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Abstract 

Speciation is often thought of as a slow process due to waiting times for mutations that cause 

incompatibilities, permit ecological differentiation or assortative mating. Cases of rapid speciation and 

particularly cases of rapid adaptive radiation into multiple sympatric species remained somewhat 

mysterious. We review recent findings from speciation genomics that reveal an emerging commonality 

among such cases: re-assembly of old genetic variation into new combinations facilitating rapid 

speciation and adaptive radiation. The polymorphisms in old variants frequently originated from 

hybridization at some point in the past. We discuss why old variants are particularly good fuel for rapid 

speciation and hypothesize that variation in access to such old variants might contribute to the large 

variation in speciation rates observed in nature.  
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Speciation genomics reveals an important role of old genetic variants 

The population genomics of speciation, ‘speciation genomics’, is a flourishing area of enquiry with much 

potential to address some of the big questions in speciation biology. The first generation of speciation 

genomics studies has generated a number of new insights but it is becoming clear that we are only 

beginning to understand the genomic basis of speciation. With the exception of a much improved 

understanding of the nature of genomic islands of differentiation and their link to speciation [1, 2], 

genomics studies have so far neither fundamentally changed nor challenged our understanding of the 

process of speciation. However, we think one aspect shines through that deserves recognition and 

synthesis at this point, and that may yet turn out to challenge how we used to think of speciation: the 

age of genetic variants underlying speciation often predates the species splitting time, sometimes by 

orders of magnitude. We believe that this calls for critical rethinking of the genetic mechanisms 

underlying rapid speciation and adaptive radiation, and perhaps speciation more broadly. Here, we 

review the evidence for old variation, often derived from hybridization, facilitating rapid speciation and 

adaptive radiation into many distinct new species. We argue that the re-assembly of such old variants 

into new combinations often underlies mysteriously rapid species radiations and we hypothesize that 

variation in access to old gene variants might contribute to variation in speciation rates within and 

between lineages. 

The problem: rapid speciation, but slow mutation 

Many lineages accumulate species diversity at a relatively slow pace of few new species every few 

million years [3]. However, some lineages appear inherently prone to rapid speciation and species 

radiations [4-7]. This leads to dramatic variation in speciation rates among lineages and thus highly 

imbalanced phylogenetic patterns of species richness [8]. Some cichlid fishes (Cichlidae) [9], some 

postglacial freshwater fishes (e.g. Salmonidae [10, 11]), Darwin‘s finches [12], capuchino seedeaters 

(genus Sporophila) [13], Hawaiian honeycreepers (tribe Drepanidini) [14] and Hawaiian silversword 

alliance (family Asteraceae) [15] among others (Figure 1), radiated quickly into many species with high 

levels of sympatry and ecological and mating trait differentiation. In contrast, other lineages, often 

closely related, remain species poor and do not form adaptive radiations despite ecological opportunity 

[5, 6, 14, 16]. 

Several lineage-specific traits and properties have been shown to contribute to high speciation rates [4-

6]. Examples include a prominent role of sexual selection [3, 5, 17] and its interaction with ecological 

opportunity [5], the acquisition of key innovations [4, 18], large ecological versatility [19], high 
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evolvability [8, 20], presence of discrete intraspecific morphs [21], or the ability of sister species to 

rapidly return to sympatry after speciation [4, 22]. 

Most of these properties though are constrained by genetic variation available to a single population 

and waiting times for relevant de novo mutations are expected to be long [23]. If the relevant genetic 

variation depended on de novo mutations, it would thus be difficult to explain rapid speciation and 

adaptive radiations with any of the above lineage properties or their interaction with ecological 

opportunity alone. Similarly, many of the standard models of speciation (Box 1) assume reproductive 

barriers accumulate by divergent fixation of new mutations, predicting that speciation usually is either a 

slow process or a process with long waiting times. The accumulating evidence for rapid speciation and 

adaptive radiation without waiting times in certain lineages is thus rather difficult to reconcile with 

classical models of speciation. 

The data: ancient genetic variation fuels much more recent speciation events 

A key to understanding rapid speciation might lie in asking which loci best reflect the speciation process 

and reconstructing the source of variation in these genes. Inherent to the idea of ‘speciation genes’ was 

a close link between the evolutionary history of alleles causing reproductive isolation [2], i.e. their 

mutational origin, and the speciation process, i.e. the evolution of reproductive isolation between 

populations. That evolutionary history differs markedly among loci in the genome was known for a while 

[3], but only recently has it become possible to directly contrast the age of allelic variants that are 

causally involved in a speciation event with the time frame over which reproductive isolation evolved. 

Evidence is accumulating that alleles contributing to reproductive isolation are often much older than 

actual speciation events, i.e. when populations started to develop reproductive isolation, particularly in 

cases of rapid speciation and rapid species radiations (Table 1). For example, inversions containing 

multiple genes affecting diapause introgressed from Mexican Altiplano highland fruit flies into the 

ancestor of the apple maggot Rhagoletis pomonella species complex in the north-eastern United States 

and facilitated radiation into a variety of sibling species, host races adapted to recently introduced 

plants with different fruiting times [24, 25]. Despite the very recent emergence of new species (e.g. the 

apple maggot, Rhagoletis pomonella, in ~200 years; Figure 1), much of the genomic variation underlying 

the host switches and associated reproductive isolation evolved ~1.6 million years earlier in different 

populations in a different ecological context [24, 25]. Similarly, genetic variation underlying beak shape 

(ALX1) and beak size (HMGA2) variation, associated with adaptation to different food resources and 

song-mediated reproductive isolation in the adaptive radiation of Darwin’s finches [12] by far predates 
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the origin of the major species groups in this radiation [26-28]. Recent speciation events in the cichlid 

fish radiation in Lake Victoria involved divergent selection on LWS opsin haplotypes affecting adaptation 

to light conditions at different water depth and female mate choice [29]. The LWS haplotype 

polymorphism however was generated about 100-200,000 years ago by hybridization between two 

cichlid lineages that were ~1.5 million years divergent by the time they hybridized [30]. Threespine 

stickleback (Gasterosteus aculeatus species complex) diverged into many parapatric pairs of freshwater 

and anadromous incipient species within the past 12,000 years, but the genomic variation that fueled 

divergent adaptation and indirectly reproductive isolation predates the origins of these populations by 

orders of magnitude [31]. Combining in several different ways divergent haplotypes through 

hybridization between the same two parental species has led to multiple new species adapted to 

extreme habitats in Helianthus sunflowers [32]. There is also evidence that hybridization between 

divergent ancestral lineages was important in most major adaptive radiations of cichlid fishes [30, 33-

37], the radiation of clownfish on coral reefs [38], as well as the radiation of the silversword alliance on 

Hawaii [15, 39] (Figure 1). 

