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Short-term traffic speed prediction is a promising research topic in intelligent transportation systems (ITSs), which also plays an
important role in the real-time decision-making of traffic control and guidance systems. However, the urban traffic speed has strong
temporal, spatial correlation and the characteristic of complex nonlinearity and randomness, which makes it challenging to accurately
and efficiently forecast short-term traffic speeds. We investigate the relevant literature and found that although most methods can
achieve good prediction performance with the complete sample data, when there is a certainmissing rate in the database, it is difficult to
maintain accuracy with these methods. Recent studies have shown that deep learning methods, especially long short-term memory
(LSTM) models, have good results in short-term traffic flow prediction. Furthermore, the attention mechanism can properly assign
weights to distinguish the importance of traffic time sequences, thereby further improving the computational efficiency of the prediction
model.+erefore, we propose a framework for short-term traffic speed prediction, including data preprocessingmodule and short-term
traffic prediction module. In the data preprocessing module, the missing traffic data are repaired to provide a complete dataset for
subsequent prediction. In the prediction module, a combined deep learning method that is an attention-based LSTM (ATT-LSTM)
model for predicting short-term traffic speed on urban roads is proposed. +e proposed framework was applied to the urban road
network in Nanshan District, Shenzhen, Guangdong Province, China, with a 30-day traffic speed dataset (floating car data) used as the
experimental sample. Results show that the proposed method outperforms other deep learning algorithms (such as recurrent neural
network (RNN) and convolutional neural network (CNN)) in terms of both calculating efficiency and prediction accuracy.+e attention
mechanism can significantly reduce the error of the LSTM model (up to 12.4%) and improves the prediction performance.

1. Introduction

Future short-term traffic speed information is critical for
alleviating traffic congestion, predicting traffic incidents,
organizing traffic travel, and controlling traffic [1, 2]. More
importantly, it can promote intelligent transportation sys-
tems (ITSs) to make smarter decisions, effectively reduce
traffic risks, and make the transportation system more in-
telligent and efficient. +erefore, short-term traffic speed
prediction has become a hot topic in ITS and has also
attracted numerous traffic practitioners and scholars to
conduct deeper research. However, the traffic data imply
spatiotemporal correlation and intricate periodicity and
show strong chaos and randomness. +is brings great

difficulty in accurately predicting short-term traffic speeds.
Finding a more efficient and accurate prediction method
that can easily capture latent features of traffic data is still a
challenging problem to be solved.

+e traffic prediction methods proposed in early re-
search are mainly divided into three categories: parameter-
based methods, nonparameter-based methods, and hybrid
methods. Parameter-based methods mainly include the time
series method and the Kalman filter (KF) method [3, 4].
Prediction methods based on time series mainly focus on the
automatic regression moving average (ARIMA) model and
the improved variations in this model. Nonparametric
methods mainly include the K-nearest neighbor (KNN)
method, support vector regression (SVR) method, artificial
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neural network (ANN) model, and other methods. Hybrid
methods are mostly a combination of two or three methods.
However, because of the effects of uncertain factors such as
weather, the implicit correlation of traffic data captured by
the above approaches is limited. +ese methods still can be
improved in terms of prediction accuracy and generalization
ability.

In recent years, with the rapid improvement in computer
capabilities, many prediction methods based on deep learning
algorithms have emerged. With good performance in other
fields, many deep learning methods (such as convolutional
neural network (CNN) models [5], recurrent neural network
(RNN) models, and long short-term memory (LSTM) models
[6–9]) have been introduced to predict short-term traffic flow
and have achieved better prediction performance than tradi-
tional forecasting methods. In addition, the combined model
often has a better predictive effect than the single model
[10–13]. For example, Lu et al. [10] proposed a combined
model of ARIMA and LSTM, and Zheng et al. proposed the
Conv-LSTMmodel based on the attentionmechanism [11]. Yu
et al. [12] proposed a low-rank representation (LRR) and
dynamic mode decomposition (DMD) combined model
(LRDMD). Wu et al. [13] analyzed the prediction performance
of combined RNN andCNNmodels.+esemethods can better
compensate for the shortcomings of traditional methods in
capturing the inherent temporal and spatial correlation of
traffic data with good accuracy, which can handle incomplete
data. Compared with the single method, although the calcu-
lation performance of these methods has improved signifi-
cantly, there are still some weaknesses. Although accurate
short-term traffic information can be obtained via these pre-
diction methods, the training time of these models is too long,
and it is prone to overfitting during training. Because of the
intricate structure of traffic data, it is difficult to completely
capture the inherent characteristics of the dataset. Further-
more, most of these studies on traffic prediction rarely focus on
the imputation ofmissing data despite the fact that the accuracy
of results is influenced by incomplete data to some extent.

