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A combined case-control and 
molecular source attribution study 
of human Campylobacter infections 
in Germany, 2011–2014
Bettina M. Rosner1, Anika Schielke1, Xavier Didelot2, Friederike Kops3, Janina Breidenbach1, 

Niklas Willrich1, Greta Gölz5, Thomas Alter5, Kerstin Stingl6, Christine Josenhans3,4,  

Sebastian Suerbaum  3,4,7 & Klaus Stark1

Campylobacter infection is the most commonly notified bacterial enteritis in Germany. We performed a 
large combined case-control and source attribution study (Nov 2011-Feb 2014) to identify risk factors 
for sporadic intestinal Campylobacter infections and to determine the relative importance of various 

animal sources for human infections in Germany. We conducted multivariable logistic regression 

analysis to identify risk factors. Source attribution analysis was performed using the asymmetric island 

model based on MLST data of human and animal/food isolates. As animal sources we considered 

chicken, pig, pet dog or cat, cattle, and poultry other than chicken. Consumption of chicken meat and 

eating out were the most important risk factors for Campylobacter infections. Additional risk factors 

were preparation of poultry meat in the household; preparation of uncooked food and raw meat at the 

same time; contact with poultry animals; and the use of gastric acid inhibitors. The mean probability of 

human C. jejuni isolates to originate from chickens was highest (74%), whereas pigs were a negligible 
source for C. jejuni infections. Human C. coli isolates were likely to originate from chickens (56%) or from 
pigs (32%). Efforts need to be intensified along the food chain to reduce Campylobacter load, especially 

on chicken meat.

Intestinal Campylobacter infections are the most frequently reported bacterial infections in Germany and 
in other European countries1, 2. An overall increasing trend has been observed in Germany, from 55,000 
laboratory-diagnosed Campylobacter infections reported in 2001 to 70,190 reported in 2015 (87 infec-
tions/100,000 population)1. Most intestinal Campylobacter infections are caused by Campylobacter jejuni (90%) 
and Campylobacter coli (7%), and are acquired in Germany (92%)3. Typical symptoms are diarrhoea, abdominal 
pain and fever. Sequelae such as reactive arthritis, irritable bowel syndrome, and neurological complications 
such as Guillain Barré syndrome can also occur, albeit with lower incidence4–6. �e vast majority of cases (97%) 
are reported as sporadic, that is not as part of an outbreak3. Campylobacteriosis is a zoonotic disease. Important 
animal reservoirs for the organism are poultry, in particular chicken, and cattle7–14. Humans typically become 
infected via consumption of meat. Chicken meat plays an important role, because it is o�en contaminated with 
Campylobacter15–17. Epidemiological studies conducted in several European and non-European countries have 
identi�ed the consumption of poultry or chicken meat as an important risk factor for campylobacteriosis14, 18–23,  
and in source attribution studies outside of Germany about 50–90% of human infections were attributed to 
chicken7, 8, 10, 11, 13, 14, 24. Few studies have combined epidemiological and source attribution data10, 14, 25. �e aim of 
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our study was to identify risk factors for sporadic Campylobacter infections in Germany and combine epidemi-
ological, molecular typing and source attribution data to determine the relative importance of potential sources 
for human infections.

Methods
�e study was approved by the German data protection authority, Bonn, Germany (Number III-401/008#0045; 
28 July 2011), and by the ethical committee of the Charité University Medicine Berlin, Germany (Number 
EA2/012/11; 14 March 2011). �e study was conducted in accordance with relevant guidelines and regulations. 
Informed consent was obtained from all subjects.

Data availability. Data are available in Supplementary Information. Additional data of the case-control 
study will be made available upon request to the corresponding �rst or the last author.

Study design. �e study was conducted between 1 November 2011 and 28 February 2014 in rural county 
districts of the federal state of Brandenburg and in Berlin (urban region). To increase the number of study par-
ticipants under the age of 15 years, the study region for this age group was expanded in 2013 to select urban 
and rural county districts in North Rhine-Westphalia and Saxony. Regions were classi�ed as rural or urban as 
described previously3. According to the German Protection against Infection Act of 2001, laboratory diagnosed 
Campylobacter infections in patients have to be reported to the local health authority by the primary diagnos-
tic laboratories. Local health authorities contacted patients to obtain informed consent for study participa-
tion. Patients willing to participate were sent a self-administered questionnaire by the local health authority, 
which was mailed free of charge directly to the Robert Koch Institute (RKI) by the patients a�er completion. 
Primary diagnostic laboratories that participated in the study forwarded Campylobacter isolates of patients to 
Hannover Medical School (MHH) for further characterisation. If patients agreed to the analysis of their bacte-
rial isolate in writing, multilocus sequence typing (MLST) analysis of the Campylobacter isolate was performed 
at MHH. Results were uploaded to a SeqSphere (Ridom Bioinformatics GmbH; Münster, Germany) database. 
Questionnaire and respective Campylobacter isolate could be matched using the sample number given by the 
primary diagnostic laboratory.

Controls were frequency-matched to cases by age group and federal state. Intended ratios were 1 case: 1 con-
trol in persons ≥15 years of age, and 1: 4 in persons younger than 15 years of age, based on sample size calcula-
tions and expected low number of cases among children. Control persons were selected in a two-step randomised 
procedure from address lists provided by regional population registries26. �e self-administered questionnaires 
were sent out to potential control persons every month during the study period proportional to the number of 
expected cases, which was estimated based on surveillance data of previous years. Participating control persons 
returned the completed questionnaire free of charge to the RKI by mail.