Very few examples also exist for recent, rapid speciation with a known important role of de novo 

mutations. For instance, the monkeyflower Mimulus guttatus speciated in the past 150 years as a 

consequence of a pre-existing hybrid lethality mutation hitchhiking to high frequency in a copper mine 

population by physical linkage to a novel copper tolerance allele [40]. In two clades of wild tomato, 

introgression between early-branching lineages, adaptive sorting of standing genetic variation and 

evolution of genes through selection on de novo mutations all contributed to their adaptive radiation 

[41, 42]. For many examples of recent speciation and rapid adaptive radiation, either the reproductive 

isolation loci have not yet been identified, or the timing of their evolution has not yet been 

reconstructed. While it might thus be too early to quantify the relative importance of different sources 

of genetic variation for rapid speciation and adaptive radiation, the many recent studies showing 

involvement of old genetic variation make a reassessment of its role timely. 

 

A combinatorial view on the genetics of speciation 

The recent speciation genomic findings exemplified by case studies in Table 1 conflict with standard 

speciation models (Box 1) in many of which the origin of alleles involved in speciation marks the 

beginning of the speciation process. In the studies we highlight, new species evolved through new 

combinations of old alleles (Table 1, Supplementary Table 1). Such a pattern is expected under an 
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alternative set of speciation models, including ‘recombinational speciation’ (see Glossary) [43] or 

‘hybrid speciation’ [44], ‘hybrid trait speciation’ [45], ‘adaptive radiation from a hybrid swarm’ [46, 

47], ‘transporter hypothesis’ [48] and some other mechanisms of speciation by selection on standing 

variation [49] that results in linkage disequilibrium among old but previously unlinked variants (Figure 

2). Each of these models is defined by a restrictive set of conditions with variable overlap among 

models. However, all of these models can be unified by a common genetic mechanism: speciation 

through re-assembly of old genetic variants into new combinations which we refer to in the following as 

‘combinatorial mechanism’ (Figure 2C-E). That recombining pre-existing variation is a powerful way of 

generating new species quickly has been recognized early on [43, 50, 51] and adopting a ‘combinatorial 

view’ of the genetics of speciation might contribute to a better understanding of phenomena left 

unexplained by individual models or by the mutation-driven view (Box 1, Figure 1). 

From a combinatorial view, not the origin but the re-assembly of several old variants into novel 

combinations constitutes the beginning of a speciation event. Old genetic variants that have never 

before been together in one population, can be brought together through introgressive hybridization 

(Figure 2C-D). Gene flow between weakly differentiated populations is often thought to oppose their 

speciation as it homogenizes allele frequencies between them [3, 52], but this should not be confused 

with hybridization between divergent lineages which can sometimes facilitate the origin of one or many 

new species additional to the two that hybridized [46, 47, 52-54]. Alternatively, old genetic variants can 

also accumulate as standing genetic variation through long persistence in a single large population or in 

a meta-population (Figure 2E), although the conditions under which recombining such variation will 

result in new species might be more restrictive (see below). 

 

Old genetic variation in standing or admixture variation 

Old genetic variation – divergent haplotypes combined into the same gene pool by hybridization or 

present as standing variation– might be a particularly good substrate for speciation compared to 

haplotypes that are gradually building from new mutations (Box 2). Standing genetic variation and 

admixture variation can represent two ends of a continuum, particularly if admixture happened in the 

more distant past. Similarly, in a meta-population context, it is arbitrary if populations exchanging genes 

are considered to share the same standing variation or to be admixing. Important for the combinatorial 

mechanism is that, within the range where hybrids are viable and fertile, the more divergent two 

lineages are, the greater we predict the potential will be for hybridization between them to generate 
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polymorphisms that facilitate one or several new speciation events [52, 55-58]. In line with this 

expectation, a recent experiment using Drosophila species hybrids showed that intermediate levels of 

parental divergence and hybridization between more than two species are most conductive to 

generating hybrid species reproductively isolated from their parental lineages and from each other [55]. 

If several underutilized ecological niches are available, divergent and disruptive selection on variation 

resulting from mixing between distant lineages can facilitate the evolution of several new species 

through the many different ways in which old alleles from the same admixture event can be combined 

to completely novel phenotypes [46, 47]. The large frequency of functionally relevant haplotype 

polymorphisms in admixed populations can facilitate simultaneous adaptation of different 

subpopulations to several distinct niches each of which requires adjustments in multiple traits [32], 

which is extremely difficult to achieve from de novo mutations but also from standing genetic variation 

under migration-selection and mutation-selection balance [59, 60]. Empirical examples are rapid 

adaptive radiations where admixture variation derived from a hybrid swarm ancestry or from secondary 

introgression is known to have played key roles, such as in the Hawaiian silversword alliance [39], cichlid 

fishes of Lake Victoria, Lake Malawi and Lake Tanganyika [30, 33, 35-37, 61] or Darwin’s finches [26-28]. 

We suggest that intraspecific standing variation or variation arising from admixture between only 

weakly divergent young taxa is less likely to facilitate the rapid origin of many different species, but it 

can facilitate the recurrent evolution of similar species, i.e. parallel speciation [62]. For example, upon 

colonization of a new habitat, re-assortment of old alleles by selection can lead to the evolution of 

combinations beneficial in the new habitat that simultaneously also evolve upon colonization of a 

similar habitat elsewhere, or have also evolved previously in such habitats. Parallel speciation would 

thus increase the speciation rate but it does not increase sympatric species richness. This is illustrated by 

parallel speciation in threespine stickleback [31, 63, 64], or by Pogonus chalceus beetles [65], whereby 

similar species or ecotypes evolved repeatedly in different sites from re-assortment of standing 

variation, but novel ecologies rarely evolved and very little or no sympatric species richness emerged. In 

both these cases, gene flow from populations already adapted to the alternative habitat has enriched 

the standing variation in the large generalist population and facilitated parallel evolution of new habitat 

specialists [48, 65]. 
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Admixture variation is a particularly good substrate for speciation 

We predict that old genetic variation derived from recent hybridization (‘admixture variation’) will be 

more powerful than standing genetic variation in facilitating rapid speciation and species radiations. 

Below we summarize the major reasons. All of them apply to speciation in general, but for rapid 

speciation and rapid species radiations they are likely to be particularly important. 