+erefore, this study is devoted to propose an accurate
and efficient prediction method for short-term traffic speed.
Consulting the existing literature finds that the combined
LSTM method shows outstanding performance in traffic
prediction [14–16]. Moreover, LSTM, as a special form of
RNN network, can solve well the impact of the RNN gra-
dient disappearance on the accuracy of the predictionmodel.
Consequently, in this paper, a hybrid deep learning method
that combined attention mechanism and LSTM model
(ATT-LSTM) is proposed for the prediction of short-term
traffic speed, which can alleviate the loss, dilution, or cov-
erage of the model details, thereby increasing the quality of
decoding.

Finally, experimental data were collected from the urban
road network. +e contributions of this paper include the
following three aspects:

(1) Different from the previous short-term traffic speed
prediction methods, we design an entire forecasting
framework of short-term traffic speed that is the
combination of the data preprocessing module and

ATT-LSTM prediction module, which can achieve
high-prediction accuracy performance on the urban
road network.

(2) To overcome the problem of missing data, we pro-
pose a new data preprocessing module that is
composed of the naive Bayesian method and a dy-
namic time warping algorithm to handle raw dataset
with a certain degree of missing and proved that the
module can further improve the quality of the data
and enlarge the data sample, ultimately providing a
high-quality dataset for short-term traffic speed
forecasting.

(3) To solve the problem that it is difficult to accurately
predict the short-term traffic speed on the complex
urban road network, we propose a speed prediction
method which is especially suitable for traffic data
characteristics, namely, the ATT-LSTM model. It
uses the local attention vector calculation method to
assign weights to traffic speed sequences and dis-
tinguish their importance. As a result, it effectively
reduces the calculation for model training and im-
proves the efficiency of the model.

+e subsequent sections are arranged as follows. +e
next section discusses the related research. +e third section
is about problem description. +e fourth section introduces
the models and theories used in this research. +e fifth
section discusses the results of the case studies, verifies the
prediction methods proposed in the study, and compares
different methods in terms of prediction performance. +e
last section summarizes the conclusions and outlines further
research.

2. Related Work

+is section summarizes related research on short-term
traffic prediction. As early as the 1980s, short-term traffic
flow prediction had been an important topic in the research
of ITS [17], and it has nearly 40 years of history. In early
studies, statistical methods as main means were used to
predict single traffic characteristics (such as traffic volume,
speed, density, and travel time) at a special point [18]. Later,
with the rapid progress in computer technology, many data-
driven methods and intelligent algorithms based on em-
pirical calculations (including neural networks and Bayesian
networks, fuzzy algorithms, and evolutionary techniques)
were represented. Recently, deep learning algorithms have
prevailed in transportation, most of which are used to
forecast short-term traffic flow with good results.

According to related literature [12], short-term traffic
flow prediction methods are mainly divided into three
categories: statistical learning methods, machine learning
methods, and combined methods. +e statistical method
that has been proposed and applied for many years is to
explore the implicit relationship between traffic time series
through a statistical model, finding the optimal parameters
of the fitting process using historical data. Typical methods
mainly include the KF method and ARIMA, both of which
are common linear time series models. In 1960, Kalman
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proposed a linear prediction method called the KF method,
which was widely used in predicting traffic flow [19–21]. Guo
et al. [3] proposed an adaptive KF method, which can
significantly improve the prediction performance of the
original method. +e ARIMA model is a well-known linear
model and a popular parameter regression model [22].
However, it cannot accurately describe the randomness and
nonlinear characteristics of traffic data. To increase its
prediction performance, researchers have proposed many
improvedmodels such as SARIMA [23] and STARIMA [24].

