
Mathematical Programming 15 (1978) 200-210.
North-Holland Publishing Company

A COMBINED CONJUGATE-GRADIENT QUASI-NEWTON
MINIMIZATION ALGORITHM

A.G. B U C K L E Y *

Concordia University, Montreal, Quebec, Canada

Received 29 November 1976
Revised manuscript received 11 April 1978

Although quasi-Newton algorithms generally converge in fewer iterations than conjugate
gradient algorithms, they have the disadvantage of requiring substantially more storage. An
algorithm will be described which uses an intermediate (and variable) amount of storage and
which demonstrates convergence which is also intermediate, that is, generally better than that
observed for conjugate gradient algorithms but not so good as in a quasi-Newton approach.
The new algorithm uses a strategy of generating a form of conjugate gradient search direction
for most iterations, but it periodically uses a quasi-Newton step to improve the convergence.
Some theoretical background for a new algorithm has been presented in an earlier paper; here
we examine properties of the new algorithm and its implementation. We also present the
results of some computational experience.

Key words: Minimization, Optimization, Variable Metric, Conjugate-Gradient, Quasi-
Newton.

I. Introduction

W e will c o n s i d e r the p r o b l e m of c o m p u t i n g a po in t x = (x~ xn) T wh ich is a

good a p p r o x i m a t i o n to a loca l ~ninimum of a non l inea r func t ion f (x) . I t will be

a s s u m e d tha t a sub rou t ine is ava i l ab le for c o m p u t i n g bo th f (x) and the g rad i en t

v e c t o r g = g(x), given x. S e c o n d de r iva t i ve s will no t be used.

To so lve a pa r t i cu l a r p r o b l e m of this type , one c o m m o n l y uses e i the r a

c o n j u g a t e g r ad i en t (CG) a lgor i thm or a va r i ab le met r i c or q u a s i - N e w t o n (QN)

a lgor i thm. E a c h has its advan t ages . In gene ra l t e rms , a CG a lgor i thm requ i r e s

more i t e ra t ions than a Q N one to ob ta in an equa l ly good x, but on the o the r

hand a CG a lgor i thm requ i r e s l i t t le s to rage for i m p l e m e n t a t i o n . Spec i f ica l ly , it

does no t r equ i re s to rage of a ma t r ix as in a Q N a lgor i thm.

W e will p r e s e n t an a lgor i thm which c o m b i n e s the CG and Q N m e t h o d s in a

m a n n e r b a s e d on the t h e o r y p r e s e n t e d in B u c k l e y [3]. W e a t t e m p t to p r e s e r v e

the a d v a n t a g e s of bo th k inds of a lgor i thms . Thus , our a lgo r i thm will run wi thou t

s to rage of any ma t r i ce s bu t it will use more s to rage than the 3 or 4 v e c t o r s

r equ i r ed b y an o r d i n a r y CG a lgor i thm. I ts i n t ended a u d i e n c e is t h e r e f o r e those

peop l e w h o have more than 4n loca t ions ava i l ab le , bu t who still c a n n o t hand le

the O(n 2) l oca t i ons r e q u i r e d for Q N me thods . The ac tua l a m o u n t o f s to rage used

* This research was supported by the National Research Council of Canada grant number A-8962.

, '~ruct

A. Buckley [A conjugate-gradient quasi-Newton algorithm 201

is variable and is determined by the availability of space, but as few as 8 vectors
of length n will suffice.

In terms of the number of iterations required by the new algorithm, experience
indicates what one would perhaps expect. Because more storage is available to
hold information about the function, generally fewer iterations are used than in a
CG algorithm, but a few more are required than in a QN algorithm.

For purposes of our description, it will be assumed that all line searches are
exact. This point will be further elaborated upon in Section 5.

2. Background and motivation

The new algorithm, which we will dub 'CGQN', has been developed from four
main observations.

