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A COMBINED COLLOCATION AND MONTE CARLO METHOD FOR

ADVECTION-DIFFUSION EQUATION OF A SOLUTE IN RANDOM POROUS

MEDIA
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Abstract. In this work, we present a numerical analysis of a method which combines a deterministic

and a probabilistic approaches to quantify the migration of a contaminant, under the presence of

uncertainty on the permeability of the porous medium. More precisely, we consider the flow equation in

a random porous medium coupled with the advection-diffusion equation. Quantities of interest are the

mean spread and the mean dispersion of the solute. The means are approximated by a quadrature rule,

based on a sparse grid defined by a truncated Karhunen-Loève expansion and a stochastic collocation

method. For each grid point, the flow model is solved with a mixed finite element method in the

physical space and the advection-diffusion equation is solved with a probabilistic Lagrangian method.

The spread and the dispersion are expressed as functions of a stochastic process. A priori error estimates

are established on the mean of the spread and the dispersion.

Keywords: Uncertainty quantification, elliptic PDE with random coefficients, advection-diffusion

equation, collocation techniques, anisotropic sparse grids, Monte Carlo method, Euler scheme for SDE.

Introduction

Mathematical modeling and numerical simulation are important tools in the prediction of pollutant transport
in groundwater and in the evaluation of potential risks of contaminants. The main constraint to the development
of these models is the limited knowledge of the geological characteristics and the natural heterogeneity which
implies uncertainty in the parameters and data. Stochastic approaches have been developed to deal with this
uncertainty, where the permeability field is modeled as a random field a = eG, where G is a correlated Gaussian
field [2, 13]. Our objective is to quantify the migration of a contaminant by computing statistics of interest
defined by the mean of the spread and of the dispersion of the solute. The permeability a is discretized using a
Karhunen-Loève (K-L) truncation up to a suitable and moderately large order.

The Monte Carlo method is the most widely used approach to deal with uncertainty. This method is used
in [2, 4, 7, 12,13] to approximate the mean spread and dispersion.

Recently, stochastic collocation (see [1,9,18,19]), based on sparse tensor product approximation, has gained
much attention since it is very effective and accurate for computing statistics from solutions of PDEs with
random input data. In this paper, we use a truncated Karhunen-Loève expansion of the random data and an
anisotropic sparse grid with Gaussian knots. Then we propose to approximate the mean values by a quadrature
rule using this sparse grid.
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The cost is proportional to the number of samples in the Monte Carlo method and to the sparse grid size
in the collocation method. Each sample or grid point requires solving a flow PDE and a transport PDE; this
can be done in a non intrusive and parallel way. In this paper, we approximate the steady-state flow problem
by a mixed finite element method in the physical space to get the velocity field. The transport equation, which
describes the concentration of the solute, is seen as a Fokker-Planck equation. A random walker method defines
a stochastic process, such that the concentration is its density function. Using Itô’s formula, the dispersion is
expressed as a function of this stochastic process [6, 19]. We provide new a priori error estimates on the mean
spread and dispersion, taking into account all the numerical parameters.

1. Problem setting

1.1. Steady-state flow equation and transport equation

The porous medium is assumed isotropic and the porosity is assumed equal to 1. The Domain D is a bounded
box in R

d, (d = 1, 2, 3). The permeability field a is modeled as a stochastic function to take into account the
heterogeneity of the medium and the lack of data. Let (Ω,F , dP ) be a complete probability space. We consider
the steady flow in a porous medium without a source data:

{

v = −a∇u, div(v) = 0 in Ω×D,
u = γ on Ω× ∂D,

(1)

where v is the velocity and u is the hydraulic head. To simplify the presentation, Dirichlet boundary conditions
are prescribed, with γ sufficiently smooth. The permeability a = eG is log-normal, where G is a Gaussian field

defined by its covariance function cov[G](x, z) = σ2 exp

{

−|x− z|δ
lδc

}

, where δ > 0, σ2 is the variance and lc

is the correlation length. For p > 1, a ∈ Lp(Ω;L∞(D)), 1
amin

∈ Lp(Ω) and the problem (1) admits a unique

solution u ∈ Lp(Ω;H1(D)) and v ∈ Lp(Ω;L2(D)) (see [6], for more regularity on u and v when δ = 1).
An inert solute is injected into the porous medium, where the kinematic dispersion is neglected and the

molecular diffusion is assumed homogeneous and isotropic. Therefore, the migration of the solute is described
by the advection-diffusion equation:

{

∂c

∂t
+ v∇c−Dm△c = 0 in Ω× [0, T ]×D,

c(·, 0, x) = c0(x), x ∈ D,
(2)

where c is the concentration of the solute, Dm is the diffusion coefficient and c0 is the initial value of c at t = 0.
For an injection of the solute, c0 = 1B

|B| where B is a box with volume |B| included in D. Equation (2) can be

completed with Dirichlet or periodic boundary conditions on ∂D.

1.2. Quantities of interest

The main objective of our study is to compute the mean of the spread S(t) and the mean of the dispersion

coefficient Dt (cf. [13]). First, let I(ω, t) =

∫

D

c(ω, t, x)xdx be the center of mass of the solute distribution.

Then we define S(ω, t) the spread of the solute around I and D(ω, t) the dispersion coefficient as:

S(ω, t) =

∫

D

c(ω, t, x)|x− I(ω, t)|2dx and D(ω, t) =
1

2

d

dt
S(ω, t). (3)

Then we are interested in the mean of S and D:

S(t) = Eω[S(·, t)] and D(t) = Eω[D(·, t)]. (4)
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In the next section, we describe the numerical methods used to approximate the mean of the spread and
dispersion.

2. Numerical approach

2.1. Approximation of the permeability

We choose the Karhunen-Loève (K-L) expansion [1, 8, 19] to approximate the field G and then a:

a ≈ aN = eGN , where GN = E[G] +
∑N

m=1

√
λmbm(x)Ym. The set {Ym}Nm=1 are independent Gaussian

random variables with zero mean and unit variance. The sequence of eigenpairs (λm, bm)m≥1 are associated to
the compact self-adjoint operator T on L2(D) which is defined by:

T : ϕ 7−→
∫

D

cov[G](x, ·)ϕ(x)dx.

We assume that these eigenpairs satisfy the following assumptions:

Assumptions 2.1.

• The eigenfunctions (bm)m≥1 are twice continuously differentiable.
• The series

∑

m≥1 λm‖bm‖2∞ is convergent.

Note that this assumption is satisfied in the case δ = 1( exponential covariance) or δ = 2 (Gaussian covari-
ance). The field GN converges to G in Lp(Ω;L2(D)) yielding the convergence of aN to a [7]. More precisely:

‖a− aN‖Lp(Ω;L2(D)) ≤ K

(

∑

m>N

λm

)
1
2

. (5)

The truncation error (5) can be bounded in terms of N using the decay rate of λm to zero. It is an algebraic
or an exponential decay according to the regularity of the covariance function of G (see [9] for more details).

In what follows we denote by Y = (Y1, . . . , YN ) the random vector in GN , Γ = Y(Ω) =
∏N

m=1 Γm, where

Γm = Ym(Ω). Let ̺(y) =
∏N

m=1 ρm(y) the density function of the vector Y, where ρm is the density of Ym.

2.2. Approximation of the flow problem

We consider the parametric problem which is equivalent to the stochastic one:

{

vN = −aN∇uN , div(vN ) = 0, in Γ×D,
uN = γ on Γ× ∂D.

(6)

The problem (6) admits a unique solution uN (Y, ·) ∈ Lp(Ω; C3(D)) and vN (Y, ·) ∈ Lp(Ω; C2(D)) [5]. Let
{Th}h>0 be a regular triangulation of D, Mh the subspace of piecewise constants and RT0(Th) the 0-order
Raviart-Thomas subspace. Then, for each y ∈ Γ, we search (uN,h, vN,h) in Mh × RT0(Th) solution of the
problem:











∫

D

a−1
N vN,hwhdx−

∫

D

uN,hdiv(wh) = −
∫

∂D

γwh · −→n dl ∀wh ∈ RT0(Th),
∫

D

div(vN,h)µh = 0, ∀µh ∈ Mh.
(7)

Problem (7) is well-posed [3] for each (a.e) y ∈ Γ, Moreover the velocity vN,h ∈ Lp(Ω;L∞(D)). The solution
(uN , vN ) is smooth with respect to x, then by the deterministic error estimate [3], there exists a constant C
independent of h, vN and uN , such that