+e machine learning method is used to predict future
traffic by training with historical traffic data. +is method
includes the genetic algorithm [25], KNN algorithm [26],
ANN algorithm, BP neural network, support vector re-
gression [27], LSTM [28], DNN model, and CNN model
[29]. +e hybrid method refers to a reasonable combination
of machine learning methods and statistical methods. In
recent years, with the extensive application of deep learning
methods in traffic flow prediction, an increasing number of
traffic researchers have been committed to proposing
combined prediction models with excellent performance
and efficiency. Initial results have been achieved, and many
combined models have been proposed, such as CNN
combined with LSTM [11, 13], the combined model of CNN
and ARIMA [10], and other combined models [30].

Referring to the relevant literature mentioned above, it
has been found that although the existing methods can be
used to forecast short-term traffic flow, the prediction results
are often affected by severe weather, sudden traffic accidents,
and other uncertain factors. +erefore, the following are the
limitations of these studies: (1) the traditional ARIMA al-
gorithm cannot accurately track changes in traffic flow
conditions under emergencies, which limits the extensive
application of the algorithm. KF often has a residual error,
which leads to a sharp drop in prediction accuracy. Effec-
tively solving the residual problem is the key to improving
the performance of the KF algorithm. (2) +e traffic pre-
diction algorithm based on machine learning is usually too
dependent on the training data. Once a dataset with poor
quality is encountered, the training time will become un-
controllable. In addition, overfitting reduces the prediction
accuracy. (3)+e popular deep learning algorithm for short-
term traffic prediction also has the problem of data de-
pendence. Even though the prediction accuracy is higher
than most other algorithms, the computational efficiency of
the multilayer structure needs to be improved. LSTM has
attracted significant attention in deep learning algorithms
because of its good generalization and lack of gradient
vanishing problems. +e attention mechanism can distin-
guish the importance of time series data by allocating
weights. +erefore, this paper proposes a deep learning
algorithm that combines the LSTM and attention model for
short-term traffic speed prediction.

3. Problem Description

As the typical time series, traffic data also have the general
characteristics of a nonlinear time series, which is reflected
in nonstationarity, periodic distribution of traffic parameters

and spatiotemporal correlation. Some recent studies indicate
that the traffic time series exhibits stochasticity and un-
certainty at different time periods [8, 10, 11, 31].

+e main purpose of predicting short-term traffic speed
is to provide the accurate traffic speed in the next five
minutes, ten minutes, or fifteen minutes and to provide
support for improving the operational efficiency of urban
roads. Vnτ is defined as the traffic velocity of the n-th ob-
servation location during the τ th time interval. And the n-
th observation location refers to the road section desig-
nated as n. At current time t, the main task is to predict the
traffic speed at points of interest (POI) for a certain pre-
diction range δ in the prediction time interval (t + dδ) (for
some prediction horizon δ given the historical traffic speed
sequence of observation locations Vnτ{ }),
whereτ � t − rδ, . . . , t − δ, t, n ∈ N, in which N is the set of
n observation points in the road network. In this work, we
consider δ � 5minutes and d � 1, 2, 3, which means the
historical data are used to predict the traffic speed of the
next 5,10, and 15 minutes. To simplify the description, we
use t-r represents t − rδ below.

Traffic data usually show strong space-time correlation
and periodic characteristics; that is, the traffic speed data
may be affected by the traffic speed of the adjacent POI
observation position and the traffic speed at the previous
moment. In 1990, Hoffman and Janko [32] proposed a
historical trend model, which assumes that, within a day of
the same historical trend, traffic has similar operating
characteristics during the same time period. In other words,
changes in the traffic speed on the same day for several
consecutive weeks are similar, and the traffic speed shows a
daily cycle pattern and a weekly cycle pattern. In this study, a
deep learning model is proposed to use the temporal and
spatial characteristics of traffic speed and periodically predict
the future short-term traffic speed. By consulting related
literature, it has been found that storing traffic speed data in
matrix form can better exploit the temporal and spatial
relationships and periodicity between the data for short-
term traffic speed forecasting [11, 12]. +erefore, in this
study, we have stored the traffic speed data in matrix form. If
vnt is the traffic velocity of the n-th observation location at
time t, then the historical traffic velocity of the n-th ob-
servation location from time t-r to t can be expressed as
Vnt � [v

n
t− r, v

n
t− (r− 1), . . . , v

n
t ]
T. +e historical traffic velocity

data of adjacent observation points (a total of n observation
points) are combined to form a spatiotemporal correlation
matrix:
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where VNt � [v
1
t , v