Data Collection. Cases and controls were queried about potential risk factors with a focus on consumption 
of certain food items. Questions on eating habits, kitchen hygiene, eating out, contact with animals, leisure activ-
ities, occupational exposure (e.g., to raw meat or young children), medication, certain chronic illnesses, travel 
abroad, and basic demographics (e.g., sex, month and year of birth, postal code, level of professional education, 
migrant background, household size) were also included. Questions about possible exposures referred to the 
7 days before disease onset (case patients) or before completion of the questionnaire (controls), unless stated 
otherwise (see Supplementary Information: Questionnaire). Parents/caregivers were asked to complete the ques-
tionnaire for, or when appropriate, with their children.

Data Analysis. Data was entered into an EpiData database (version 3.1, �e EpiData Association, Denmark) 
and validated by double data entry. Missing data on sex, age, and date of disease onset of case patients was sup-
plemented with data obtained from the national surveillance database of noti�ed cases hosted at the Robert 
Koch Institute, if possible. Missing answers in item lists of the questionnaire were converted to “No” answers as 
described before26. According to the de�nition of the German Federal Statistical O�ce27, persons who were borne 
with a non-German citizenship or with at least one parent that was borne with a non-German citizenship were 
considered as persons with a migrant background. Seasons were categorised as follows: spring (March-May), 
summer (June-August), autumn (September-November), winter (December-February).

Data was analysed with Stata 14 (Stata Corporation, USA). For risk factor analyses cases were de�ned as 
patients with a laboratory diagnosed, noti�ed Campylobacter enteritis. Cases were excluded if they had travelled 
abroad in the 7 days before the onset of illness, or if the time period between onset of illness and completion of 
the questionnaire was 60 days or longer. Controls were excluded from data analysis if they had travelled abroad in 
the 7 days before completing the questionnaire. We conducted unconditional logistic regression analyses based 
on single exposure variables adjusted for sex and the two matching variables age group (0–4, 5–14, ≥15 years) 
and federal state (“univariable analyses”) to determine adjusted odds ratios (aOR) with 95% con�dence intervals 
(CI). Statistical signi�cance was assessed using Wald tests. Variables were considered for multivariable analysis 
(MVA) if the P-value was 0.1 or lower in univariable analysis. To reduce the overall number of variables in the 
starting set for MVA, correlating variables measuring related exposures were combined to one composite variable, 
when plausible, or only one of the correlating variables was chosen for model building. MVA was conducted as 
described before26. Matching variables and the variable sex were forced into the model. �e age group variable 
was modi�ed (0–2, 3–4 years) in the multivariable model for identi�cation of risk factors in children under 5 
years of age. When building models for identifying risk factors for Campylobacter infections at the species level 
(C. jejuni or C. coli), we only included cases with isolates con�rmed as either C. jejuni or C. coli by detailed molec-
ular and biochemical analysis at MHH. �e model for identifying risk factors for C. coli infections was limited to 
the age group ≥15 years because only 2 con�rmed C. coli infections occurred in younger age groups. A modi�ed 
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age group variable (15–29, 30–59, 60 + years) was included in this model. We compared multivariable logistic 
regression models with and without exclusion of cases and controls that had travelled abroad.

We also determined risk factors for Campylobacter infections attributed to the source chicken by our source 
attribution model described below. In this approach, we conducted univariable and multivariable logistic regres-
sion analyses, comparing cases that were attributed to chicken with a relative posterior probability (Pr) of 0.5 or 
higher (n = 486; mean Pr 0.76, range 0.50–0.90) with controls (n = 3,983). �e number of human isolates attrib-
uted to other putative sources based on Pr ≥0.5 was too small to allow meaningful logistic regression analysis for 
the identi�cation of source-speci�c risk factors (pig: n = 24; mean Pr 0.81, range 0.55–1.00; pet: n = 19; mean Pr 
0.68, range 0.50–0.79; poultry other than chicken: n = 4; mean Pr 0.65, range 0.53–0.83); cattle: n = 0).

Population attributable fractions (PAF) of each statistically signi�cant risk factor in the �nal models were 
determined as described by Bruzzi et al.28. Con�dence intervals of population attributable fractions were calcu-
lated in R, version 3.2.329, based on the percentile method for samples obtained by an age-group and federal-state 
strati�ed bootstrap30.

Campylobacter isolates from animal, food, and environmental samples. Various animal and 
environmental samples were obtained and food items for sampling were purchased in stores in the study region 
(Berlin and Brandenburg) within the study time period (total number of samples: 1,471). Campylobacter was 
isolated from a total of 183 samples. A selection of the C. jejuni (n = 77) and the C. coli isolates (n = 34) were col-
lected at MHH and further analysed using MLST31, 32. Additional C. jejuni and C. coli isolates from chicken meat 
samples (n = 67) from the study region were provided by the National Reference Laboratory for Campylobacter at 
the Federal Institute for Risk Assessment, Berlin, Germany, and also analysed using MLST at MHH.

Multilocus Sequence Typing (MLST). MLST of Campylobacter isolates was performed using the C. 
jejuni/C. coli typing system developed by Dingle et al.31 and primer sequences available from http://pubmlst.org/
campylobacter/info/primers.shtml. Brie�y, fragments from 7 housekeeping genes, aspA, glnA, gltA, glyA, pgmA, 
tkt, and uncA, were PCR-ampli�ed from puri�ed genomic DNA of C. jejuni or C. coli isolates, and sequenced 
from both strands on an ABI 3130xl capillary sequencer. Sequence reads were imported into a SeqSphere+ 
(Ridom Bioinformatics GmbH, Münster, Germany) database for further processing and assignment to known 
sequence types (STs). Novel allele sequences and isolates with novel combinations of alleles were submitted to 
the PubMLST Campylobacter database (http://pubmlst.org/campylobacter/) sited at the University of Oxford33, 
to obtain allele and ST numbers. All MLST pro�les for isolates newly described in this study have been deposited 
at the PubMLST database (www.pubmlst.org). Minimal spanning trees were generated using BioNumerics 7.1 
(Applied Maths, Sint-Martens-Latem, Belgium).