‖uN − uN,h‖Lp(Ω;L2(D)) + ‖vN − vN,h‖Lp(Ω;H(div,D))
≤ Ch

(

‖vN‖Lp(Ω;H1(D)) + ‖uN‖Lp(Ω;H1(D))

)

. (8)
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2.3. Approximation of the transport problem

The quantities of interest are given by an integral of c as in (3). Then, in order to avoid to approximate c at
each point in D and to avoid numerical diffusion, a Lagrangian method is preferred to an Eulerian method [12].
This method consists in simulating a cloud of particles in the physical domain: when (2) is considered on R

d, c
is a law of the process describing the position of the particles. In practice, D is chosen very big versus B and a
very small amount of the solute gets at ∂D (c∂D ≈ 0). It is safe to replace (2) by:

{

∂c

∂t
(ω, t, x) + v(ω, x)∇c(ω, t, x)−Dm△c(ω, t, x) = 0 in Ω× [0, T ]× R

d,

c(ω, 0, x) = c0(x) x ∈ R
d,

(9)

where v is extended continuously by zero outside a neighborhood of D. The unique solution of (9) belongs to
Lp(Ω;L∞([0, T ] × R

d)) [7]. For each ω ∈ Ω, c(ω, ·) is the density function of Yt(ω, ·), solution of the following
SDE (cf [10]): {

dYt(ω, θ) = v(ω, Yt(ω, θ))dt+
√
2DmdWt(θ),

Y0(ω, θ) = ζ(θ),
(10)

where (Wt) is a d-dimensional Brownian motion on another probability space (Θ,A,P) and ζ is a random
variable Wt-independent, which admits c0 as a density. We assume that it satisfies E[|ζ|q] <∞ for q ≥ 1. Thus,
the spread is given by the variance of Yt:

S(ω, t) = Eθ[|Yt − Eθ[Yt]|2] = Eθ[|Yt|2]− |Eθ[Yt]|2. (11)

The dispersion D(ω, t) was estimated by a Finite Difference approximation in [4, 11, 12, 16], but the result is
very sensitive to the step taken. Here we use an explicit formula to compute D(ω, t) (see [6,19]). First, we have
d
dt
|Eθ[Yt]|2 = 2 < Eθ[Yt],Eθ[v(Yt)] >; by Itô’s formula d|Yt|2 = 2(< Yt, v(Yt) > +trace(Dm))dt+2Yt

√
2DmdWt;

so d
dt
E[|Yt|2] = 2(Eθ[< Yt, v(Yt) >] + trace(Dm)). Hence we obtain:

D(ω, t) = Eθ[< Yt, v(Yt) >]− < Eθ[Yt],Eθ[v(Yt)] > +trace(Dm). (12)

Here, a is approximated by aN (Y, .) and v by vN (Y, .). Then, c is approximated by cN (Y, .) which is a density
function of a process Xt. Moreover, since the differential operator is continuous, then by Doob Dynkin’s lemma,
Xt is parameterized by Y as Xt(ω, ·) = Xt(Y(ω), ·). For y ∈ Γ, Xt(y) is solution of the following SDE:

{

dXt(y, θ) = vN (y,Xt(y, θ))dt+
√
2DmdWt(θ)

X0(y, θ) = ζ(θ).
(13)

The spread (11) and the dispersion term D(ω, t)− trace(Dm) in (12) are approximated by

SN (y, t) = Eθ[|Xt(y, ·)|2]− |Eθ[Xt(y, ·)]|2, (14)

DN (y, t) = Eθ[< Xt(y, ·), vN (y,Xt(y, ·)) >]− < Eθ[Xt(y, ·)],Eθ[vN (y,Xt(y, ·))] > . (15)

For a given y ∈ Γ, we solve (7) to compute vN,h(y, ·) and we use the Euler scheme to discretize (13):
{

Xn,h(y, θ, tl+1) = Xn,h(y, θ, tl) + vN,h(y,Xn,h(y, θ, tl))dt+
√
2Dmdtξl+1(θ)

Xn,h(y, θ, 0) = ζ(θ),
(16)

where {ξl+1}nl=0 are independent gaussian variables with zero mean and unit variance and dt = T
n
. We choose