Large amounts of genetic variation increase the potential for phenotypic evolution and extrinsic 

reproductive isolation. Drift, purifying and directional selection limit the amount of standing genetic 

variation that can build and be maintained within a population through time [66]. In contrast, 

hybridization will immediately generate polymorphisms at a multitude of genes, including often strongly 

divergent haplotypes [52], with the number and likely effect size of polymorphisms depending on the 

divergence between hybridizing lineages [55]. A larger amount of genetic polymorphisms affecting 

phenotypes increases the potential for rapid adaptation to new environments and range expansion via 

adaptive introgression [23, 67], rapid ecological differentiation and phenotype-based reproductive 

isolation in emerging species. Admixture-derived allelic variation can also break up covariance between 

traits and thus relax genetic constraints and increase evolvability in situations where the ancestral line of 

least resistance in the covariance matrix was not aligned with the direction of selection in a new 

environment [20, 68]. In addition, hybridization can indirectly augment genetic variation beyond re-

assembly by increasing mutation rates, for instance through activating transposable elements, inducing 

chromosomal rearrangements, or altering genome sizes [reviewed in 52]. 

Recombining and sorting of intrinsic incompatibilities might cause leaps in reproductive isolation. 

Bateson-Dobzhansky-Muller incompatibilities (BDMIs [51, 69-72]) are unlikely to arise or segregate as 

standing variation within a single population because selection purges mutations that are deleterious in 

their native background [51, 73, 74]. In admixed lineages however, incompatible alleles initially 

segregate and their sorting into new compatible combinations can lead to reproductive isolation from 

the parental species [71, 75-78], and potentially among multiple new species arising from the same 

hybrid ancestry [46]. Initially, the fitness of hybrids can be reduced if many partial incompatibilities are 

still segregating, but unless individual incompatibilities are very strong, variation among hybrids will lead 

to the emergence of some hybrid combinations that are at least as fit as the parents, including 

combinations that are different from both parental combinations [51, 79]. 

Transgressive segregation can facilitate crossing fitness valleys. Interactions among genes from 

different ancestry can lead to transgressive trait values [80]. Extreme trait values can facilitate 

7 
 



adaptation to novel ecological niches in hybrid species [44, 81] and in adaptive radiations [82]. Similarly, 

transgressive phenotypes or novel phenotype combinations can cause behavioral reproductive isolation 

if new allele combinations produce novel mating cues and novel preferences [55, 58, 83]. 

Hybridization might lead to enrichment of large effect haplotypes. Haplotypes of large phenotypic, 

ecological and context-dependent fitness effect increase the propensity of a population to respond to 

novel selection pressures and the propensity for ecological speciation given new ecological opportunity 

[84]. Empirical evidence shows that rapid ecological speciation often involves admixture-derived large-

effect haplotypes, e.g. in Rhagoletis [25], cichlids [37] and Darwin’s finches [28]. Parental haplotypes are 

likely to contain multiple co-adapted alleles which might together have a large effect on phenotype and 

function. The expected breakdown of such haplotypes by recombination in admixed populations might 

be impeded by sorting into emerging species that fix alternative haplotypes, and/or through restricted 

recombination, e.g. due to inversions such as in Rhagoletis [24]. We propose that selection in hybrid 

populations might further enrich admixture variation for large-effect haplotypes. First, theory suggests 

that large-effect haplotypes with ecological context-dependent fitness effects are more likely to 

overcome purging selection on linked incompatibilities [85]. Second, in a situation of ongoing gene flow 

between species emerging from the hybrid population, divergent selection is more efficient in 

maintaining and strengthening differentiation if it is based on large-effect haplotypes than when based 

on dispersed small effect variants [86]. 

Admixture variation might facilitate rapid genome-wide reproductive isolation. When an admixed 

population experiences ecological opportunity, new species might emerge through sorting of different 

genetic variants contributing to ecological differentiation, assortative mating and prevalent 

incompatibilities, all at the same time [52]. In principle, selection might favor linkage disequilibrium 

between loci involved in adaptation to different niches and those involved in assortative mating and 

perhaps also intrinsic incompatibilities [47]. We hypothesize that multiplicative effects of selection 

against recombination at many loci might lead to nearly immediate reduction in gene flow, similar to the 

last phase in models of ‘genome-wide congealing’ [87]. This might also facilitate the emergence of 

multiple species with different combinations of genes from the same hybrid population. We expect that 

this becomes more likely, the larger the number of differentiated loci is, and the larger the difference 

between alleles are, between the parental lineages. 
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Implications 

Speciation via a combinatorial mechanism has many implications. One consequence is the decoupling of 

the speciation process from the slow rate of accumulation of mutations relevant to phenotypic 

differentiation and reproductive isolation (Figure 2, Box 1). A second consequence is the facilitation of 

the evolution of linkage disequilibrium between genes even in the face of gene flow, and with it the 

partial alleviation of constraints to speciation imposed by sympatry [88]. Thereby, a combinatorial 

mechanism offers one possible explanation for how reproductive isolation can evolve extremely rapidly, 

for how multiple species can arise in short succession from the same ancestral population, and how such 

speciation can happen without geographical isolation.  

A combinatorial mechanism allows early and rapid speciation at the time ecological opportunity arises 

even when geographical isolation is lacking, as there is no waiting time for relevant mutations, and 

because some deviation from linkage equilibria is there from the onset. Sorting and recombining of pre-

existing alleles with effects on gene flow can lead to leaps in reproductive isolation (Figure 2) such as 

seen in the rapid genomic stabilization of Tragopogon [89] or sparrow hybrid species [76, 90]. The mass 

of ecologically relevant alleles with linkage disequilibrium between some facilitates crossing otherwise 

constraining fitness valleys by large peak shifts and thereby facilitate ecological novelty and 

differentiation. Examples include Mimulus monkeyflowers [91] adapting to different pollinator 

syndromes, Helianthus sunflowers adapting to xeric habitats [32], a hybrid species of Darwin’s finches 

with extreme body and beak size that arose within two generations [92], or pupfish that acquired a 

completely new feeding adaptation in the presence of the ancestral feeding type [93]. To the extent that 

adaptive radiation on islands and in lakes requires that evolution of new species outpaces arrival of 

existing species from the mainland, this effect of jumpstarting adaptive radiations may not only affect 

the rate at which an adaptive radiation unfolds but it may be decisive about whether a radiation occurs 

at all.  

Variation in access to old genetic variation for combinatorial mechanisms might be one factor 

contributing to variation in speciation rates, and in the propensity of adaptive radiation among lineages. 

Predictors might be the amount of standing genetic variation in a meta-population or whether divergent 

lineages with somewhat leaky reproductive isolation exist in geographic proximity. Also, the longer 

lineages retain the potential for hybridization after extended periods of isolation, the more likely they 

are to receive old genetic variation and to generate such variation in other lineages. Phylogenetically 

strongly isolated species (“living fossils”) cannot receive gene flow from other species and we 
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hypothesize that this limits their potential for rapid speciation.  Differences among lineages in the rates 

of evolution of complete intrinsic genetic incompatibility [94-96] might thus contribute to variation in 

lineage-specific speciation rates in a way contrary to predictions from classical speciation theory [97]: if 

the combinatorial mechanism is widespread and important in rapid speciation, we expect that high 

speciation rates should be associated with taxa showing slow completion of intrinsic incompatibility.  