Source attribution analysis based on MLST data. MLST-typed human isolates (n = 613) were com-
pared to 504 MLST-typed isolates from animal and food samples that were obtained in the study region during the 
study period or were obtained in Germany in the time period 2006–2010 in a previous study performed within the 
FBI-Zoo network32. As sources relevant for Germany we considered chicken, pig, cattle, pet (dog or cat), and poul-
try other than chicken (“other poultry”: duck, goose, turkey, or quail). We increased the number of animal and food 
isolates for our source attribution analyses by supplementing sequence type data from isolates of the same 5 sources 
obtained in Germany (outside the FBI-Zoo network) and neighbouring European countries (Switzerland, �e 
Netherlands, Luxembourg, France, Belgium) in 2003 or later that were available in the PubMLST Campylobacter 
database. A large proportion of these isolates had been used for source attribution analysis in studies conducted 
in Luxembourg14 and Switzerland11. A total of 2,549 animal and food isolates were included (766 from Germany, 
1,783 from neighbouring countries) (Table 1). Source attribution was performed using Bayesian inference on an 
asymmetric island model7 as implemented in the iSource program available from http://www.danielwilson.me.uk/
iSource.html. �is analysis estimates relative posterior probabilities for each human isolate to originate from the 
di�erent sources. In one approach, we excluded the source pet and restricted the sources that were considered for 
attribution to chicken, pig, cattle, and poultry other than chicken (“other poultry”).

We validated our model with 32 down-sampled datasets in each of which a random subset of 10% of animal/
food isolates were excluded to attribute the origin of the human isolates. Mean posterior source probability of the 
5 sources was calculated. Results remained relatively stable, which means that the output did not depend much 
on exactly which animal/food isolates were used for analysis (Supplementary Fig. S5).

Source

Germany (FBI-
Zoo network: 
2011–2014)

Germany (FBI-
Zoo network 
2006–201032)

Germany 
(PubMLST, 
2003 or later)

Luxembourg (PubMLST14; 
includes pig isolates from 
Belgium, France)

Switzerland 
(PubMLST11)

�e Netherlands 
(PubMLST; 2003 
or later) Total

Human 613 — — — — — 613

Pet (Dog or 
Cat)

21 4 2 — 140 — 167

Chicken 90 136 138 252 540 350 1,506

Pig 47 106 9 45 257 17 481

Cattle 1 40 61 101 — 5 208

Other Poultry 29 30 52 62 — 14 187

Table 1. Origin of Campylobacter isolates (typed with MLST) used for source attribution analysis. �e source 
“other poultry” includes isolates from ducks (n = 47), turkeys (n = 102), geese (n = 11), and quails (n = 27).

http://pubmlst.org/campylobacter/info/primers.shtml
http://pubmlst.org/campylobacter/info/primers.shtml
http://pubmlst.org/campylobacter/
http://www.pubmlst.org
http://www.danielwilson.me.uk/iSource.html
http://www.danielwilson.me.uk/iSource.html
http://S5
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Results
Study population. We received 2,073 questionnaires from case patients, corresponding to 22% of all cases 
noti�ed to the local health authorities in the study region, and to 68% of patients that had received a questionnaire 
from the local health authority. Participation of parents of children <5 years of age was slightly lower (20%) than 
participation of parents of older children (22%) and of persons ≥15 years of age (23%). Comparing participating 
campylobacteriosis cases to all non-participating cases that were noti�ed to local health authorities in the study 
region, we found that they were similar in age, but a slightly higher proportion of participants was female (partic-
ipants: median age 40 years; interquartile range (IQR) 24–54 years; 52% female; non-participants: median age 35 
years; IQR 22–54 years; 47% female). For risk factor analyses, we excluded case patients that had travelled abroad 
in the 7 days before disease onset (n = 246, 12%), or had completed the questionnaire ≥60 days a�er onset of dis-
ease (n = 15, 0.7%), which resulted in a total of 1,812 case patients included in data analysis (Table 2). Most cases 
(84%) were in the age group 15 years and older, mainly because the number of noti�ed Campylobacter infections 
was substantially lower in the younger age groups. �e median time interval between disease onset and complet-
ing the questionnaire was 16 days (IQR: 12–22 days).

Of the 16,287 potential control persons that were mailed a questionnaire, 4,196 (26%) completed it. Of those, 
213 questionnaires (5%) were excluded because the person had travelled abroad. �e resulting control group 
comprised 3,983 persons. In the study population, the proportion of female and male persons was similar among 
cases (52% female) and controls (53% female). Controls were younger than cases because the control to case ratio 
was higher in the age groups <15 years (Table 2).

Clinical aspects. Symptoms of Campylobacter infection in case patients were diarrhoea (95%), abdomi-
nal pain (81%), fever (53%), nausea (48%) and vomiting (19%). 25% of case patients reported bloody stools. 
Additional symptoms, such as headaches, chills, body aches, and weakness were reported by 62% of patients. 
Median duration of symptoms was 6 days (IQR 5–9 days). 18% of case patients were hospitalised because of 
their Campylobacter infection; median duration of hospital stay was 4 days (IQR 3–6 days). �e proportion of 
case patients that reported bloody stools, fever, nausea or vomiting was higher in the hospitalised than in the 
non-hospitalised group. About one third of case patients (31%) reported treatment of their Campylobacter infec-
tion with antibiotics. �e most frequently named antibiotics were cipro�oxacin (45%) and erythromycin (21%). 
In total, 79% of patients at working age (15–64 years) or working parents of children reported absence from work 
due to the illness or the illness of their child, respectively, for a median of 6 days (IQR 4–9 days).