First, QN updates consist of a sequence of rank 1 or rank 2 corrections to a
matrix which normally begins as the identity. Therefore, if one limits the number
of updates allowed and stores the vectors defining the rank 1 corrections
explicitly, then far fewer than n: locations are needed to define and record the
updated QN matrix. This is an idea which has appeared in Allwright [1] although
he did not exploit it in the way which we are about to present. The QN updates
to be considered are those rank 2 corrections which are members of the Broyden
[4] class

where

H * = U(Xk, H , ak) (1)

r. ~y~] [i YsT] 68a" U xk, H, +

8 =- 6k = Xk -- Xk-t is the step taken,

y = Yk = gk -- gk-~ is the change in gradients,

Hy 8
W ~ W k -- ~ ' ~ yTHy

and where a is a scalar which determines the update formula.
Second, the conjugate gradient algorithm may be applied with an initial step

which is not along the usual (see Fletcher [7]) steepest descent direction. In
particular, let us follow the approach presented in several places (for example
AUwright [1], Hestenes and Stiefel [8], Nazareth [10] and Powell [12]) and define
a transformation of variables y = H-112x, where H is a positive definite sym-
metric matrix. We may then apply the CG algorithm in the transformed coor-
dinates, and we obtain a sequence of points and search directions satisfying the
standard properties of the CG algorithm in those coordinates. This sequence of
points and directions may be transformed back into the x coordinates, and what
is important is to realize that we may obtain these same x coordinate points and

202 A. Buckley/ A conjugate-gradient quasi-Newton algorithm

directions by applying a modification of the normal CG algorithm (call it TCG)
directly in the x coordinates as follows:

Given x0, define

d i = - H g o ;

then, for k = 1, 2 iterate:

(2)

Xk = Xk-~ + Akdk, (3a)

flk = g ~ n (g k -- gk- l)
g ~ - l H g k - 1 ' (3b)

dk+l = - - H g k + flkdk. (3C)

For the TCG algorithm, notice that the initial direction d~ is not in the steepest
descent direction. Naturally it reduces to the normal CG algorithm when H = L

And of course termination in at most n steps is still obtained for the TCG
algorithm because it is equivalent to the normal y coordinate CG algorithm.
Observe that we are following Powell [12] and choosing the Polak-Ribi~re form
of CG algorithm.

Third, restarting is an essential part of CG minimization algorithms. This is
discussed at some length in Powell [12 and 13]; however there are some
comments we would like to include here. In considering a general smooth
function f (x) , we know it is approximately quadratic near the minimum, so, in
order to get good ultimate convergence, we must be able to solve a quadratic
problem well. In particular, when f is quadratic, this normally means that we
must have a steepest descent starting step dx = - g o . However , in the general
case, quadratic behavior is only local, so this starting step must be near the
minimum. In other words, a restart strategy is demanded. Now a key point is
that the TCG algorithm (3) also gives finite termination for a quadratic, so a
restarting step of the form

ds+l = - H g , (4)

at the point xs is quite acceptable, provided we continue with the algorithm (3)
from that point on. Of course, if we restart with (4), we should certainly at tempt
to choose H meaningfully. If we have arrived at xs with some matrix H defined,
this suggests that we update H to H * using a QN formula as in (1) and replace H
by H * before computing (4). If nothing else, this ensures that the so called QN
formula

H~, = $

will hold at xs.

A. Buckley/ A conjugate-gradient quasi-Newton algorithm 203

Now, before we consider the fourth observat ion, we feel we should describe

the new algorithm. The added notation should clarify the discussion of point

four.

3. Description of the CGQN algorithm

The fundamental s trategy we wish to present is the following. It is based on
combining QN restarts of the form (4) with subsequent TCG steps.

From a given initial point x0, begin the normal CG algorithm described by

Polak [11]. As long as progress is sat isfactory, continue the CG algorithm; what
is " sa t i s fac to ry" progress will be discussed in Section 5. When this is no longer
the case, say at xe, construct a QN update based on function information at xE-1

and x~. This defines a matrix HI = U(xE, H0, 0) which is a rank 2 update of H0 = I

and which is stored by recording the values of the vectors 81 = x E - x E - 1 and

~h = H0yl = gE - gE-~ which define the update.
Now suppose we are at a point xe at which a posit ive definite matrix Hi has

just been computed. We now rename xE as x, and restar t the conjugate gradient
algorithm. (Note that initially x, = x0 and i = 0.) Specifically, we define a QN
search direction

d,+l = - H ~ g , (5)

and we do a line search along d,÷l to x,÷~. For further steps we generate TCG

steps as defined by (3) with H = Hi.
Excep t when x, = x0, we note that, provided the line search along d, is exact ,

eq. (3c) with k = s in fact reduces to (5), for in this case it follows f rom (1) that