2
t , . . . , v

n
t ] indicates the traffic velocity of

the prediction area at time t. Considering the periodic
characteristics of traffic speed, the daily periodic traffic speed
matrix and the weekly periodic traffic speed matrix are
constructed as follows:
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where tdrepresents the same time as the time t of the last day
and tw is the same time and space as the time t of the last
week.

4. Methodology

4.1. Analysis and Preprocessing of Traffic Speed Data. +e
urban road network traffic speed data have strong temporal
and spatial correlation and periodicity and are greatly af-
fected by external factors. +is section analyzes the distri-
bution characteristics of traffic speed data and proposes data
preprocessing modules for missing data.

4.1.1. Distribution Characteristics of Traffic Data in Time and
Spatial Dimension. Taking the traffic speed data of a
weekday (May 10, 2017, Wednesday) and a weekend (May
20, 2017, Saturday) on a road network (including the ex-
pressway, arterial road, secondary road, and branch road) as
an example, we analyze the distribution characteristics of
traffic speed data in the time dimension. Dataset is processed
separately and divided according to the 1-hour interval, and
the average coverage intensity of different grades is obtained
by statistics. +e result is shown in Figure 1.

+e coverage intensity is based on time h− 1. As can be
seen in addition to changes in coverage intensity over time,
there are significant differences in coverage strength at
different road levels. +e coverage intensity of express roads
during peak hours on working days reaches more than 800
times h− 1, while the average coverage intensity of branch
roads on working days does not exceed 200 times h− 1 and the
average coverage intensity of nonworking day does not
exceed 250 times h− 1. +e main reasons for the low-coverage
intensity are the large number of road sections, the wide
range of roads, and the combined effect of the travel will-
ingness and the driving range of the floating vehicles.
+erefore, high-grade roads have a large traffic volume and
high coverage of floating car data, and the reliability of
floating car data to estimate the average traffic speed of the
road segment is higher than low-grade roads.

Taking the data from 7 am to 9 am on May 10, 2017, to
analyze the spatial distribution characteristics of the road
network in the study area, we match the data to the map and
draw the distributionmap of coverage frequency on the road
network. Figure 2 uses color as a distinction to show the
difference in the coverage frequency of traffic flow data over
a long period of 2 hours.

Because this article uses 5 minutes as the sampling in-
terval, the coverage frequency is up to 24 times within 2
hours. +e coverage frequency is divided into 5 levels from 0
to 24 times. +e thickness of the road section is from thin to
thick, and the color of the road section is from green to red to
indicate the coverage frequency from less to more. It can be
seen that the coverage frequency is more than 20 times
mostly on high-grade roads. Compared to the high-grade
roads, the coverage frequency of secondary roads decreased
significantly. And the coverage frequency of branch roads
was still significantly lower than that of secondary roads or
even missing. +e above phenomenon shows that the un-
even distribution of floating car data on different grades of
roads is very obvious. On this basis, the 40th time period is
taken as the sample for the same analysis. +e results are
shown in Figure 3. +e solid line indicates that the current
road section has complete data, and the dotted line indicates
that the current road section data are missing. It can be seen
that low-grade roads are much more likely to have missing
data than high-grade roads. +e missing data need to be
repaired in advance for prediction of traffic speed.

4.1.2. Data Preprocessing. If the characteristics of traffic flow
are regarded as signals that change over time, they are likely
to be disturbed by noise signals, thereby masking the actual
trend of traffic flow. Referring to the related literature [31]
using wavelet transform to decompose the traffic time series
into two frequency signals, the low-frequency series is
named as trend signals, and the noise series is considered as
residual signals. As shown in Figure 4, the trend signal
exhibits sufficiently clear periodic characteristics, preserving
the basic trend of the traffic flow and constituting a stable
part of the traffic flow. +e residual signal does not show
obvious periodic and frequent changes. Furthermore, the
traffic flow is a nonstationary series, which may be affected
by road structure, traffic demand, and weather conditions.