Risk factor analyses. Exposures related to consumption of poultry, in particular consumption of chicken 
meat, and to preparation of poultry in the household were positively associated with Campylobacter infection in 
univariable analyses. Other variables that were positively associated included, e.g., contact with chickens or ducks 
and geese; eating out; contact with sand in a sandbox; and use of gastric acid inhibitors. An exposure implying 
inadequate kitchen hygiene (simultaneous preparation of raw meat and food items eaten uncooked, e.g., raw 
vegetables, fruit, lettuce), but also exposures implying good kitchen hygiene (frequently or always using separate 
utensils for raw meat and other food items; frequently or always using a dishwasher for utensils that came in 
contact with raw meat) were positively associated with disease. A variety of variables were negatively associated 
with Campylobacter infection in univariable analyses, e.g., mostly vegetarian lifestyle; consumption of fresh fruit 
or herbs, raw milk, or food items purchased directly at a farm; mostly or always cleaning kitchen utensils with hot 
water a�er preparing raw meat; swimming in a pool; attending day care; medium or high professional education.

In the multivariable logistic regression model, consumption of chicken meat (aOR 1.6; population attributable 
fraction (PAF) 31%) and eating out (aOR 1.6; PAF 30%) were the most important risk factors for Campylobacter 
infections according to PAF, which corresponds to the proportion of cases that could be avoided in the population 
if this risk factor was eliminated (Table 3). Preparation of packaged poultry meat in the household (PAF 14%), 
simultaneous preparation of raw meat and food items consumed uncooked (PAF 12%), and contact with poultry 
animals (PAF 3%) were risk factors as well (Table 3). �e use of gastric acid inhibitors in the past 4 weeks was also 

Characteristics Case patients n (%) Control persons n (%)

Total 1,812 (100) 3,983 (100)

Age group

 0–4 years 119 (7) 878 (22)

 5–14 years 161 (9) 1,010 (26)

 15 years and older 1,532 (84) 2,027 (52)

Sex

 Male 875 (48) 1,825 (47)

 Female 937 (52) 2,093 (53)

Federal state

 Berlin 1,030 (57) 2,021 (51)

 Brandenburg 669 (37) 1,234 (31)

 Saxony 87 (5) 495 (12)

 North Rhine-Westphalia 26 (1) 232 (6)

Table 2. Characteristics of the study population. Case-control study, Germany, 2011–2014.
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positively associated with Campylobacter infection (aOR 1.9; PAF 10%). We found a negative association with 
disease in the �nal model for a mostly vegetarian lifestyle (aOR 0.5); consumption of beef (aOR 0.7); consump-
tion of lamb/mutton (aOR 0.6); consumption of fruit (aOR 0.6); contact with a dog (aOR 0.8); and recreational 
swimming (aOR 0.7) (Table 3). Results of multivariable analysis were similar when the model was restricted to C. 
jejuni infections, except that the association of contact with poultry animals and disease was no longer statistically 
signi�cant (data not shown).

In an analysis restricted to children under 5 years of age, contact with sand in a sandbox (PAF 39%), prepara-
tion of poultry meat (fresh or packaged) in the household (PAF 38%), contact with poultry animals (PAF 22%), 
and a migrant background (PAF 10%) were positively associated with a Campylobacter infection. Consumption of 
chicken meat was not a statistically signi�cant risk factor for this age group. No exposure variables were negatively 
associated with disease in this analysis (Table 4).

In an analysis to identify risk factors for C. coli infections, consumption of pork (PAF 66%) and the use of gas-
tric acid inhibitors in the past 4 weeks (PAF 20%) were positively associated with disease, whereas consumption 
of beef and consumption of fruit were negatively associated (Table 5).

When we performed the same multivariable analysis including cases and controls that had travelled abroad 
and with an additional exposure variable “travelled abroad”, the results did not change substantially. Travelling 
abroad was positively associated with Campylobacter infection in the model for all age groups (P < 0.001; 
Supplementary Table S1), and in the models for C. jejuni (P < 0.001) and C. coli infections (P < 0.05). Travelling 
abroad was not statistically signi�cantly associated with Campylobacter infection in the model for children <5 
years of age (data not shown).

We also performed multivariable logistic regression analysis with cases whose Campylobacter isolate had been 
attributed to the source chicken with a probability of 50% or higher in the source attribution model (n = 486) 
and the controls (n = 3,983). Risk factors and strengths of associations were similar to the model with all 1,812 
cases: consumption of chicken meat (aOR 1.9); eating out (aOR 1.4); preparation of packaged poultry meat in the 
household (aOR 1.6); simultaneous preparation of raw meat and food items consumed uncooked (aOR 1.4); use 
of gastric acid inhibitors (aOR 1.8). In the �nal model, contact with poultry animals and having gone swimming 
were not statistically signi�cantly associated with Campylobacter infections attributed to chicken (Supplementary 
Table S2). Compared to the model with all cases (Table 3), population attributable fractions calculated for con-
sumption of chicken meat (41% vs. 30%), preparation of poultry meat in the household (21% vs. 14%) and simul-
taneously preparing uncooked food and raw meat in the household (17% vs. 12%) were higher, whereas the PAF 
for eating out was lower (25% vs. 30%), and the PAF for use of gastric acid inhibitors was about the same (11% vs. 
10%) (Supplementary Table S2).