H i (g , - g , - 1) = Hi'y = ~ and so /3, = 0. H o w e v e r we retain eq. (5) because in

pract ice line searches will not be exact and at a restar t we wish to be sure to
begin with the QN direction d,÷l defined by (5) so that the propert ies of the

subsequent TCG steps are not lost by a poor restarting step.
Using the directions (3c), these CG steps again continue until a point xE is

reached where it is decided that progress in reducing the function value is not
sat isfactory. Then a new matrix Hi÷~ is defined by storing a new update using

8i÷1 = xE - xE-i and ~ii+1 = Hiyi+~ = Hi(gE - g~-O. We then repeat f rom (5) with i
replaced by i + 1 and with xE again renamed x,.

Not ice that the QN updates are only done intermittently, so that the goal of
reducing the storage needed for storing the QN update matrix has been
achieved.

Before continuing, note the following regarding notation. The sequence of
points generated by the algorithm will be denoted by x0, x~ When a quasi-
Newton update is computed, a subscript Q will be added. Thus we will have

numbers 0 = Q0 < Q~ < Q2 < • • ", and the matrix Hi will be computed when the

204 A. Buckley/ A conjugate-gradient quasi-Newton algorithm

point xoj is reached. In the notation above, xs denotes a point xo, and x~ denotes

xo~+~. The numbers Q1, Q2 are not set in advance, but are determined
dynamically, as explained in Section 5.

4. The fourth observation

Let us now examine the concept of intermittent updates more closely. For this

discussion we will replace the local quadratic behavior of a general function f
with a hypothetical example in which the function f is precisely quadratic in

some neighborhood N of the minimum. Once a restart is done within N, at most

n steps of the TCG algorithm will give the exact minimum.

In order to obtain finite termination once we enter N, a restart is needed, and

preferably soon. Since we do not know when N is entered, f requent restarts are
desirable. On the other hand, if we have restar ted at xoi E N, and we restar t

frequently, there is a possibility that we will restart again at xoi+~, this being
before terminating. It is essential that we do not have to count n more steps
from xo~÷~ before achieving termination, for then the same difficulty could arise
again. In one case we know that a full n-count f rom xoi . is not needed. If the

algorithm of Section 3 is applied with a restart every step, we simply have a QN

algorithm and it is well known that in at most n steps after entering N, we will

terminate. Thus in at least one case, restarts of the form (5) with an updated H

are worthwhile.

Now, we have already indicated that we only wish to update intermittently, so

we must ask what effect this will have on termination. This is exact ly the
situation covered by the result in Buckley [3]. There it is shown that if we update

intermittently at x~, xo2 (without loss of generality, all in N) , and if we stick
to the idea of updating H at each restart as in Section 3 (using (1) with a = 0),
then we do not affect our finite termination propert ies by doing unneeded

restarts. That is, we terminate in at most n steps after the first restar t in N at xo,.
It is this result which makes the use of intermittent updates sensible. The result
in [3] also suggests only the use of the BFGS update, for otherwise, finite

termination is affected by later restarts.

5. Implementation of the algorithm

In order to implement the algorithm described in Section 3, there are a number
of important details which can not be overlooked. We will look at these now.

Positive definite Hi: It is clear f rom the derivation of the TCG algorithm that
we require the matrices H; to be positive definite. Now, it is well known that
many QN updates generate a sequence of posit ive definite matrices Hi. In the
present situation however , an update does not take place on every step and

A. Buckley/ A conjugate-gradient quasi-Newton algorithm 205

therefore it must be verified that positive definite matrices are still obtained.

But this is straightforward, for proofs of positive definiteness of H* in (1)
depend only on the fact that H is positive definite and that ~T 1, > O. In particular
then, providing that 8~1, > O, as it is for an exact line search, the proof that H* is
positive definite is the same as that in Fletcher and Powell [5] when a = y T H y
(the DFP formula) and is the same as that in Fletcher [6] for other a -> 0 (this
includes the BFGS formula). We will confirm shortly that in the practical case
where the line search is not exact, we may still ensure that the condition STy > 0
is obtained.