M realizations {Xk
n,h(y, t)}Mk=1 for Xn,h(y, t), then we approximate SN (y, t) (14) by MC sampling:

SN,M (y, t) =
1

M

M
∑

k=1

|Xk
n,h(y, t)|2 −

∣

∣

∣

∣

1

M

M
∑

k=1

Xk
n,h(y, t)

∣

∣

∣

∣

2

, (17)
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and the dispersion term DN (y, t) defined in (15) by:

DN,M (y, t) =
1

M

M
∑

k=1

< Xk
n,h(y, t), vN,h(y,X

k
n,h(y, t)) > − 1

M2

M
∑

k,l=1

< Xk
n,h(y, t), vN,h(y,X

l
n,h(y, t)) > . (18)

2.4. Approximation of the mean spread and mean dispersion

The standard sparse grid quadrature is based on the Smolyak algorithm [20]. The anisotropic sparse grid
quadrature is a generalization, with weights in each direction [18, 19]. These methods provide an effective way
to approach the integral of a multivariate function ψ defined by

I(ψ) =

∫

Γ

ψ(y)̺(y)dy.

We follow closely [18,19] to define this technique. Let i a multi-index of NN
+ and X i =

∏N
m=1X

im ⊂ Γ a tensor

grid, where each Xim is the set of Gauss quadrature knots. Let α1, . . . , αN ∈ R
+, N weights for the different

stochastic dimensions and α = minm αm. We consider a level w ≥ 0 and we define the multi-index set:

Zα(w,N) =

{

i ∈ N
N , wα <

N
∑

m=1

αmim ≤ wα+

N
∑

m=1

αm

}

.

Then, we define an anisotropic sparse grid as a subset of Γ by

Hα(w,N) =
⋃

i∈Zα(w,N)

X i =

{

yj , j = 1 . . . , η

}

,

where η is the cardinal of Hα(w,N). The quadrature rule Qα(w,N) with level w is defined by:

I(ψ) ≈ Qα(w,N)ψ =

η
∑

j=0

ψ(yj)µj , (19)

where µj are the quadrature weights associated to each point yj of the method and defined by Gauss quadrature
rules [18, 19] in each direction. When the integrand ψ is analytic on a bounded set Γ or an entire function on
an unbounded set, the anisotropic sparse grid method converges at least with an algebraic convergence if each
αm is the exponential rate of the Lagrange polynomial approximation of ψ with respect to direction m [18,19]:

|I(ψ)−Qα(w,N)ψ| ≤ C(N,α)η−τ , (20)

where τ =
α

log(1 +
∑N

m=1
α

αm
)
is the convergence rate.

The mean spread and the mean dispersion can be computed using (17) and (18) by the following integrals:

S(t) ≈
∫

Γ

SN,M (y, t)̺(y)dy and D(t) ≈
∫

Γ

DN,M (y, t)̺(y)dy + trace(Dm). (21)

We simply apply the quadrature rule (19) to approximate the integrals (21) and get:

SN,M,η(t) =

η
∑

j=1

SN,M (yj , t)µj , (22)

DN,M,η(t) =

η
∑

j=1

DN,M (yj , t)µj + trace(Dm). (23)

The cost of the method is thus proportional to the size of the sparse grid. This size is related to the dimension
N , which in turn depends on the correlation length lc (see, [18, 19]).

In the next section, we give an error analysis of the approach, especially, the errors on S(T ) and D(T ) when
we approximate them respectively by (22) and (23).
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3. Error analysis of the approach

We consider Cl
pol(R

d), the space of functions which have a polynomial growth with their derivatives up to l.

Let p > 1, q ≥ 1 and l ≥ 0. Let φ in C∞
pol(R

d) and g in Lp(Ω; Cl
pol(R

d)). We assume that g = g1(x)g2(ω, x)

where g1 ∈ Cl
pol(R

d), g2 ∈ Lp(Ω; Cl
b(R

d)) and g2 can be approximated by an analytic function g2N on Γ × R
d

such that g2N (Y, .) converges to g2(Y, .) in L
p(Ω; Cl

b(R
d)) as follow:

‖g2 − g2N‖Lp(Ω;Cl
b
(Rd)) ≤ K2

(

∑

m>N

λm

)
1
2

. (24)

The objective is to establish total weak errors in Ω × Θ, when the mean on Ω is computed by the quadrature
formula Qα(w,N) defined in (19) and the mean on Θ by Monte Carlo sampling defined in (17,18).