Due to the small number of human isolates that were attributed to sources other than chicken considered in 
our source attribution model (pigs, pets, cattle, poultry other than chicken), multivariable analyses similar to the 
ones we performed for chicken could not be conducted. In univariable analyses (not adjusted for age group, sex, 
federal state) we found statistically signi�cant associations of Campylobacter infections attributed to pig (n = 24) 
and consumption of pork (100% of cases (with complete answers) had consumed pork (23/23; OR could not 
be calculated) vs. 85% of controls (3,220/3,787); P < 0.001), but not a statistically signi�cant association with 
consumption of chicken (OR 0.95; P = 1.0). �e majority of case patients with isolates assigned to the source pig 
reported both consumption of pork and chicken (77%; 17/22). None of the case patients with Campylobacter iso-
lates assigned to the source pet (dog or cat; n = 10) reported contact with a dog (versus 33% of controls) and 3/10 
reported contact with a cat (versus 33% of controls; OR 0.9; P = 1.0).

Exposure Cases Exposed % (n) Controls Exposed % (n) aORa (95% CIb)
Population Attributable 
Fraction % (95% CIb)

Consumed any chicken meat*** 87.0 (1,445/1,661) 79.1 (2,967/3,753) 1.6 (1.2–2.0) 31 (17–42)

Ate out (at food stand, restaurant, canteen, etc.)*** 81.9 (1,437/1,755) 78.6 (3,089/3,929) 1.6 (1.3–2.0) 30 (18–40)

Prepared poultry meat (packaged) in household*** 53.9 (860/1,597) 43.8 (1,617/3,692) 1.4 (1.1–1.6) 14 (8–20)

Prepared uncooked food and raw meat in household 
at the same time**

52.0 (856/1,646) 45.8 (1,684/3,677) 1.3 (1.1–1.5) 12 (4–18)

Used anti-acidic drug (PPI)*** 21.1 (371/1,755) 8.1 (315/3,869) 1.9 (1.5–2.3) 10 (7–12)

Had contact with poultry (animal)*** 5.3 (92/1,725) 4.4 (170/3,856) 2.1 (1.4–3.0) 3 (2–4)

Consumed mostly vegetarian food* 1.5 (25/1,646) 4.1 (151/3,669) 0.5 (0.3–1.0) —

Consumed (unpeeled) fruit*** 62.8 (1,055/1,679) 72.7 (2,757/3,794) 0.6 (0.5–0.7) —

Consumed lamb/mutton** 8.0 (129/1,615) 8.5 (321/3,767) 0.6 (0.5–0.9) —

Consumed beef*** 51.1 (793/1,551) 52.6 (1,923/3,654) 0.7 (0.6–0.8) —

Had contact with dog** 29.0 (498/1,716) 32.8 (1,256/3,828) 0.7 (0.6–0.9) —

Went swimming (in pool, lake, ocean, etc.)** 14.6 (257/1,755) 23.4 (913/3,910) 0.7 (0.6–0.9) —

Table 3. Factors positively associated (risk factors) and factors negatively associated with Campylobacter 
infections. Case-control study, Germany, 2011–2014. �e proportion of exposed cases and controls was based 
on the number of cases and controls with complete answers in univariable analysis (without adjustment for 
age group, sex, federal state). Adjusted odds ratios (aOR) were determined in multivariable logistic regression 
analysis (adjusted for age group, sex, federal state; 1,003 cases and 2,569 controls with complete answers for 
all variables in the �nal model). aAdjusted odds ratio. bCon�dence interval. *Indicates P < 0.05. **Indicates 
P < 0.01. ***Indicates P < 0.001.

http://S1),
http://S2
http://S2
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Multilocus Sequence Typing. In total, 613 human Campylobacter isolates that could be matched to a ques-
tionnaire completed by the respective case patient and an additional 203 isolates from animal and food samples 
were characterised by MLST. �e human isolates were assigned to 186 di�erent sequence types (STs); 28 of those 
STs were more prevalent (ranging from 4 to 91 isolates each), whereas 158 STs were detected only 1–3 times 
(34% of isolates). 550 of the 613 isolates could be assigned to 28 di�erent clonal complexes (CCs). Campylobacter 
sequence types (STs) that occurred most frequently among human isolates were ST-50 (15%), ST-572 (7%), ST-122 
(5%), ST-257 (5%), ST-354 (4%), and ST-464 (4%). �e most frequent clonal complexes were CC-21 (25%), 
CC-206 (13%), and CC-828 (10%). Notably, some STs occurred at high frequency in the dataset that had not been 
part of the 10 most common STs in the previous FBI-Zoo MLST study32. Examples were ST-122, which occurred in 
29 samples, ST-354 (27 samples) and ST-464 (23 samples). �e most prevalent STs of human isolates were detected 
in animal/food samples as well (Figs 1 and 2). �e number of isolates from patients with a history of travel outside 
of Germany within 7 days before disease onset was too low for detailed analysis, but it was apparent that all abun-
dant STs were detected both in patients with and without travel history (Supplementary Figs S3 and S4).