Downhill directions: Since Hi is positive definite, ds+l = -Higs in (5) is down-
hill. Consider k > s. If the line search from xk-1 to x~ along dk is exact, then from
(3c),

aTk+lgk = --gTHigk + flkd~gk =- --gTgHigk < 0 (6)

and dk+~ is downhill. And of course it is imperative that the case of an inexact
line search be considered, so let us do that now.

The line search: We require each line search to satisfy certain conditions of
exactness. We have noted in (6) that the CG direction dk+~ given by (3c) is
downhill provided that the line search leading to Xk is exact, but it is also clear
from (6) that we will obtain a downhill direction whenever

g~Hi(gk - g k - l)
(dT gk)flk = (d~gk) g~-lHigk-1 < g~Higk. (7)

In addition, when we do a QN update at Xk = Xoi, we insist that

~ T y = (X k __ X k _ l) T (g k - - gk-l) > 0

in order that Hi will be positive definite. This condition may clearly be replaced
by the requirement that

dTkgk-1 < dfgk. (8)

But we note that, although (8) is required only when an update takes place, we
will not actually know if a QN update is required at Xk until after the line search
is complete (as explained below). Thus we must insist that every line search
satisfies both the conditions (7) and (8). Since these conditions are satisfied for
an exact search, they may be attained in practice for any smooth function.

To conclude this section, we observe that we really require somewhat more,
for it is generally accepted that one must take steps to ensure that each line
search makes " reasonable" progress towards the one-dimensional minimum and
that dk÷~ is not nearly orthogonal to gk. One way of accomplishing this is to
replace (7) and (8) with the stronger conditions

[dTgk[< K,[dT gk-,I, (dT gk)flk < K2(g~H~k)

where K~ and K2 are some small positive constants, say 0.2. These new
conditions still hold for exact searches and hence are attainable.

206 A. Buckley / A conjugate-gradient quasi-Newton algorithm

The restart criterion: We now wish to ask: When should we update Hi? If the
CG algorithm is applied to a quadratic, it is well known that successive gradients
are orthogonal, i.e. g~gj = 0 for j ~ t. Using the algorithm given by (3) the

corresponding result is that

g~Hgj=O f o r i n t .

For a nonquadratic this relation certainly does not hold, but its deviation from 0
can be taken as an indication of how well the matrix H = Hi is simulating the
local quadratic behavior of f. This suggests comparing the value of g~Hgj to 0
for certain t and j and restarting if the difference is deemed substantial.

In the test results of Section 6 we have used the test

g [- , H i g k l _

to determine if a restart should be done at Xk. Here p is a predefined constant,
and the denominator is included to eliminate scaling effects. Tests indicate that
performance of the algorithm is not particularly sensitive to the choice of p and
any value such as 0.1 or 0.2 will do.

In a personal communication, Powell has suggested that in certain situations
the test (9) may not be satisfactory because g[-1Higk could be 0 even when a
restart is desirable. This has not occurred in tests done so far by the author, and
restarts are in fact done reasonably frequently. (We recall from Section 4 that
this is desirable and that there is no danger of restarting when we should not.)
But nonetheless, in certain situations it may be desirable to find an alternative
test for (9), and Powell suggests comparing the value

g TQ i Higk

to 0 for k > Qi, for in theory this is also 0 for a quadratic. We remark that this
can be done only at the price of some increase in the storage required for the
algorithm.

Storage of the updates: First observe that (1) can be written as

H . = H + ~ I [_ ~ , _ f l] t [b+(1-fl)a ~ jT
a ~ + 8 b~ 8 - ~ (10)

where
a = ' y T H ' y , b = 8T'~, It~ = H~,.

It is clear then that for each update we require 2n + 2 locations in order to keep
a, b, r / a n d 8. (This takes into account the fact that we do not wish to recompute
H y each time it is needed.) If the number of updates is small this represents a
substantial storage saving, as for example in the 5 th problem of Table 1, Section
6, where we have n = 60. Here storage of H in matrix form would require 1830
locations for the more difficult to manage symmetric half, or 3600 in full. Now
this example reached the minimum using only 14 updates, thus requiring a

A. Buckley/ A conjugate-gradient quasi-Newton algorithm 207

comparable 1708 locations to store all of the updates. But what is important is
that the new algorithm will still operate when this amount of storage is not
available, and that it will not require a significant increase in the number of
iterations needed for convergence. In the corresponding example of Table 2, we
see that this is indeed the case. Here only 1 update is ever stored so only 122
locations are required, and a substantial improvement is still noted over the
performance of the CG algorithm.

