto W. The subsets U of § for which there is a linking in from U onto W,
where W is a fixed subset of S, comprise the bases of a matroid. Such a matroid is
called a strict gammoid [20]. The linkage lemma is the key step in the proof that a
matroid is a strict gammoid if and only if it is the dual of a transversal matroid.



ALL MINORS MATRIX TREE THEOREM 327

Linking systems or bimatroids [10] provide an alternative view of matroid theory
that is most suitable for the purposes of this section. A linking system (X, Y, A) is
equivalent to a matroid M on the disjoint union X' U Y with a distinguished base X.
A pair (U, W) belongs to A<2%x2Y, which is called the set of linked pairs (or
nonsingular minors), when (X\U)U W is a base in M. The axioms for linking systems
given by Schrijver [21] are properties satisfied by the (U, W) such that there is a
matching from U onto W in a bipartite graph G X X Y.

(a) X (U, WieAand xe U, then (U\x, W\y)e A for some ye W.

(b) IE (U, Wye A and y e W, then (Uly, Wiy)e A for some x & U.

(c) If (U;, Wo), (Us, Wy)e A, then there exists (I, W)eA with Uy U'c U, U

Uz and Wgc W' Wl U Wg.
The third is the Dulmage—-Mendelsohn [15] property.

A linking system (X, Y, A) is said to be coordinatized by a matrix M (X | Y) when
(U, W)e A if and only if M (U | W) is nonsingular. Now suppose (X, Y, A) is such that
(X, Y) e A. Schrijver shows then that (¥, X, A™") is a linking system, where

AT ={(W, ) |(X\U, YAW) e A}

(Y, X, A™Y) is called the inverse of (X, Y, A). It follows from Jacobi’s theorem [18]
that if M(X|Y) coordinatizes (X, Y, A), then M "I(YIX ) coordinatizes (Y, X, A7),
To be more specific in our application of Jacobi’s theorem, if M (S |$) is any matrix
and M(SS) is defined by

M;=¢(i, $)e(j, $) det M(F|1)
(note £(, $)e(j, $)=(-1)"" when § ={1,2, -+ -, N}), then
(16) det M(U| W) = (det M)" e (U, S)e (W, 8) det M(W | T7).

Let G be a directed graph on S. G defines the swict gammoid linking system
(8, S, A) in which (U, W)e A if and only if there is a linking of U onto W in G, Thus,
the transposed submatrices of a coordinatization of the strict gammoid linking system
(S, S, A) comprise coordinatizations of all the gammoid matroids that can be defined
by G. We will give three coordinatizations of the strict gammoid linking system defined
by G. The coordinatizations will be over any extension field that contains the algebrai-
cally independent elements {a, | ¢ is an arc in G}.

The first coordinatization is 7. Essentially, it was described by Schrijver and the
proof of its correctness uses the linkage lemma. When we combine (16) with an
argument similar to that in § 3, we obtain

det T(U | W)= (det Y e () (-1 P gz
F

where the sum is over all subgraphs F of G whose connected components consist of
a linking from U onto W, isolated vertices, and ¢y (F) disjoint {directed) cycles. The
linking defines a matching #»*: W - U where #*(j) =i when the linking contains a
path from i to ;.

The second coordinatization is H, where H =I+A and A is the matrix (1) in
the matrix tree theorem.

TuroreM. H(W|U) is nonsingular if and only if there is a disjoint collection of
directed paths linking U onto Win G.

Proof. Let 0£ 8. Consider graph G’ on §{U{0} which contains all the arcs in G
along with all arcs 0j, f € §. Suppose the latter arcs have weight 1. H is the submatrix
of the “special” adjacency matrix {1) of G’ obtained by deleting row and column 0,
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If there is a linking L in G from U onto W, then there is a term in det H{(W| )
corresponding to the forest consisting of the arcs in L along with all arcs 0f for j not
a vertex in L. Conversely, if det H(W | ) # 0 there is a forest in ' that contains a
linking in G from U onto W. d

The above proof along with the matrix tree theorem and {16) is used to derive

det H(U | W) = (det )" ¥ e (r¥)ap
F

Apart from the (det i )W factor, this is the generating function for all directed
forests in G that contain linkings from U to W. The sign of each term is the sign of
the matching 7*: W - U that the corresponding linking determines. In this sense we
remark that the coordinatization H is “natural” in a way the first coordinatization
fails to be.

The third coordinatization comes from Mason [12]. It is the matrix P(S|S) defined
by

where the sum is over all (simple) directed paths from / to j in G. Suppose |U|=|W|=1
Mason’s proof uses Menger’s theorem to factor P(U| W) into a product of an /X k
and a k X/ matrix with k& </ when no linking from U to W exists. Lindstrém [11]
attempted to give a proof based upon the claim that det P(U| W) was equal to

(17 Yelm®aL
L

where the sum is over all linkings from U onto W and #*: W U is the matching
defined by each. Thjs claim is false when (G contains directed cycles. For example,

suppose G is itself a directed n-cycle. Then §={1,2,- -, n} and the arcs of G are
{ifl1si=n and j=i+1mod n}, so
Qi1 Girt,in " Qo1 HI#],
P;,' = ipe e
1 idi=j
where the subscripts are taken mod n. We have
(18) det P=(1—ag)""".

We remark that the determinant of a submatrix of P for an acyclic graph has
been applied to an enumeration problem for plane partitions by Gessel [5]. There,
the relevant (%) are all equal to 1.

It is tempting to ask whether the coordinatization M =T, M = H or P can be
“fixed up” so that the factor (det M)'Y"™* no longer appears in det M(U | W) in the
former two or that (17) indeed is the determinant of the (IJ| W) minor in the latter.
We remark the answer is no in all cases. The reason is simply that if we require this
of the 1% 1 minors of the coordinatizations, we obtain the same matrices 7, H and
P. One can ask, however, for a nice combinatorial description of det P(UU| W) for all
U, W<, |U|=|W]|, which will provide a combinatorial proof of (18). This question
is apparently open.
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