If speciation and hybridization occur repeatedly within the evolutionary history of a lineage, such as in 

‘fission-fusion-fission radiations’, the genetic variation in the lineage is expected to increase [98]. 

Whereas small effect haplotypes and variants might get lost through drift, large-effect haplotype 

polymorphisms generated by hybridization and favored in different niches are likely to persist at high 

frequencies in a fission-fusion-fission radiation, a process akin to balancing selection in a 

metapopulation. Such enrichment might contribute to the persistent high propensity of speciation in 

lineages with a history of repeated hybridization and adaptive radiation such as some lineages of African 

cichlid fish [22, 30, 33-37] and Darwin’s finches [12, 28, 92]. Introgression might thereby also protect 

functionally relevant variation from extinction in single species or populations and thus promote the 

long-term persistence of biodiversity at the gene-level. Future research will have to subject these 

hypotheses to critical scrutiny (Box 3). 

As indicated above, a combinatorial mechanism might also help to explain sympatric speciation. An 

important role of introgression from divergent lineages has been demonstrated for some of the better 

examples of sympatric speciation and sympatric adaptive radiation [34, 37], raising a conflict with the 

most narrow sense definitions of sympatric speciation that exclude cases where alleles did not evolve in 

the sympatric context [99]. Sympatric speciation from de novo mutation and panmixia (with complete 

linkage equilibrium) is expected to be very difficult [59, 60, 88, 99]. However, old haplotypes with 

several co-adapted SNPs, might substantially increase the likelihood of sympatric speciation. 

Finally, evolutionary diversification through combinatorial mechanisms of speciation generates a 

network-like evolutionary history of species rather than the tree-like evolution with dichotomous 

splitting of lineages that dominates evolutionary thinking. This might affect the suitability of tree-based 

comparative methods for research on rapid speciation and adaptive radiation, and perhaps more 

general [100]. 
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Concluding remarks 

Speciation through combinatorial mechanisms, by which new combinations of old gene variants quickly 

generates reproductively isolated species, offers a perspective on speciation that contrasts with the 

gradual growth of reproductive isolation through accumulation of differences from de novo mutations. 

Such a mechanism has the potential to explain how speciation can sometimes be very fast, and how 

multiple new species can arise nearly simultaneously and can persist in sympatry very soon after their 

origins. We propose that explicitly considering this class of mechanisms might help understand the often 

tremendous variation in speciation rates – something to be tested in future comparative work on 

speciation rates. Ongoing research in speciation genomics will soon allow more conclusive answers 

regarding the importance of combinatorial mechanisms relative to others in facilitating speciation and 

species radiations, and hence their contributions to patterns in biodiversity.  
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Figure 1. Examples of species that arose from new combinations of ancient alleles. From left to right, top to 
bottom: Darwin finch (Geospiza conirostris, photo by David Marques), freshwater stickleback (Gasterosteus 
aculeatus, David Marques), Lake Victoria cichlid (Pundamilia nyererei, Ole Seehausen), Hawaiian silversword 
(Argyroxiphium sandwicense, Ole Seehausen), scale-eater pupfish (Cyprinodon desquamator, Anthony Terceira), 
Heliconius butterfly (Heliconius timareta, Thomas Horton), capuchino seedeater (Sporophila hypoxantha, Hector 
Bottai), short-winged Pogonus beetle (Pogonus chalceus, Roy Anderson), red monkeyflower (Mimulus aurantiacus 
ssp. puniceus, Sean Stankowski), munia (Lounchura castaneothorax, Graham Winterflood), clownfish (Amphiprion 
akallopisos, Ole Seehausen), Helianthus sunflower (Helianthus deserticola, Jason Rick), apple fly (Rhagoletis 
pomonella, Andrew Forbes). 

12 
 



 

Figure 2. A combinatorial view on the genetics of speciation. In models of allopatric speciation (A), or non-
allopatric speciation (B), reproductive isolation usually evolves by the accumulation of barriers through selection 
and drift acting on new mutations and is thus coupled to time by mutation rate (Box 1). In speciation by a 
combinatorial mechanism, the re-assembly of old genetic variation into new combinations (witnessed by novel 
patterns of linkage disequilibrium (H)) marks a speciation event, thereby decoupling the evolution of reproductive 
isolation from mutation rate and thus time. Speciation by a combinatorial mechanism can start from admixture 
variation, such as during hybrid speciation (C) or adaptive radiation from a hybrid swarm (D), or from standing 
genetic variation in large populations or meta-populations (E) maintained e.g. by balancing selection. Speciation 
through selection on admixture variation generated by hybridization between two lineages will lead to sorting and 
thus linkage disequilibrium (H) between some alleles from either parental lineage (G). From standing genetic 
variation, combinatorial reassembly should lead to strong linkage disequilibrium among sets of loci (H) that were 
previously in linkage equilibrium (F). Horizontal arrows indicate gene flow between diverging genomes, black 
vertical bars represent barriers to gene flow. Stars indicate predicted linkage disequilibrium patterns (right hand 
box) between the populations on either side of a star. 
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Table 1: Study systems with evidence for ancient genetic variation involved in recent rapid speciation or in 

recent radiations with several speciation events in short succession. In all cases, the origin of relevant genetic 

variation clearly pre-dates the onset of speciation, i.e. the beginning of the build-up of reproductive isolation. 

Included are only taxa that are sufficiently reproductively isolated from each other to coexist in sympatry or where 

reproductive isolation has been shown experimentally. For more details see Table S1. 

System Start of 
speciation 

Age of 
alleles 

Source(s) of alleles References 

Darwin's finch radiation (genera 
Geospiza, Camarhynchus, Platyspiza, 
Certhidea, Pinaroloxias) 

~10 y, ~100-300 
ky, <1 Mya 

~1 My Hybridization [26-28, 92] 

Marine / freshwater threespine 
stickleback (Gasterosteus aculeatus) 

34-50 y, <12 ky 1-14 My Standing variation and 
hybridization 

[31, 63, 64] 

Tragopogon goatsbeard flowers ~90 y ~2 My Hybridization [89, 101] 

Rhagoletis pomonella species complex ~200 y ~1.6 My Hybridization [24, 25] 

Lake Ejagham Coptodon cichlid 
radiation 

1-2 ky ~10 k Hybridization [34] 

Bahamas Cyprinodon pupfish radiation ~10 ky >>10 ky Hybridization [93] 

Italian sparrow (Passer italiae) ~10 ky ~800 ky Hybridization [76, 90] 