Computing with the factored form: To compare the computation required for
the linear algebra when Hi is stored in factored form, we note the following.
Suppose we are at xk. A standard QN algorithm must update Hk-1 to Hk and then
compute dk÷~ = --Hggk. For the commonly used BFGS update, this requires about
7n2 operations. In the new algorithm there are 2 cases: (a) where an update to Hi
is done at Xk; (b) when a CG direction (3c) is used from Xg. In either case, the
only significant computation per iteration is in finding Hgk (providing Hgk-t is
stored, but that is required anyway for other reasons). In particular, no work
(except O(n)) is required to update Hi to Hi+t, and even computing Hi+tgk in the
event of an update is just an O(n) operations modification to Higk. Now, using
(10), each term of H~gk is formed by computing 8xgk and rlxgk and then adding
scalar multiples of ~ and 8. For each update recorded this means 4n multiplies,
so the i updates definingHi use 4ni operations. Clearly then the new algorithm
requires less work unless i is nearly n, and, with the philosophy behind this
algorithm, that is most unlikely to occur.

Dropping update terms: Since one of the basic properties of this algorithm is
that it will run in limited storage, one must decide what action to take when the
allotted storage limit is reached. In particular, in order to store further QN
updates, one must discard some of the old ones. There are several criteria which
suggest themselves for picking the discards. However computational experience
of the author has indicated none that is superior to the simple strategy of
discarding all current updates and starting afresh.

One argument to support this choice concerns the matrices Hi. It is
fundamental that they should be positive definite. When some of the rank one
terms defining Hi are deleted several iterations after they were constructed,
experience indicates that H; almost always becomes non-positive definite. This
may not however be immediately detected and can lead to nondownhill or poor
search directions and numerical difficulties. These can be handled, but it seems
best to simply avoid the problem.

6. Test results

We now give test results which indicate that the algorithm does display the
behavior discussed earlier. The test problems are well known and can be found
for example in Himmelblau [9], except for the 60 dimensional extended Powell

208 A. Buckley / A conjugate-gradient quasi-Newton algorithm

Table 1
Using unlimited updates

Number of Function Number of QN
Number of function value updates computed

Function n iterations evaluations reached (CGQN algorithm)

Rosenbrock 2 31/22/24 1 0 3 / 6 4 / 6 5 3-s/9_9/3 l0 12
Helix 3 33/20/19 8 3 [5 1 / 4 5 2-J4_~0/3 l0 10
Powell's
Singular 4 35/18/16 86/39/35 4_6/1_7/5_ 6 10
Woods 4 79/64/62 186/152/140 8-1f16-n/4-9 27
Powell's
Extended 60 55/21/15 1 3 0 / 4 9 / 3 5 2-5/3-7/7-5 14

function given in Boland, Kamgnia and Kowalik [2]. In all cases termination was
when gTg <__ 10-6. In the tables, a-b means a × 10 -b.

First, in order to confirm that the idea of intermittent QN updates is indeed
reasonable, we exhibit in Table 1 results comparing an ordinary CG strategy 1
(Polak-Ribi~re form), the mixed algorithm of Section 3 which does intermittent
updates, and a standard QN update procedure 2 (BFGS update form). The figures
in the table are in this order. For purposes of this test, no limit was placed on the
storage available for the mixed algorithm. Clearly in most cases intermittent QN
updates improve the convergence to nearly that of the standard QN procedure
where an update is made every step. Although we note that in one case the
mixed algorithm is even better than QN, all we wish to conclude is that the
intermittent updates do tend to significantly improve the performance of an
ordinary CG algorithm.

Of course the object of the new algorithm is to operate in limited storage and
so in Table 2 we give the figures obtained by limiting the storage available to the
new algorithm and repeating the computations of Table 1 for the mixed al-
gorithm (these are the first of each pair of figures). Comparing the leading entries
in Table 2 to those in Table 1 we see that generally little is lost. A substantial
improvement over the CG algorithm is still obtained. Note that the final example
is included to illustrate the behavior of the algorithm on a medium sized
problem, which is of course where we hope this algorithm to be beneficial.