Definition 3.1. We define the total weak error in Ω×Θ by:

Er(T ) := Eω

[

φ

(

Eθ[g(YT )]

)]

−Qα(w,N)φ

(

1

M

M
∑

k=1

gN (Xk
n,h(T ))

)

, (25)

where Qα(w,N) is the quadrature formula (19) and gN = g1g2N , with g1 and g2N as defined above.

An error estimate on S(T ) follows with g(ω, x) = |x|2 and φ(x) = x and g(ω, x) = x, φ(x) = |x|2. The error
estimate on D(T ) follows after dividing the error in two parts with the choice g(ω, x) =< x, v(ω, x) >, φ(x) = x,
g2N (y, x) = vN (y, x) and φ(x) = x side by side. We note that the assumption on g is fulfilled with this latter
choice, when the covariance function of G is regular, for example an exponential or Gaussian covariance.

3.1. Truncation error

In this section, we give a bound of the truncation error resulting from the truncation of the parameter a ≈ aN .

Proposition 3.1. There exists K1 a positive constant such that:

‖v − vN‖Lp(Ω,L2(D)) ≤ K1‖a− aN‖L2p(Ω;L2(D)). (26)

Proof: For each ω ∈ Ω and µ ∈ H1
0 (D), we have:

∫

D

a∇u∇µdx =

∫

D

aN∇uN∇µdx = 0, then

∫

D

a∇(u− uN )∇µdx =

∫

D

a∇u∇µdx+

∫

D

(aN − a)∇uN∇µdx−
∫

D

aN∇uN∇µdx

=

∫

D

(aN − a)∇uN∇µdx ≤ ‖uN‖C1(D̄)‖a− aN‖L2(D)‖∇µ‖L2(D),

taking µ = u− uN , we get

‖u− uN‖H1
0 (D) ≤

‖uN‖C1(D̄)

amin(ω)
‖a− aN‖L2(D) ≤

P (‖a‖∞, ‖γ‖C0(D̄))

amin(ω)
‖a− aN‖L2(D) (27)

since ‖uN‖C1(D̄) ≤ P (‖aN‖∞, ‖γ‖C0(D̄)) where P is a polynomial (see, [5]) and ‖aN‖∞ ≤ ‖a‖∞.
On the other hand, we have for each ω ∈ Ω,

‖v − vN‖L2(D) = ‖(a− aN )∇u+ aN∇(u− uN )‖L2(D)

≤ ‖a− aN‖L2(D)‖u‖C1(D̄) + ‖u− uN‖H1
0 (D)‖aN‖∞ ≤ C̃(ω)‖a− aN‖L2(D)

where C̃(ω) = ‖u‖C1(D̄) +
P (‖a‖∞,‖γ‖

C0(D̄))

amin
‖a‖∞. The estimate is concluded by taking the norm in Lp(Ω) and

Hölder inequality, with K1 = ‖C̃(.)‖L2p(Ω) which is finite since ‖a‖∞ and 1
amin

belong to Lp(Ω) (see, [5]).
The following bound is useful: it shows that the mean of any function of Yt with polynomial growth is finite.
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Lemma 3.1. There exists Cp,q,T > 0 such that:

Eω[|Eθ[|Yt|p]|q] ≤ Cp,q,TEθ[|Y0|p]. (28)

Proof: it is straightforward, since Yt = Y0 +

∫ t

0

v(., Ys)ds +
√

2DmWt, and v ∈ Lp(Ω;L∞(Rd)). A similar

bound holds for the process Xt and its approximation Xn,h given in (16) regardless of N , h and n.
The following result provides an estimate of the truncation error on the quantities of interest.

Proposition 3.2. For any g in Lp(Ω; Cl
pol(R

d)), there exists C > 0, independent of N such that:

Eω [Eθ[g(·, YT )− g(·, XT ))]] ≤ C

(

∑

m>N

λm

)
1
2

. (29)

Proof: Let u be a solution of the Kolmogorov backward equation associated to (13):

{

∂tu(ω, t, x) + vN (ω, x).∇u(ω, t, x) +Dm△u(ω, t, x) = 0 0 ≤ t < T,
u(ω, T, x) = g(ω, x).