Lake Victoria Region Superflock (tribe 
Haplochromini) encompassing multiple 
cichlid radiations in different lakes 
including the Lake Victoria radiation 

~150 ky, 
~15 ky (Victoria) 
 

>2 My Hybridization [30] 

Helianthus sunflowers 60-200 ky >1 My Hybridization [32] 

Mimulus aurantiacus monkeyflowers 
species complex 

recent old Hybridization [91] 

Sporophila capuchino seedeater 
radiation 

44k gen. >>44k gen. Standing variation or 
hybridization 

[13, 102] 

Australo-Papuan munia radiation 
(genus Lonchura) 

<500 ky >>500 ky Standing variation or 
hybridization 

[103] 

Heliconius butterflies <2 Mya, 
<1.5 Mya 

~4 Mya, 
>2 Mya 

Hybridization [104, 105] 

Hawaiian silversword alliance (genera 
Argyroxiphium, Dubautia, Wilkesia) 

~5 Mya ~15 Mya Hybridization [15, 39] 
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Box 1: History of speciation models 

Ernst Mayr defined speciation as the process generating “groups of interbreeding natural populations 

that are reproductively isolated from other such groups” [74]. In the view of Mayr and Dobzhansky [51], 

reproductive isolation evolves between populations in allopatry as they accumulate incompatible 

mutations at interacting genes, so-called BDMIs [3] (Figure 2A). Gene flow between populations was 

thought to hinder speciation, because it opposes the formation of independent sets of compatible genes 

that are incompatible when combined [51, 74]. Even though Dobzhansky recognized that “by 

hybridization a species can ‘discover’ new evolutionary possibilities” [51], hybridization was not 

considered important in the eyes of Modern Synthesis and Post-Modern Synthesis zoologists. Non-

allopatric speciation was deemed unlikely [3, 88, 106, 107]. In the 1980s and 1990s, empirical evidence 

for non-allopatric speciation began to accumulate but the genetics remained unresolved [3]. 

Wu’s [108] proposal of the ‘genic view’ of speciation (Figure 2B) suggested a solution by emphasizing 

that speciation with gene flow might start with reproductive isolation at single genes where strong 

divergent selection overcomes homogenizing gene flow. The proportion of the genome diverging might 

then increase gradually until reproductive isolation is complete [108]. Loci that initiate speciation in this 

view of speciation include genes involved in ecological divergence, assortative mating, or intrinsic 

incompatibilities. 

Both allopatric and non-allopatric speciation depend on the accumulation and divergent fixation of 

variants at genes relevant to speciation. If the source is de novo mutation, speciation is expected to be a 

slow process with long waiting times. However, some theoretical studies of sympatric speciation have 

suggested that speciation by disruptive selection on standing variation for quantitative traits can be 

immediate and rapid [109, 110]. Mayr also proposed immediate and rapid speciation following a 

founder event (founder effect speciation, see Glossary) [111]. In this model, reproductive isolation 

arises due to drift-induced allele frequency changes which alter selection pressures on epistatically 

interacting genes [111], albeit evidence from nature is rare [112]. However, while speciation can be 

immediate and rapid in such models, they leave unexplained the accumulation and maintenance of the 

large amounts of standing variation required for rapid radiations into many species [59, 60]. 
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Box 2: Old genetic variation is good substrate for speciation 

We predict old genetic variation to be a better substrate for speciation than haplotypes that are gradually 

building up through new mutations, because of multiple reasons. Most new mutations are expected to 

be neutral or deleterious [113], especially those that affect genes. Old variation, in contrast, has already 

been filtered by selection and old haplotypes have been shaped by selection in their native genomic and 

ecological context [52]. Strongly deleterious mutations will have been purged and old haplotypes are thus 

enriched for potentially (i.e. context-dependent) beneficial mutations. Variants that have passed the 

‘intrinsic fitness filter’ are thus more likely to allow for ecological and mating trait adaptation, and more 

rapidly so than de novo mutations [49]. 

In addition, alleles introduced by hybridization, or having been present as standing variation, occur at 

much higher frequency than new mutations. They are thus less likely going to be lost through drift and 

they are more easily seen by selection even if recessive [49]. Old genetic variation might also be 

enriched for large-effect haplotypes and thus more likely to promote a fitness peak shift and the 

crossing of fitness valleys too wide to be crossed by most de novo mutations. In populations or species 

diverging with gene flow, evolution under migration-selection balance is expected to promote the 

clustering of many small effect mutations into single large-effect haplotypes [86, 114-116]. This is 

because adaptations underlain by such a clustered genomic architecture, possibly protected by locally 

reduced recombination (as in an inversion), better persist in the face of gene flow than adaptations that 

rely on long distance linkage disequilibrium between variants dispersed across the genome. Old 

haplotypes that have evolved under selection-migration balance might thus often confer large context-

dependent fitness effects. Introgression of such large-effect haplotypes into a population with ecological 

opportunity might facilitate jumps across fitness valleys which are otherwise difficult to cross under 

mutation-limited evolution [82, 117]. 

 

Box 3: Roadmap for studying combinatorial mechanisms in speciation 

A diagnosis of speciation with an important role of combinatorial mechanisms should include 

comparison of species splitting times with coalescent ages of haplotypes involved in speciation and of 

linkage disequilibrium patterns at such loci between new species and ancestral species to assess 

whether new species are characterized by new combinations of old variants. 
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If speciation occurred through reassortment of old haplotypes, their coalescent time should 

considerably exceed the distribution of genome-wide coalescent times marking the start of speciation 

[118]. Underestimating species splitting times, e.g. due to gene flow in secondary contact or due to 

incomplete isolation during early stage speciation, can also lead to higher than expected coalescent ages 

of reproductive isolation loci even when the latter evolved from de novo mutation [119]. However, if the 

haplotypes form paraphyletic or polyphyletic gene trees when outgroup taxa are included or show clear 

signs of introgression, they are unlikely to represent new mutations. Detecting this will require studying 

speciation in a strongly phylogenetic context. Many early speciation genetics studies overlooked the 

combinatorial process because they were confined to the diverging sister species. 

Novel combinations of old alleles can be identified from patterns of linkage disequilibrium between 

reproductive isolation loci among the new species and between them and the ancestral species (Figure 

2F-H). Combinatorial mechanisms from standing genetic variation should lead to the evolution of strong 

linkage disequilibrium between such loci from initial linkage equilibrium in the ancestral population 

(Figure 2F & 2H). Combinatorial mechanisms from admixture variation predicts in the new species the 

evolution of linkage disequilibria with reversed sign when compared to other and to parental species 

between some of the loci originating from different parental species (Figure 2G & 2H). 