After the wavelet transform, it is easy to pay attention to
the average characteristics of trend signals. As shown in
Figure 5, the average value of trend signals for all working
days over multiple weeks is very consistent from 7:00 to 24:
00. +eir inflection points are roughly the same. On this
basis, for the incomplete dataset, the imputation method
proposed in [31, 33] is used to repair missing data in the
traffic speed sample dataset, so as to provide complete data
for subsequent forecasting research.

4.2. Overview of Proposed Model. Hochreiter and Schmid-
huber proposed the LSTM model [34], which is a special
form of an RNN, specializing in natural language processing
at its initial stage. It can effectively solve the problem of
gradient disappearance and the long-term dependence of
learning in RNNs. Subsequently, the model has been widely
used in the analysis of time series datasets and has good
performance in traffic flow prediction [8]. +erefore, this
study uses the LSTM neural network to study the prediction
of short-term traffic speed on an urban road network,
merging the attention mechanism to optimize the model
structure, alleviating the loss, dilution, and coverage of
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model details, increasing the decoding accuracy, and finally,
building an attention-based LSTM prediction model. +e
local attention mechanism has been selected to calculate the
attention vector in the variant, which improves the efficiency
of the model.

4.2.1. LSTM Network for Short-Term Traffic Speed
Forecasting. +e structure of the LSTM is shown in Figure 6.
And taking the traffic flow speed of a certain observation
point as an example, the working principle of the repeated
module of LSTM is explained, where Vt represents the input

traffic flow speed at the current moment, ht is the corre-
sponding output speed at the current moment, Vt− 1 rep-
resents the input speed data at the previous moment, ht− 1 is
the corresponding output speed, Vt+1 is the input traffic
speed at the next moment, and ht+1 is the output speed
corresponding to the next moment. +e flow chart of the
short-term traffic speed prediction algorithm based on the
LSTM is shown in Figure 7. First, a series of matrices and
vectors were initialized to save the model parameters and
intermediate calculation results. +e purpose of this was to
enable the neural network to learn effectively and obtain
useful information during the training process.

4.2.2. Attention Mechanism. By imitating human thinking,
different attention is allocated to the target, and features of
different importance are matched. +is study improves the
classical attention mechanism, replacing the intermediate
vector with a sequence of vectors, as shown in Figure 8. +e
model no longer needs to compress all the information into a
fixed-dimensional vector, which greatly alleviates the
problems of incomplete information representation and
information dilution and coverage of the original model.
When decoding, a subset of the vector can be selected for
processing in the vector sequence. When the output is
generated, the information conveyed by the input sequence
can be fully utilized and interpreted.

After introducing the attention mechanism, each output
is affected by the intermediate vector and the previous
output, as follows:

Y1 � f C1( ), Y2 � f C2, Y1( ), . . . , Yt � f Ct, Yt− 1( ). (3)

Among them, f represents a certain transformation
function of the encoder to the input data and Ctis an ex-
tremely important parameter, which represents the proba-
bility distribution of attention distribution corresponding to
different elements in the input sequence, which is called the
attention vector. Generally, the variants in the attention
mechanism are mainly carried out from two different
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Figure 1: Changes in average coverage intensity within 24 h via grade roads: (a) weekday; (b) off day.

Figure 2: Spatial coverage of floating vehicle data within 2 h.

Figure 3: Space coverage of floating car data at the 40th interval.
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directions. +e first is to study the variants in the calculation
method based on the attention matching degree.+e other is
a variant of the weighted sum calculation method based on
the attention vector. +is article conducts an in-depth study
on the second type of variant, and choosing local attention

for traffic flow prediction, compared to other variants, the
calculation is smaller and the efficiency is higher. Specifi-
cally, the local attention method generates an alignment
position pt in the source sequence for the output at time t.
+en, taking the window [pt − D, pt +D] in the source
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sequence, the intermediate vector Ct is obtained by calcu-
lating the weighted average of the hidden layer state in the
window. When the range of the window exceeds the
boundary of the source sequence, the boundary of the se-
quence shall prevail. Local attention finds pt and calculates
alpha in two ways.