Molecular source attribution on the basis of MLST. �e MLST typing data of human isolates from the 
case patients of the case-control study and time-matched animal and food isolates was used to perform source 
attribution of each human isolate. �is analysis was based on an asymmetric island model for which Bayesian 
inference is implemented in the so�ware iSource7. �e output is a matrix of posterior probabilities of each human 
isolate originating from each of the putative sources (Fig. 3). We considered 5 putative sources: chicken, pig, pet 
dog or cat, cattle, other poultry (turkey, duck, goose, quail). To ensure that the population of each source was well 
characterised, we supplemented the German MLST data with publicly available MLST data obtained in neigh-
bouring European countries. When using a 50% cut-o� on the posterior probability of origin, 91% (555/613) of 
human isolates were attributed to chicken, 4% (27/613) to pig, 1% (6/613) to pet, and 0.8% (5/613) to other poul-
try. None of the isolates were attributed to cattle. �e proportion of isolates that could not be attributed to any of 
the 5 sources was 3% (20/613). �e mean probability of human isolates to originate from chicken was 71%, from 
pig 4%, from pet 14%, from cattle 1%, and from other poultry 9% (Table 6). �e probability to originate from 
chicken was high for the most frequent STs of human isolates: 74% for ST-50, 77% for ST-572, 74% for ST-122, 
85% for ST-257, 83% for ST-354, and 85% for ST-464. For C. coli isolates, the mean probability to originate from 
pig was higher, whereas the probability to originate from chicken was lower relative to C. jejuni isolates (Table 6). 
�e probability to originate from pigs was almost zero for C. jejuni isolates (Table 6). We strati�ed human isolates 
according to sex, age group, region of living (urban or rural) of case patients, and by season of disease onset in 
case patients but did not �nd substantial di�erences between the strata (Table 6). When we excluded the source 

Exposure Cases Exposed % (n) Controls Exposed % (n) aORa (95% CIb)
Population Attributable Fraction % 
(95% CIb)

Had contact with sand (in a 
sandbox or similar)c 85.5 (94/110) 76.5 (643/841) 1.9 (1.0–3.5) 39 (0–63)

Prepared poultry meat (fresh or 
packaged) in household*

78.0 (85/109) 61.8 (525/850) 2.0 (1.2–3.4) 38 (11–56)

Had contact with poultry 
(animal)***

24.1 (26/108) 6.2 (52/835) 5.2 (2.9–9.5) 22 (17–24)

Migrant background** 13.7 (16/117) 11.6 (100/862) 2.7 (1.4–5.5) 10 (4–13)

Table 4. Risk factors for Campylobacter infections in children <5 years of age. Case-control study, Germany, 
2011–2014. �e proportion of exposed cases and controls is based on the number of cases and controls with 
complete answers in univariable analysis (without adjustment for age group, sex, federal state). Adjusted odds 
ratios (aOR) were determined in multivariable logistic regression analysis (adjusted for age group (0–2 years, 
3–4 years), sex; federal state; 90 cases and 762 controls with complete answers for all variables in the �nal 
model). No factors were negatively associated with disease in the �nal model. aAdjusted odds ratio. bCon�dence 
interval. cP = 0.054. *Indicates P < 0.05. **Indicates P < 0.01. ***Indicates P < 0.001.

Exposure Cases Exposed % (n) Controls Exposed % (n) aORa (95% CIb)
Population Attributable 
Fraction % (95% CIb)

Consumed pork* 95.1 (58/61) 83.8 (1,690/2,016) 3.3 (1.0–11.0) 66 (18–94)

Used anti-acidic drug (PPI)** 31.8 (20/63) 15.1 (305/2,023) 3.1 (1.6–5.9) 20 (11–25)

Consumed (unpeeled) fruit** 54.2 (32/59) 71.7 (1,461/2,037) 0.4 (0.2–0.8) —

Consumed beef* 46.3 (25/54) 56.2 (1,106/1,967) 0.5 (0.3–0.9) —

Table 5. Factors positively associated (risk factors) and factors negatively associated with Campylobacter 
coli infections in age group ≥15 years. Case-control study, Germany, 2011–2014. �e proportion of exposed 
cases and controls is based on the number of cases and controls with complete answers in univariable analysis 
(without adjustment for age group, sex, federal state). Adjusted odds ratios (aOR) were determined in 
multivariable logistic regression analysis (adjusted for age group (15–29 years, 30–59 years, ≥60 years), federal 
state, sex; 50 cases and 1,786 controls with complete answers for all variables in the �nal model). aAdjusted odds 
ratio. bCon�dence interval. *Indicates P < 0.05. **Indicates P < 0.01.
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pet (dog or cat) from our analysis, the mean posterior probability of the human isolates to originate from the 
remaining 4 sources was as follows: chicken 0.82; pig 0.04; cattle 0.03; poultry other than chicken 0.11.

Discussion
We describe the first combined case-control and source attribution study for Campylobacter infections in 
Germany. We identi�ed consumption of chicken meat, eating out, preparation of packaged chicken meat in the 
household and contact with poultry animals, as signi�cant risk factors for Campylobacter infections. �e use of 
gastric acid inhibitors was also positively associated with Campylobacter infection. Consumption of chicken meat 
was the most important risk factor for Campylobacter infections with a population attributable fraction (PAF) of 
31%, con�rming results from studies conducted in other countries10, 14, 18–21, 23. Chicken meat is frequently contam-
inated with Campylobacter. 25% of caecum samples and 52% of neck skin samples taken from broilers at abattoirs 
tested positive for Campylobacter in a zoonosis monitoring by veterinary authorities in Germany34. �e higher 
prevalence on skin samples indicated that the carcasses were contaminated during slaughtering. A high proportion 
of samples (38–54%) taken from fresh broiler meat at retail also tested positive for Campylobacter2, 34, 35.