(30)

Since the trajectories of vN and g are C2
pol(R

d), the trajectories of u belong to C1([0, T [, C4
pol(R

d))∩C1([0, T ], C2
pol(R

d))

(see [15]) and are given by u(t, x) = Eθ[g(XT )|Xt = x] (Feynman-Kac formula, see [14]). In particular
u(0, Y0) = u(0, X0) = Eθ[g(XT )]. We define the following weak error:

eT = Eθ[g(YT )]− Eθ[g(XT )] = Eθ[u(T, YT )]− Eθ[u(0, Y0)].

Using Itô’s formula, we have:

u(T, YT )− u(0, Y0) =

∫ T

0

(

∂u

∂t
+ v(Ys).∇u+Dm△u

)

(s, Ys)ds+

∫ T

0

√

2Dm∇u(s, Ys)dWs,

Therefore, eT =

∫ T

0

Eθ

[(

∂u

∂t
+ v(Ys).∇u+Dm△u

)

(s, Ys)

]

ds. Using (30) at (s, Ys), we obtain:

eT =

∫ T

0

Eθ

[(

v(Ys)− vN (Ys))

)

∇u(s, Ys)
]

ds ≤ sup
0≤t≤T

‖∇u(t, Yt)‖L2(θ)

∫ T

0

‖v(Ys)− vN (Ys)‖L2(θ)ds. (31)

The solution c of (9) is the density function of Yt on Θ a.e in Ω, then,

‖vN (Yt)− v(Yt)‖2L2(Θ) =

∫

Rd

|v(x)− vN (x)|2c(·, t, x)dx ≤ sup
0≤t≤T

sup
x∈Rd

c(·, t, x)‖v − vN‖2L2(Rd).

Combining this with (31), we obtain:

eT ≤ T sup
0≤t≤T

‖∇u(t, Yt)‖L2(Θ) sup
0≤t≤T

sup
x∈Rd

√

c(·, t, x)‖v − vN‖L2(Rd). (32)

Taking the expectation on Ω and using the Hölder inequality, we get:

Eω[eT ] ≤ TC1‖v − vN‖L2(Ω,L2(Rd)),

where C1 = ‖ supt≤T ∇u(t, Yt)‖L4(Ω;L2(Θ))‖ supt≤T,x∈Rd

√

c(·, t, x)‖L4(Ω). Using (28), ‖ supt≤T ‖∇u(t, Yt)‖L2(Θ)‖L4(Ω;L2(Θ))

is finite. Also c ∈ Lq(Ω;L∞([0, T ] × R
d)) [7], ‖ supt≤T,x∈Rd

√

c(·, t, x)‖L4(Ω) is finite. Thus C1 is finite. We
conclude the proof with the bounds (26) and (5), and get C = KK1TC1.
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3.2. Temporal and spatial discretization error

Here, we give a bound of the weak error Eω[Eθ[g(XT )]−Eθ[g(Xn,h)]]. It can be divided into tow terms. The
first one related to time discretization is classical when the drift is C2 [17]. The second term concerns the space
error and we show that it has the order h. Let Xn(t) be an approximation by Euler scheme of the process Xt

and Xn,h(t) its perturbation as given in (16).

Proposition 3.3. There exists a constant C(T, g) > 0 independent of dt and h such that:

Eω[Eθ[g(·, XT )]− Eθ[g(·, Xn,h(T ))]] ≤ C(T, g) (dt+ h) .

Proof: Let u solution of (30), then:

Eω[Eθ[g(·, Xn,h(T ))]− Eθ[g(·, XT )]] = Eω[Eθ[u(T,Xn,h(T ))]− Eθ[u(0, X0)]] =

n
∑

l=1

Eω[Eθ[el]],

where we set el = u(tl+1, Xn,h(tl+1))− u(tl, Xn,h(tl)). Using Itô’s formula, we have:

el=

∫ tl+1

tl

(

∂u

∂t
+ vN,h(Xn,h(tl))∇u+Dm△u

)

(s,Xn,h(s))ds+

∫ tl+1

tl

√

2Dm∇u(s,Xn,h(s))dWs,

we conclude that, Eθ[el] =

∫ tl+1

tl

Eθ

[(

∂u

∂t
+ vN,h(Xn,h(tl))∇u+Dm△u

)

(s,Xn,h)

]

ds.