+e monotonic alignment (local-m) method assumes that
the alignment position is pt � t (linear alignment), and then
calculating the softmax inside the window, the alpha outside the
window takes 0. +e formula is as shown in formula (4), where
the score () function in theory can be any comparison function,
and dot product can also be used as a scoring function:

αti �
exp score hi, st( )( )∑iexp score hi, st( )( ). (4)

+e predictive alignment (Local-p) method is to predict
its alignment position in the source sequence for each target
output, in other words, predicting pt between [0, T] through
a function. +is article uses this method to find pt and to
calculate the alpha formula as follows:

pt � T · sigmoid v
T
t tan h wtst( )( ), (5)

where wtand vt are model parameters and T is the length of
the source sequence. +en, we introduced a Gaussian dis-
tribution subject to N (pt, D/2) to set the alignment weight.
+e calculation formula for the alignment probability be-
tween the target position t and the source sequence position i
is as follows:

αti �
exp score hi, st( )( )∑iexp score hi, st( )( ) exp −

i − pt( )2
2σ2

( ). (6)

4.2.3. Proposed Attention-Based LSTM (ATT-LSTM). +e
introduction of the attention mechanism is mainly to op-
timize the LSTM structure, that is, to add high-impact
features to the sequence to compensate for the lack of
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learning ability of the ultralong sequence. +e structure of
the ATT-LSTMmodel is shown in Figure 9.+e ATT-LSTM
is roughly divided into four layers: the hybrid input layer,
hidden layer, attention mechanism layer, and output layer.
Taking the traffic speed data of an observation location as an
example, the input layer sequence is V � (V1, V2, . . . , Vt),
and h � (h1, h2, . . . , ht)is the hidden layer of the LSTM.
Firstly, at the attention mechanism layer, the local attention
mechanism is used to predict its alignment pt of the output
yt in the input sequence. +en, in the input sequence se-
lection window [pt − D, pt +D], the output value st− 1of the
hidden layer node at t − 1 before the output Yt is used to
match the state of the hidden layer node corresponding to
each element in the input sequence one by one.+e function
F(hi, st− 1) is used to obtain the alignment possibility of
Ytand each corresponding input element, namely, the
weighted alpha. +e matching process only needs to cal-
culate the elements within the window, and the weight of the
elements outside the window is 0. Finally, the output is
processed through the normalized exponential function
softmax, to obtain the required attention distribution
probability within the range of the probability distribution,
and the input Yt encoded by the newly added LSTM unit is
obtained.

5. Performance Evaluation

5.1. Data Description. In this study, the following case study
was used to evaluate the performance of the proposed
method, and we choose Nanshan District as the experi-
mental area because Nanshan District is an important and
typical downtown area in Shenzhen, Guangdong Province,
China, where a representative regional road network
composed of Nanhai Avenue, Binhai Avenue, Chuangye
Road, and Houbinhai Road was chosen as the research area
to cover all types of roads including expressways, arterial
roads, secondary roads, and branch roads [31]. +e sample
data collected by the institute from May 1, 2017, to May 31,
2017, were all from the Shenzhen Urban Transportation
Planning and Design Research Center, with a total of about 4
million samples. +e process of converting the map into a
road network, linking the floating car data, and selecting a
suitable area for data extraction and research analysis is
shown in Figure 10, and the detailed map of the selected
study area is shown in Figure 11.

In this study, refer to literature [11, 12, 35], we used 5
minutes as time interval to collect experiment data and
divided a day into 288 periods for collection, processing, and
analysis. An example of floating vehicle data is shown in
Table 1.

5.2. Data Quality Improvement. In order to improve the
quality of the raw data to achieve more accurate prediction
results, according to the missing characteristics, the original
data are divided into accidental missing and multiple
missing. Referring to related literature, it is found that the
naive Bayesian method and dynamic time warping method
can be used to repair these two types of missing data,

respectively, with good performance [36–38]. Consequently,
we choose the naive Bayesian method and dynamic time
warping method to estimate the two types of missing data
separately, obtaining a complete dataset without abnormal
points, which lays a solid foundation for the subsequent
prediction of short-term traffic speed.
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Figure 9: Attention-based LSTM model.
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Figure 10: Selection of research area.