Eating out, especially eating chicken at a restaurant, has been described as a risk factor in other  
studies14, 21, 22, 36–38. Exposure to Campylobacter while eating out may have occurred through consumption of 
insu�ciently heated meat, e.g., from chicken, or through cross-contamination of food items in the restaurant 
kitchen. Cross-contamination due to inadequate kitchen hygiene in the private household may also underlie 
the positive association of Campylobacter infection and preparation of packaged chicken meat in this study. Use 
of gastric acid inhibitors, such as omeprazole and pantoprazole, for other therapeutically indicated reasons not 
related to Campylobacter infection was identi�ed as another risk factor for Campylobacter infections, which con-
�rms results from previous studies on Campylobacter and other bacterial gastrointestinal infections20, 21, 39–44. 
�e association appears plausible, because an increase in the stomach pH may result in the survival of higher 
bacterial loads of incoming intestinal pathogens, such as Campylobacter, in the stomach45. Patients using gastric 
acid inhibitors should be informed by their physicians or pharmacists about the association with Campylobacter 
or other bacterial gastrointestinal infections, so that the patients can make an informed choice to avoid eating risk 
food items while on this medication.

In our analysis of young children we found an association of contact with sand in a sandbox and Campylobacter 
infection, which has been demonstrated as a risk factor for infection with other gastrointestinal pathogens as 
well26, 42, 46. It remains to be elucidated whether sandboxes are the actual source of infection with these pathogens, 
e.g., because of contamination of the sand with animal faeces (e.g., dogs, wild birds47), or if infectious gastrointes-
tinal pathogens can survive well in sandboxes and can be readily transferred from child to child, or if playing in 
a sandbox is a proxy for a still unidenti�ed environmental exposure. Interestingly, consumption of chicken meat 

Figure 1. Minimal Spanning Tree generated from MLST comparisons of 816 C. jejuni and C. coli isolates from 
human study participants and from animals and food samples from the study region. Colouring according 
to isolate source: blue, isolates from patients; green, isolates from animals; red, isolates from food samples. 
Only abundant sequence types (STs) are labelled. A version of the �gure with full labelling is available as 
Supplementary Figure S1.
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was not a statistically signi�cant risk factor for Campylobacter infections in young children48, 49, but preparation 
of chicken meat (fresh or packaged) in the household was, again indicating that infections may have occurred via 
cross-contamination of other food items. A migrant background was associated with Campylobacter infections 
among young children. Cases and controls in this age group that reported a migrant background came from a 
wide variety of European and non-European countries and it is unclear why the odds of cases having a migrant 
background would be higher than for controls. One explanation may be that parents of healthy children with a 
migrant background more frequently decided against participating in our study, compared to parents of children 
with a migrant background that had been ill.

Figure 2. Minimal Spanning Tree generated from MLST comparisons of 816 C. jejuni and C. coli isolates from 
human study participants and from animals and food samples from the study region. Colouring according to 
host species as speci�ed in colour legend. Only abundant sequence types (STs) are labelled. A version of the 
�gure with full labelling is available as Supplementary Figure S2.

Figure 3. Source probabilities for human isolates (n = 613) to originate from each of the �ve sources (chicken, 
pet, pig, cattle, poultry other than chicken) as determined by source attribution analysis. MLST data from 
animal and food isolates obtained in Germany and in neighbouring European countries was used for source 
attribution analysis (Table 1).
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Besides the use of gastric acid inhibitors we identi�ed consumption of pork as a risk factor for C. coli infec-
tions in persons 15 years and older. In line with this result, the mean probability of human C. coli isolates to orig-
inate from pig in our source attribution model was relatively high (32%). Consumption or preparation of chicken 
was not a risk factor for C. coli infections, which was unexpected because 28% of chicken meat samples taken at 
retail as part of the zoonosis monitoring program in Germany tested positive for C. coli in 201450. One possible 
explanation is the small number of con�rmed C. coli cases in our dataset (age group >= 15 years: n = 65), which 
resulted in insu�cient analytical power for detection of a presumably weak association between consumption 
of chicken and C. coli infection. Interestingly, the mean probability of C. coli isolates to originate from chicken 
was higher than the mean probability to originate from pigs (56% vs. 32%). �e mean probability of the C. jejuni 
isolates in our study to originate from pigs was close to zero and consumption of pork was not identi�ed as a risk 
factor for C. jejuni infections. �is �nding is in accordance with results from the zoonosis monitoring program in 
Germany, where C. jejuni is rarely isolated from pig matrices51.

According to our source attribution model, about 90% of human isolates were attributable to chicken, albeit 
using a 50% cut-o�. �is is in line with other studies, where about 50–90% of human infections could be attrib-
uted to the chicken reservoir7, 8, 10, 11, 13, 14, 24, 52. Contrary to results from other studies7, 10–14, 24, 25, 53, none of the 
human isolates in our study was attributed to cattle. Campylobacteriosis outbreaks are frequently caused by con-
sumption of unpasteurised (“raw”) milk, especially among children, implying cattle as the source for human 
Campylobacter infections in these outbreaks54–56. However, consumption of raw milk and other raw milk products 
was not a risk factor in our study or other studies on sporadic Campylobacter infections22. In univariable analyses, 
consumption of raw milk or raw milk products was even negatively associated with disease.

It was puzzling that some variables indicating good kitchen hygiene at home were identi�ed as risk factors for 
disease in univariable analyses (frequently or always using separate utensils for raw meat and other food items; 
frequently or always using a dishwasher for utensils that came in contact with raw meat). Unexpected associations 
related to kitchen hygiene have been observed in a recent salmonellosis case-control study as well, and one inter-
pretation was that case patients may overemphasise their hygienic behaviour in hindsight or may give answers 
that they think are socially desirable39.