Empirical distributions of effect sizes of admixture-derived and other variants are needed to confirm the 

predicted shift to large effect sizes, e.g. via QTL mapping or GWAS [120, 121]. Comparing variation in 

phenotypes, fitness [e.g. 32] and mating behaviour [e.g. 55, 58] between experimental hybrids and their 

parental lineages can elucidate the potential of hybrid populations to become new species or to initiate 

a new radiation. Evolution experiments with synthetic hybrid lineages and multiple ecological niches 

[e.g. 122] might help to assess how the sorting of admixture-derived large-effect haplotypes contributes 

to adaptive radiation. 

Comparing rapidly speciating lineages with close relatives that do not speciate could reveal to what 

extent combinatorial mechanisms contribute to heterogeneity in speciation rates and species richness. 

Such lineages should be investigated for differences in genetic variation, distributions of effect sizes, 

admixture history or admixture potential, in particular where they co-occur with hotspots of adaptive 

radiation on islands or lakes. 
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Glossary 

Adaptive radiation from a hybrid swarm: several ecologically differentiated species evolve from a single 

hybrid population, whereby admixture variation facilitates adaptation to a variety of new niches but 

importantly also reproductive isolation among the emerging species. 

Balancing selection: selective process by which two or more alleles are maintained in the gene pool of a 

population at frequencies larger than expected under neutrality. Mechanisms include negative 

frequency dependent selection, spatial or temporal heterogeneity in the direction of selection or global 

heterozygote advantage. 

Bateson-Dobzhansky-Muller incompatibilities (BDMIs): alleles at different loci that are incompatible 

with each other when present in the same genome. 

Founder effect speciation: speciation following a founder effect, in which reproductive isolation arises 

due to strong drift-induced allele frequency changes altering selection pressures on epistatically 

interacting genes. 

Hybrid speciation: two species through hybridization form a third, stable lineage, isolated from both 

parental species, either with a mosaic of parental chromosome blocks (i.e. homoploid hybrid speciation) 

or combining both parental chromosome sets (i.e. allopolyploid hybrid speciation). Deeply divergent 

haplotypes are immediately available throughout the genome facilitating response of the hybrid 

population to divergent selection between parental species and the hybrid population and associated 

ecological differentiation of the hybrid lineage. The hybrid species might become reproductively isolated 

from both parental species through sorting of incompatibilities additional to mating trait divergence and 

divergent adaptation. 

Hybrid trait speciation: introgression from a distant relative of a ‘magic trait’, i.e. a trait conferring both 

ecological divergence and reproductive isolation, triggers speciation in the introgressed lineage. 

Large-effect haplotypes: Haplotypes that strongly influence the phenotype, its ecological function, its 

mating function and/or fitness. 

Recombinational speciation: a special form of hybrid speciation involving karyotype evolution (e.g. 

chromosome arm translocations) between the hybrid species and its parental lineages. 

Transgressive trait values: Extreme trait values in hybrids that lie outside of the range of the values of 

both parental species combined. 
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Transporter hypothesis: a mechanism by which the standing genetic variation of a population or species 

is replenished by recurrent gene flow from a population or species adapted to an alternative habitat and 

thereby facilitates repeated adaptation to the alternative habitat in additional locations, including 

possible parallel speciation. 
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Supplementary Table 1: Study systems with evidence for ancient genetic variation involved in recent rapid speciation or in recent radiations with several speciation 
events in short succession. In all cases, the origin of relevant genetic variation clearly pre-dates the onset of speciation, i.e. the beginning of the build-up of reproductive 
isolation. Included are only taxa that are sufficiently reproductively isolated from each other to coexist in sympatry or where reproductive isolation has been shown 
experimentally. 

System Start of 
speciation 

Age of 
alleles 

Source(s) of 
alleles 

Evidence for importance of old alleles in speciation Evidence for (partial) 
reproductive isolation and 
involvement of old haplotypes 

Refe-
rences 

Darwin's finch 
radiation 

~10 y,  
~100-300 
ky 

~1 My Hybridization The most recent estimate of ~10 years was documented in Lamichhaney et al. 
(2018), who described a very recent hybrid speciation event (“Big Bird”), including 
the allopatric / much earlier origin of alleles involved in transgressive segregation of 
beak size and shape leading to both ecological differentiation and behavioural 
reproductive isolation to one of the parental lineages. 
The divergence times between the most basal clades of Darwin’s finches was 
estimated by Lamichhaney et al. (2015) to 0.9 Mya, whereby most rapid radiations 
of ground and tree finches started only 100-300 kya. The divergence of two 
haplotypes at crucial genes for beak size (HMGA2) and beak shape (ALX1) within 
these ground and tree finch radiations was estimated to ~1 Mya by Lamichhaney et 
al. (2016) and 913 kya by Lamichhaney et al. (2015), respectively, thus clearly pre-
dating the time frame for speciation. Sorting of these old haplotypes or old variation 
at other genes seems to be generally important in speciation in Darwin’s finches as 
shown in genome scans by Han et al. (2017). 

Darwin finch species differing in 
beak morphology can coexist 
on the same island, haplotypes 
underlying ecological 
divergence and behavioural 
mate choice are very old 

[1-4] 

Marine / 
freshwater 
threespine 
stickleback 

34-50 y,  
<12 ky 

1-14 My Standing 
variation and 
hybridization 

Terekhanova et al. (2014) showed that extremely young (34-250 y) to very young 
(600-700 y) freshwater populations in the White Sea basin (Russia) evolved through 
selection on freshwater haplotypes that diverged from the marine haplotypes 1 
Mya. Both marine and freshwater ecotypes breed in sympatry and must be 
reproductively isolated to some extent in the 34-years old Lake Ershovskoye. 
Bassham et al. (2018) studied 50 years old Alaskan freshwater populations, which 
are morphologically as distinct from their marine ancestors as the much older 
Alaskan populations. They show that the same haplotypes are selected in three 
independent freshwater populations and that those freshwater haplotypes are 
selected against in the marine environment and are only present there due to a 
migration-selection balance with many freshwater populations. Studying two max 
12 ky old freshwater stickleback populations in Alaska, Nelson & Cresko (2018) 
estimated the mean divergence times between freshwater and marine haplotypes 
to 6.4 My ranging from 1-14 My. Genomic regions that were differentiated between 
marine and freshwater sticklebacks were substantially older than the genome-wide 
average. These exact same haplotypes are shared with marine and freshwater 
populations around the globe that have independently evolved in the last <12ky 
(Jones et al. 2012 documenting the identity of alleles, and many other references 

Coexistence of freshwater and 
anadromous sticklebacks, 
haplotypes involved in parallel 
adaptation are ancient 

[5-7] 
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System Start of 
speciation 

Age of 
alleles 

Source(s) of 
alleles 

Evidence for importance of old alleles in speciation Evidence for (partial) 
reproductive isolation and 
involvement of old haplotypes 

Refe-
rences 

documenting the age of such freshwater populations). Together, these studies show 
that the extremely rapid parallel speciation in sticklebacks is based on much older 
genetic variation that is found at very low frequency in the marine populations due 
to constant inflow from a multitude of freshwater stickleback populations as 
suggested by the transporter hypothesis proposed by Schluter & Conte (2009).  