Figure 11: +e detailed map of the area.
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5.3. Model Training and Parameter Optimization.
According to the traffic speed prediction framework of the
ATT-LSTM, the advanced neural network application
programming interface Keras of TensorFlow is selected for
experiments, picking up a sequence model and gradually
covering the relevant neural network layers to establish a
complete model. In the modeling process, the models with
different depths are shown in Table 2. Taking the model
training of trend signals as an example, the training loss
functions and verification loss functions with different
depths are shown in Figure 12.

Although the model structures with different depths
have good performance, it can still be seen that, before the
4 depth layers, as the depth increases, the loss function
greatly decreases, but after the 4 depth layers, the loss
function increases slightly. +erefore, in this experiment,
the performance of the model structure with the 4 depth
layers is better than the model structure with other depths;
it can be used for model training and further parameter
adjustment.

In the model training module, through multiple ex-
periments, the residual signal and the trend signal model
have four depth layers and the same structure, but some
parameters have subtle differences. +e model structure and
parameter settings are summarized in Table 3, and the model
training parameter settings are summarized in Table 4.

5.4. Performance Evaluation Index. In order to evaluate the
performance of the proposed prediction model, the evalu-
ation indices include the average absolute error (MAE) and
root mean square error (RMSE) are employed to measure
the accuracy of the model prediction [11, 12, 39], in which
the computational formulas are as follows:

MAE �∑n
i�1

obsi − prei
∣∣∣∣ ∣∣∣∣

n
,

RMSE �

���������������
1

n
∑n
i�1

obsi − prei( )2
√√

,

(7)

where n is the total number of test samples, obs is the real traffic
speed, and pre is the traffic speed predicted by the model.
When verifying the predictionmodel, the test data are regarded
as the target to be predicted, and the deviation between the
prediction data and the real data is used as an evaluation of the
accuracy of the prediction result. In addition, the efficiency of
the model needs to be measured by the training time.

5.5. Validity Analysis of the Proposed Model. We use actual
road network traffic flow speed data to verify and analyze the
model proposed in this paper.

5.5.1. Evaluation of Effectiveness of Attention Mechanism.
+e purpose of introducing the attention mechanism is to
find an accurate range of attention in the input sequence so
that attention is only focused, or mostly focused, on the most
relevant elements. In this study, this feature mainly works in
two aspects: the selection of windows and the probability
distribution of attention. Part of the dataset is randomly
selected from the training set for verification, the model is
trained, and the attention distribution is visualized. +e
results are shown in Figure 13.

As can be seen from the above figure, when selecting the
window, the model finds the time t� 126 as the center
position of the alignment window. From the distribution of
attention weights, it can be seen that larger weights are
distributed around this moment. +e model has developed a
strong focus on the key parts of the study; that is, it verifies
the successful introduction and adaptation of the attention
mechanism. At this time, discarding the data outside the
window can greatly reduce redundant input, which is
beneficial to the improvement of the model’s efficiency. +e
models with and without the attention mechanism are
trained separately, and the training time of each section on
the road network is counted. +e results are shown in
Figure 14, where the light blue histogram is the training time
of the model without introducing the attention mechanism
and the blue dotted line represents the average training time
of each section. +e light orange histogram shows the model
training time after introducing the attention mechanism.
+e orange dotted line represents the average training time
for each road segment. After introducing the attention
mechanism, it can be seen that the training time of most road
sections was shortened to varying degrees. +e average
training time of the entire road network was shortened by
approximately 1.7 s, which proved that the attention
mechanism improved the efficiency of the model. +is
special case works, but it has a certain degree of universality
and reliability.

5.5.2. Effectiveness Evaluation of Sequence Input Method.
To verify the effectiveness of various sequence input pre-
diction models, the prediction method of training the trend
sequence and the residual sequence was verified separately.

+e prediction result of the model using the trend se-
quence is shown in Figure 15(a), and the prediction result of

Table 1: Data format of floating car.