Using (30) at point (s,Xn,h(s)) and then taking the mean on Ω, we obtain:

Eω[Eθ[el]] =

∫ tl+1

tl

Eθ

[(

vN,h(Xn,h(tl))− vN (Xn,h(s))

)

∇u(s,Xn,h(s))

]

ds = Eω[J1] + Eω[J2],

where we define J1 :=

∫ tl+1

tl

Eθ

[(

vN,h(Xn,h(tl)) − vN (Xn,h(tl))

)

∇u(s,Xn,h(s))

]

ds and the second term by

J2 :=

∫ tl+1

tl

Eθ

[(

vN (Xn,h(tl))−vN (Xn,h(s))

)

∇u(s,Xn,h(s))

]

ds. For each l = 2, . . . , n+1, let cn,h(ω, tl, x) the

density of Xn,h(ω, tl, .). It belongs to C∞
0 (Rd), since it is given by the convolution of the density of the variable

Xn,h(ω, tl, .) + vh(Xn,h(ω, tl, .)dt with the density of
√
2Dmdtξl+1, and by induction we get:

cn,h(ω, tl, x) ≤ K̃‖c0‖∞(1 + ‖v‖∞ldt), where K̃ > 0 and independent of h and n. The term J1 satisfies:

J1 ≤
∫ tl+1

tl

‖vN,h(Xn,h(tl))− vN (Xn,h(tl))‖L2(Θ)‖∇u(s,Xn,h(s))‖L2(Θ)ds

≤
∫ tl+1

tl

‖∇u(s,Xn,h(s))‖L2(Θ)ds

(
∫

Rd

|vN,h(x)− vN (x)|2cn,h(tl, x)dx
)

1
2

≤ dt sup
x∈Rd

sup
l≤n+1

√

cn,h(tl, x) sup
t≤T

‖∇u(t,Xn(t))‖L2(Θ)‖vN − vN,h‖L2(Rd)

Taking the mean on Ω, we get:

Eω[J1] ≤ C1(dt)‖vN − vN,h‖L2(Ω;L2(Rd)), (33)

where C1 = K̃‖‖c0‖∞(1 + T‖v‖∞) sup
t≤T

‖∇u(t,Xn,h(t))‖L2(Θ)‖L2(Ω), which is finite thanks to Lemma 3.1. To

bound Eω[J2], let χ(s, x) := (vN (Xn,h(tl)) − vN (x))∇u(s, x). Since vN ∈ C2
b (R

d) and u ∈ C1,4
pol([0, T [×R

d),
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χ ∈ C1,2
pol([0, T [×R

d). By Itô’s formula, the derivative of ϕ(s) := Eθ[χ(s,Xn,h(s))] in (tl; tl+1[ is given by:

dϕ

ds
(s) = Eθ[∂sχ(s,Xn,h(s)) + vN (Xn,h(tl))∇χ(s,Xn,h(s)) +Dm△χ(s,Xn,h(s))].

Thanks to Lemma 3.1 the term Eω[
dϕ
ds
] is bounded in ]tl; tl+1[. Moreover, ϕ(tl) = 0, then, there exists C2 > 0

such that Eω[ϕ(s)] ≤ C2(s− tl), for tl < s < tl+1. Then, since Eω[J2] =

∫ tl+1

tl

Eω[ϕ(s)]ds, we get:

Eω[J2] ≤
C2

2
dt2. (34)

We obtain a bound of Eω[Eθ[el]] by combining (33) with (34), then the total error by taking the sum over l.

3.3. Global error on the mean spread and the mean dispersion

Now, we prove the final result.