Tragopogon 
goatsbeard 
flowers 

~90 y ~2 My Hybridization Soltis et al. (2004) studied two allotetraploid Tragopogon species T. mirus and T. 
miscellus that evolved from hybridization between the parental species T. dubius, T. 
pratensis and T. porrifolius, respectively which were introduced to the Palouse prior 
in the early nineties and did not co-occur prior to 1928 (90 years ago). Bell et al. 
(2012) dated the phylogeny of Tragopogon, with the TMRCA between T. porrifolius 
and the other two parental species falling only slightly short of the Tragopogon 
crown age of 2.6 My and thus reported as ~2 My. 

Evolution and coexistence of 
new hybrid species or ‘new 
combination of old alleles’ in 
sympatry with parental 
lineages. 

[8, 9] 

Rhagoletis 
pomonella 
species 
complex 

~200 y ~1.6 My Hybridization About 200 years ago, a new morph evolved in the Rhagoletis pomonella species 
complex which switched from the original hawthorn host to the earlier fruiting 
apple that was introduced to North America. Other species had evolved previously 
adapted to plants with differing fruiting times, generating R. mendax, R. zephyria 
and the flowering dogwood fly. In addition, a new species feeding on introduced 
honeysuckle seems to have evolved from hybrid ancestry of R. mendax and R. 
zephyria. Even though some of these host-adapted morphs are sometimes called 
host races and others are called species and have received a scientific name, Xie et 
al. (2008) showed that there is no qualitative genetic difference among them. The 
host switch is associated with temporal and behavioural reproductive isolation as 
they find their mates on the host plants that fruit at different times. The radiation 
was preceeded by introgression of inversions with genes affecting diapause from 
the Mexican altiplano fly. Feder et al. (2003) estimated the age of the Mexican 
inversions to 1.57 Mya.  

Sympatric coexistence, 
reproductive isolation related 
to diapause time and mate 
choice on the host plants  

[10, 
11] 

Lake Ejagham 
cichlid 
radiation 

1-2 ky ~10 k Hybridization Poelstra et al. (2018) showed that even though Coptodon cichlids colonized the 
Cameroonian Lake Ejagham 9 ka, right after its formation, they only radiated into 
four new species in that lake after a secondary colonization with admixture 1-2 kya. 
The second lineage is closest to a riverine taxon that diverged about 10 kya from the 
original Lake Ejagham Coptodon lineage. All four species in the lake evolved shortly 
after the admixture event and Poelstra et al. (2018) found the three species they 
studied all to be admixed. Speciation seems to be associated with introgression of a 
cluster of 8 olfactory genes possibly involved in chemosensory mate choice. The 
introgressed haplotype is fixed in two species, and absent in the third species 
supporting a role in behavioural reproductive isolation between some of the 
species.  

Sympatric coexistence in a 
small crater lake, speciation 
after introgression of genes 
that are possibly involved in 
behavioural mate choice  

[12] 
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Bahamas 
Cyprinodon 
pupfish 
radiation 

~10 ky >>10 ky Hybridization Whereas generalistic Cyprinodon pubfish are widespread on Bahamas islands, they 
speciated only on a single island. On San Salvador Island, 3-4 ecologically different 
species evolved within the past 10,000 years. Richards and Martin (2017) discovered 
adaptive introgression of four genes related to jaw morphology and one gene with 
behavioural effects from a much more divergent species C. laciniatus of another 
Bahamian island (divergence time >>10ky, but not dated formally) that seem to 
have played an important role in shaping this radiation with a novel trophic 
specialist. The authors date the introgression event to ~5,700-23,500 years 
suggesting that introgression may have preceded the radiation. Introgression may 
thus not only have been a facilitator but potentially even a trigger of this adaptive 
radiation. 

Sympatric coexistence of the 
different trophic specialists, 
alleles involved in trophic 
adaptations and behavior 
introgressed from a distant 
relative 

[13] 

Italian sparrow 
(Passer italiae) 

~10 ky ~800 ky Hybridization The Italian sparrow is a hybrid species between the House and the Spanish sparrow 
that likely arose less than 10,000 years ago [14]. Using a genomic cline approach, 
Hermansen et al. (2014) show that sorting of pre-existing incompatibilities 
contributed to reproductive isolation between the hybrid species and its parental 
species. Sex-linked and mito-nuclear incompatibilities isolating the hybrid Italian 
sparrow from its parental species represent different subsets of loci contributing to 
reproductive isolation between the parental species. Ravinet et al (2018) estimated 
the divergence between the house and the Spanish sparrow to 0.83 Mya and the 
divergence time of the alleles combined through hybridization is thus ~0.8 My. 

Sorting of parental 
incompatibilities contributes to 
reproductive isolation between 
the hybrid Italian sparrow and 
its two parental species. 

[15, 
16] 

Lake Victoria 
Region 
Superflock 
(tribe 
Haplochromini) 
encompassing 
multiple cichlid 
radiations in 
different lakes 
including the 
Lake Victoria 
radiation 

~150 ky, 
~15 ky 
(Victoria) 
 

>2 My Hybridization Meier et al., (2017) showed that the multiple adaptive radiations in different lakes 
in the Lake Victoria Region Superflock of haplochromine cichlids are all derived from 
hybridization between two or three lineages that are 1.5-3 My divergent. The oldest 
radiation in the region (Lake Edward) is only about 100-150,000 years old. The 
largest radiation of 500 species in Lake Victoria itself is likely less than 15,000 years 
old as the lake was completely dry for 4,000 years before that. Meier et al. (2017) 
showed that the hybridization event contributed the haplotype diversity at the red 
opsin gene involved in adaptation to different water depths and potentially also in 
color-based mate choice. They further showed that other polymorphisms too that 
originated from the ancient hybridization event became divergently sorted between 
sympatric Lake Victoria species and are enriched among the exceptionally strongly 
differentiated regions.  

Sympatric coexistence of 
dozens of species at each site 
within each lake, genetic 
variation derived from 
admixture was e.g. involved in 
visual adaptation to different 
water depths which also 
affected mating behaviour. 