In each entry, the second of the pair of figures provides a comparison to the
routine VA14A. This code is from the Harwell library and it implements a

1 These figures were obtained using an implementation of the algorithm CGQN. By setting p = ~,
no updates are ever done. The normal steepest descent restart was done every n iterations. These
figures are entirely comparable to those of well-known CG implementations such as VA08 in the
Harwell library.

2 These figures were obtained by setting p = - 1, thus forcing a QN step on every iteration; they are
entirely comparable, for example, to Fietcher's VA13 variable metric algorithm in the Harwell
library.

A. Buckley/ A conjugate-gradient quasi-Newton algorithm

Table 2
CGQN using limited storage vs. VA14A

209

Number of Number of
Number of Function QN updates updates

Number of function value computed stored
Function n iterations evaluations reached (CGQN algorithm)

Rosenbrock 2 22/23 72/62 3_9/2-8 15 1
Helix 3 21/23 49/56 4_9/3_10 12 1
PoweU's
Singular 4 24/21 57/49 3_6/9-7 11 1
Woods 4 74/a 178/a l_9/a 32 1
Powell's
Extended 60 28•27 68/67 1_6/3-7 12 1

a VA14A failed to reach the minimum in this case.

modified conjugate gradient algorithm with restarts which is due to Powell [12].
Powell has indicated that his algorithm performs substantially better than
ordinary CG implementations; here we see that the proposed CGQN algorithm is
comparable in its performance with VA14A.

7. Conclusion

We have designed an algorithm which combines a CG algorithm with inter-
mittent QN updates and we have demonstrated that this idea does indeed lead to
improved convergence over the standard CG algorithm, even when only very
few (e.g. 1 or 2) updates may be stored at any one time.

Acknowledgment

The au thor wou ld like to t hank P ro fe s so r M.J.D. Powel l for his careful

read ing of draf ts of this paper and for his pe rcep t ive c o m m e n t s and helpful

suggest ions .

References

[1] J.C. Allwright, "Improving the conditioning of optimal control problems using simple models",
in: D.J. Bell, ed., Recent mathematical developments in control (Academic Press, London,
1972).

[2] W.R. Boland, E. Kamgnia and J.S. Kowalik, "A conjugate gradient optimization method
invariant to nonlinear scaling", Report TR 245, Department of Mathematical Sciences, Clemson
University, Clemson, SC (1977).

210 A. Buckley / A conjugate-gradient quasi-Newton algorithm

[3] A.G. Buckley, "Extending the relationship between the conjugate gradient and BFGS al-
gorithms", Mathematical Programming, to appear.

[4] C.G. Broyden, "The convergence of a class of double rank algorithms, Part I", Journal of the
Institute of Mathematics and its Applications 7 (1971) 76-90.

[5] R. Fletcher and M.J.D. Powell, "A rapidly convergent descent method for minimization", The
Computer Journal 7 (1963).

[6] R. Fletcher, "A new approach to variable metric algorithms", The Computer Journal 13 (1970)
317-322.

[7] R. Fletcher, "Conjugate direction methods", in: W. Murray, ed., Numerical methods for
unconstrained optimization (Academic Press, London, 1972) pp. 73-86.

[8] M.R. Hestenes and E.L. Stiefel, "Methods of conjugate gradients for solving linear systems",
Journal of Research of the National Bureau of Standards 49 (1952) 409-436.

[9] D.M. Himmelblau, Applied nonlinear programming (McGraw-Hill, New York, 1972).
[10] L. Nazareth, "A relationship between the BFGS and conjugate gradient algorithms", AMD

Tech. Memo 282, Argonne National Laboratory (1977).
[11] E. Polak, Computational methods in optimization: A unified approach (Academic Press, New

York, 1971).
[12] M.J.D. Powell, "Restart procedures for the conjugate gradient method", Mathematical Pro-

gramming 12 (1977) 241-254.
[13] M.J.D. Powell, "Some convergence properties of the conjugate gradient method", Mathemati-

cal Programming 11 (1976) 42-49.