Theorem 3.1. Suppose that the velocity vN,h has the same regularity as vN in Γ. Then, there exists a constant
C, independent of M , h and the time step dt such that the following estimation holds:

|Er(T )| ≤ C(g, φ)

(

√

√

√

√

∞
∑

m=N+1

λm + dt+ h+
1√
M

+ η−τ

)

. (35)

Proof: We split this error into five terms |Er(T )| ≤ |Er1| + |Er2| + |Er3| + |Er4| + |Er5|, where we define:

Er1 = Eω

[

φ

(

Eθ[g(YT )]

)

−φ
(

Eθ[gN (YT )]

)]

, Er2 = Eω

[

φ

(

Eθ[gN (YT )]

)

−φ
(

Eθ[gN (XT )]

)]

,

Er3 = Eω

[

φ

(

Eθ[gN (XT )]

)

−φ
(

Eθ[gN (Xn,h(T ))]

)]

, Er4 = Eω

[

φ

(

Eθ[gN (Xn,h(T )]

)

−φ
(

1
M

∑M
k=1 gN (Xk

n,h(T ))

)]

,

Er5 = Eω

[

φ

(

1
M

∑M
k=1 gN (Xk

n,h(T )

)]

−Qα(w,N)φ

(

1
M

∑M
k=1 gN (Xk

n,h(T ))

)

. By Taylor expansion:

|Er1| ≤ ‖dφ
dx

(ξ)‖L2(Ω)‖Eθ[g(YT ) − gN (YT )]‖L2(Ω), where ξ = Eθ[sg(YT ) + (1 − s)gN (YT )] and 0 < s < 1.

We have Eθ[g(YT ) − gN (YT )] = Eθ[g1(YT )(g2(YT ) − g2N (YT ))] ≤ ‖g1(YT )‖L1(Θ)‖g2 − g2N‖L∞(Rd). Then we

conclude, |Er1| ≤ ‖dφ
dx

(ξ)‖L2(Ω)‖g1(YT )‖L4(Ω;L1(Θ))‖g2−g2N‖L4(Ω;L∞(Rd)). Thanks to Lemma 3.1, ‖dφ
dx

(ξ)‖L2(Ω)

and ‖g1(YT )‖L4(Ω;L1(Θ)) are finite, so by (24), there is C1 which depends on g and T such that:

|Er1| ≤ C1

(

∑

m>N

λm

)
1
2

.

We have |Er2| ≤ ‖dφ
dx

(ξ̃)‖L2(Ω)‖Eθ[gN (YT )− gN (XT )]‖L2(Ω), where ξ̃ = Eθ[sgN (YT ) + (1− s)gN (XT )]. Thanks

to Lemma 3.1, ‖dφ
dx

(ξ̃)‖L2(Ω) is finite, then using Proposition 3.2, there is C2 > 0, independent of N such that:

|Er2| ≤ C2

(

∑

m>N

λm

)
1
2

.

Similarly, |Er3| ≤ ‖dφ
dx

(ξ̂)‖L2(Ω)‖Eθ[gN (XT )−gN (Xn,h(T ))]‖L2(Ω), where ξ̂ = Eθ[sgN (XT )+(1−s)gN (Xn,h(T ))].

Thanks to Lemma 3.1, ‖dφ
dx

(ξ̂)‖L2(Ω) is finite, then by Proposition 3.3 we get: |Er3| ≤ C3(dt+ h).

For each y ∈ Γ, the random variables {gN (Xk
n,h(y, T ))}Mk=1 are independent, identically distributed in Θ.

Then, using the law of large numbers and Taylor’s formula, the fourth term satisfies: |Er4| ≤ C4
1√
M
.
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Let ψ defined by ψ(y) = φ

(

1
M

∑M
k=1 gN (Xk

n,h(y, T ))

)

. It is easy to check that ψ is an analytic function on

Γ and has the same regularity as vN,h(y, .) on Γ. Therefore, by the bound (20) we get:

|Er5| =
∣

∣

∣

∣

∫

Γ

ψ(y)̺(y)dy −Qα(w,N)ψ

∣

∣

∣

∣

≤ C5(N,α)η
−τ .

4. Conclusion

This work proposed and analyzed an efficient approach to compute quantities of interest for solute transport in
random porous media. Our approach combines a stochastic collocation and a probabilistic Lagrangian method.
The random data is approximated by a truncated K-L expansion, so that the mean quantities of interest are
approximated by a quadrature rule based on an anisotropic sparse grid. For each point of this grid, the flow
model is solved using a mixed finite element method in the physical space and the advection-diffusion equation
is solved by a probabilistic particle method. The error estimates derived in this work predict the convergence
rate. In particular, if τ > 1/2 and η is not too large, then the method is more efficient than a classical Monte
Carlo sampling.
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