[17] 

Helianthus 
sunflowers 

60-200 ky >1 My Hybridization Rieseberg et al. (2003) summarizes evidence for hybrid origins of three Helianthus 
sunflower species derived from the same two parental species during the past 60-
220 ky. They show that experimental hybrids can recover the extreme 
(transgressive) phenotypes displayed by the hybrid species which allowed them to 
adapt to extreme habitats. Rieseberg et al. (1996) showed that five generations of 

Genes involved in major 
ecological transitions and in 
hybrid inviability are derived 
from hybridization between 
two parental species. They 

[20] 
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hybridization between the parental species were sufficient to experimentally 
recreate hybrid populations with patterns of introgression that were significantly 
similar to the composition of one of the hybrid species. Strasburg and Rieseberg 
[18] estimated the divergence time between the two parental species to about 1 
Mya.  

show strong pre- and 
postzygotic isolation from their 
parental lineages [19]. 

Mimulus 
aurantiacus 
monkeyflowers 
species 
complex 

recent old Hybridization Studying the recent radiation of the Mimulus aurantiacus monkeyflower species 
complex, Stankowski and Streisfeld (2015) show that the allele at the MaMyb2 gene 
conferring red coloration introgressed into M. puniceus from another member of 
the species complex. They postulate that this introgression event initiated 
pollinator-mediated divergence between M. puniceus and its yellow-flowered sister 
species M. australis. Even though the authors have not dated the alleles, they 
report that “the level of sequence divergence at MaMyb2 is an order of magnitude 
greater than the genome-wide average”.  

The allele contributing to RI 
through a switch of pollinator 
syndrome introgressed from a 
divergent species. 

[21] 

Sporophila 
capuchino 
seedeater 
radiation 

44k gen. >44k 
gen 

Standing 
variation or 
hybridization 

Campagna et al. (2015) estimated that the southern capuchino seedeater radiation 
(genus Sporophila) is about 44,000 generations old, and thus has a Pleistocene 
origin (Campagna et al., 2017). They inferred a demographic history with large 
ancestral population size of the capuchino radiation and introgression from the 
allopatric outgroup Sporophila bouvreuil. They further showed that pigmentation 
genes have repeatedly been targeted by divergent selection between different 
species pairs. Species grouping in PCA of those high divergence regions suggests 
that different species share old haplotypes that have been sorted differentially in 
the rapidly emerging species. Even though the haplotypes predate the radiation, the 
authors do not yet know the ages of the pigmentation gene haplotypes or if they 
are derived from the hybridization event or not.  

High levels of sympatry among 
species, RI mostly based on 
differences in song and 
plumage coloration. Evidence 
for repeated selection on 
haplotypes at pigmentation 
genes that are shared among 
species and thus predate the 
individual speciation events. 

[22, 
23] 

Australo-
Papuan munia 
radiation 
(genus 
Lonchura) 

<500 ky >>500 
ky 

Standing 
variation or 
hybridization 

Stryjewski & Sorenson (2017) show that the diversification of Lonchura munias in 
the region of Australia and New Guinea into 13 species occurred over maximum 0.5 
million years. The species differ in plumage coloration and bill size. Genomic regions 
under divergent selection between species show gene trees that are discordant 
from the species phylogeny and haplotypes at these genes are shared among 
multiple species. Each species has a unique combination of old alleles at different 
high differentiation regions which include genes involved in pigmentation, bone 
development or cold adaptation. The authors are not able to distinguish if repeated 
selection on ancestral polymorphisms or introgression explain the mosaic patterns 
at regions under divergent selection but it seems certain that the haplotype 
diversity predates the species diversification. 

Lack of mitochondrial 
introgression, difference in 
plumage coloration and bill 
size, and rarity of hybrids 
despite sympatry all suggest 
the presence of some 
reproductive isolation. At high 
differentiation regions, each 
species is a unique mosaic of 
old haplotypes shared across 
multiple species. 

[24] 

Heliconius 
butterflies 

<2 Mya 
<1.5 Mya 

~4 Mya, 
>2 Mya 

Hybridization Wallbank et al. (2016) studied the dennis-ray mimicry ring of Amazonian Heliconius 
butterfly species displaying red hindwing rays (ray) and a red forewing patch 

Haplotypes underlying wing 
color patterns under strong 

[30, 
31] 
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(dennis). These color patterns are under strong natural selection for warning 
coloration and also involved in mate choice. The authors show that the two wing 
patterns are controlled by two closely linked regulatory regions of the optix gene. 
The underlying haplotypes each evolved once in different species that are 4 My 
divergent and were then reshuffled among a group of 16 species. They estimate 
that about 2 Mya the dennis allele introgressed from H. elevatus into H. melpomene 
and around the same time, the ray allele evolved in H. melpomene. H. elevatus then 
also acquired the ray allele through introgression from H. melpomene a million 
years later which allowed it to join the dennis-ray mimicry ring in the Amazon 
rainforest. Both dennis and ray also introgressed into H. timareta which speciated 
from the ancestor of H. tristero and H. heurippa around the time of the ray 
introgression.  
Enciso-Romero et al. (2017) showed that introgression between H. melpomene and 
H. cydno which are about 2 My divergent facilitated the evolution of new races in 
more recent times. Introgression of haplotypes controlling the yellow hindwing bar 
from H. melpomene into H. cydno about 1 Mya facilitated the origin of H. pachinus 
in Costa Rica and a new race of H. cydno in Colombia. Likewise, they found 
introgression from H. cydno into H. melpomene about 410 kya facilitating the 
formation of new races in H. melpomene. There is also evidence for hybrid 
speciation forming H. heurippa [25, 26] and for widespread hybridization across the 
Heliconius radiation [27-29]. 

divergent selection between 
mimicry rings and involved in 
mate choice have been 
reshuffled among species and 
populations through 
introgression facilitating 
adaptation to novel mimicry 
rings.  

Hawaiian 
silversword 
alliance 

~5 Mya ~15 
Mya 

Hybridization Barrier et al. (1999) show that the entire Hawaiian silversword alliance is an 
allotetraploid group which evolved from hybridization between two North American 
tarweed species which Baldwin and Sanderson (1998) estimated to have diverged 
about 15 Mya. Baldwin and Sanderson (1998) estimated the age of the Hawaiian 
radiation to 5.2 million years ago. Silversword alliance species occur in a wide range 
of habitats from exposed lava, dry woodland to bogs, in altitudes ranging from 
< 100 m to > 3700 m, and they show a broad diversity of growth habits, including 
cussion plants, shrubs, trees and lianas.  

(Partial) reproductive isolation 
due to differences in 
reproductive traits such as 
floral organ size and 
morphology and difference in 
habitat preference.  

[32, 
33] 

 

Criteria for study systems to be used in this table: 
Evidence for genetic variation with an important role in speciation that clearly predates the onset time of speciation, including old haplotypes at genes 
known to contribute to either reproductive isolation or ecological differentiation.  
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