Like any case-control study, ours is not without limitations. �e proportion of female persons among case 
participants was slightly higher than among non-participants, therefore, participants may not be representative of 
all noti�ed campylobacteriosis cases. Eating habits of women likely di�er from those of men, which may bias the 
results of our study regarding the association with consumption of certain food items. However, the proportion 
of female persons was also higher in the control group, thus minimising this potential bias. In all case-control 
studies, including ours, recall bias may be an inherent problem. Cases may not have remembered consumption 
of particular food items as well as controls because the time period they were queried about was farther in the 
past than that of controls. �e median time period between disease onset and completing the questionnaire was 
16 days. Di�erential recall may result in an underestimation of the strength of the association. We supplemented 
our German MLST data with animal and food isolates from neighbouring countries to obtain a su�ciently large 

Human isolates

Mean posterior source probability

Chicken Pig Pet Cattle Other poultry

All human isolates (n = 613) 0.71 0.04 0.14 0.01 0.09

Campylobacter species

 C. jejuni (n = 537) 0.74 0.001 0.16 0.01 0.09

 C. coli (n = 76) 0.56 0.32 0.04 0.004 0.08

Sex of case patient

 Female (n = 334) 0.72 0.04 0.14 0.01 0.09

 Male (n = 279) 0.71 0.05 0.14 0.01 0.09

Age group of case patient

 0–4 years (n = 17) 0.70 <0.001 0.16 0.02 0.12

 5–14 years (n = 32) 0.71 0.02 0.15 0.01 0.09

 ≥15years (n = 564) 0.72 0.04 0.14 0.01 0.09

Region of living of case patient

 Urban (n = 445) 0.72 0.03 0.14 0.01 0.10

 Rural (n = 168) 0.69 0.08 0.14 0.01 0.08

Season of disease onset in case patient

 Spring (n = 123) 0.71 0.05 0.13 0.01 0.08

 Summer (n = 247) 0.73 0.03 0.14 0.01 0.09

 Autumn (n = 108) 0.70 0.06 0.13 0.01 0.09

 Winter (n = 135) 0.69 0.04 0.15 0.01 0.10

Table 6. Mean posterior probabilities of human isolates of originating from one of the putative sources 
(chickens, pigs, pet dogs or cats, cattle, poultry other than chicken (duck, goose, turkey, quail: “other poultry”)) 
as determined by asymmetric island source attribution modelling based on MLST data. Strati�cation according 
to Campylobacter species or characteristics of the case patients. Due to rounding of numbers the sum of 
probabilities may not add up to 1.00.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 7: 5139  | DOI:10.1038/s41598-017-05227-x

number of isolates for our source attribution model. �is may have introduced a bias, because animal and food 
isolates from other countries and from other years may di�er from those obtained in Germany in recent years57, 
especially if they are not a representative sample. We tried to minimise this bias by supplementing our MLST data 
with animal and food isolates only from neighbouring countries. Many of these isolates had been used in recent 
source attribution studies (Switzerland and Luxembourg). It is plausible to assume that consumption pattern and 
exposures pathways would be comparable between Germany and the directly neighbouring countries57.

Our source attribution analysis comes with certain limitations. We included pet animals (dogs and cats) as 
one of the possible sources of human isolates. However, since pets and their owners share the environment and 
possibly some of the food, it is possible that both human and pet Campylobacter isolates originate from another 
common reservoir, e.g., chicken, cattle, or pig. Pets could be viewed as a separate population in source attribu-
tion modelling because the asymmetric island model takes migration between source populations into account. 
�e mean posterior probability of human isolates to originate from pets was rather small in our study (0.14), 
and, therefore, pets appeared not to be a relevant source. Only 10 human isolates (of 533) could be attributed 
to pets (using a 50% cut-o�) and only 3 of the corresponding case-patients reported contact with a cat. When 
we excluded pets as a putative source from our attribution analysis, the mean posterior probability for human 
isolates to originate from chicken increased from 0.71 to 0.82, mean posterior probabilities to originate from 
other sources (cattle; poultry other than chicken) increased only slightly, or remained the same (pig). We did not 
consider sheep as a possible source of human isolates in our model because in Germany, in contrast to some other 
countries, e.g., New Zealand or Scotland, contact of people with sheep is limited and consumption of lamb/mut-
ton does not play a major role as was con�rmed by results from our case-control study (only about 9% of control 
persons had consumed lamb/mutton; about 2% of control persons had contact with sheep). Sheep were also a 
minor source of human infections in a study from the Netherlands10. Any source attribution modelling is limited 
by the putative animal or environmental sources that are included in the modelling, and, therefore, there is always 
the possibility to overlook sources of human infections.

�is study was the �rst to investigate risk factors for sporadic Campylobacter infections in Germany and 
combine the results with source attribution analysis. We con�rm that consumption and handling of chicken meat 
are important risk factors for campylobacteriosis. Tens of thousands of Campylobacter infections are noti�ed in 
Germany every year. �e true number of Campylobacter enteritis cases in the population is estimated to be about 
�ve to ten times higher58–60, and the burden of disease is considered as substantial61, 62. �erefore, e�orts should 
be strengthened to minimise contamination of chicken meat with Campylobacter and to educate consumers about 
health risks associated with preparation and consumption of chicken meat. Examples from other countries have 
shown that improvements are possible if multidisciplinary approaches are undertaken63, 64.

Conclusions
To reduce the risk of Campylobacter infections among consumers, control measures and intervention strategies 
should be adopted to reduce prevalence of Campylobacter in poultry and poultry meat along the food chain65. 
Until such measures are initiated and e�ective, consumers and food handlers should be better educated about 
risks associated with consumption and preparation of poultry and personal protection measures, such as su�-
cient heating of poultry meat before consumption and kitchen hygiene when handling raw poultry or other types 
of raw meat to avoid cross-contamination.
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