Symbol Definition Data content Remark

TIME Data 20170507 20170507
PERIOD Time interval 37 Time period 37, 185–190min
LINKID Road ID 380129 Unique section identification
FROMNODE From the node 243022 Last node identification
TONODE Destination node 254150 Next node identification
GOSPEED Average road speed 42.936 Average speed of traffic in this section, km/h
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the model using the residual sequence is shown in
Figure 15(b). Figure 15(c) shows the prediction result of the
model utilizing the trend sequence plus the residual se-
quence. It can be seen that the trend sequence is very smooth

and changes more coherently when forecasting separately,
and the prediction accuracy is very high. In contrast, the
variation rule of the residual series is not as obvious as that of
the trend series, and the prediction results have a larger
deviation than the trend series, but the accuracy of the model
using the residual series is still relatively reliable. After
combining the prediction results of the trend sequence and
the residual sequence, it can be seen that the final prediction
result reaches an ideal prediction accuracy. Compared with
the result of direct prediction through the sequence without
decomposition, which is shown in Figure 15(d), it is more
advantageous to subdivide the data according to traffic speed
and regularity for mining the internal characteristics of the
data.

Table 2: Structures of model at different depths.

Depth Structure of model

1 Input⟶LSTM layer⟶ attention mechanism layer⟶ dense layer⟶ output
2 Input⟶ LSTM layer⟶ dropout layer⟶ attention mechanism layer⟶ dense layer⟶ output
3 Input⟶ LSTM layer⟶ dropout layer⟶ LSTM layer⟶ attention mechanism layer⟶ dense layer⟶ output

4
Input⟶ LSTM layer⟶ dropout layer⟶LSTM layer⟶ dropout layer⟶ attention mechanism layer⟶ dense

layer⟶ output

5
Input⟶ LSTM layer⟶ dropout layer⟶LSTM layer⟶ dropout layer⟶ LSTM layer⟶ attention mechanism

layer⟶ dense layer⟶ output

6
Input⟶LSTM layer⟶ dropout layer⟶ LSTM layer⟶ dropout layer⟶ LSTM layer⟶ dropout layer⟶ attention

mechanism layer⟶ dense layer⟶ output

53 4 61 2
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0.25
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Figure 12: Performance of loss function in different depth models.

Table 3: Structure and parameter of trend series and residual series of prediction models.

Layer Series name of model (trend/residual) Parameter Size (trend/residual)

1 LSTM layer
Input_dim 1
Neurons 50/100
Param 10400/40800

2 Dropout (0.3/0.2) layer Param 0

3 LSTM layer
Neurons 100
Param 60400/80400

4 Dropout (0.3/0.2) layer Param 0
5 Attention layer Param 2116

6 Dense layer
Param 101

Output_dim 1

Table 4: Training parameters of trend series and residual series of
prediction models.

Parameter Matching

Loss Mse
Optimizer Adam
Batch_size 128
Epoch 10
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5.5.3. Evaluation of Model Universality. Universality is also
important for constructing a prediction model. In order to
verify the applicability of the research method in this paper
to the short-term traffic speed prediction of different grades
of roads, the road grades in the regional road network were
divided, as shown in Figure 16. +e prediction and evalu-
ation of each road grade are carried out, and the final results
are shown in Table 5. It can be seen that the research method
used shows a good prediction effect for all road grades from
expressways to branch roads, but the accuracy of the pre-
diction results of high-grade roads is usually slightly better
than that of low-grade roads. +e main reason for this may
be that the lack of data on low-level roads is more serious,
and the dataset used for prediction may have had more
estimates, which could make the source data deviate from
the real situation to a certain extent in the trend. In addition,
the high-level road datasets are more complete; there are
only a few estimates, and the trend is closer to the true
periodic law. In addition, compared to lower grade roads,
high-grade roads have better road conditions, with fewer
interference factors and less random interference. However,
the overall error of the repaired dataset has little effect on the
performance of research methods on all levels of roads.

5.5.4. Comparison of the Performance of Different Prediction
Methods. As shown in Table 6, MAE and RMSE were used
to evaluate the prediction accuracy of the model in steps of
5min, 10min, and 15min. It turned out that the MAE and
RMSE of the method used in this study are the smallest
among all methods. +e attention effectively reduces the
error of this model. +e MAE error is reduced by up to 12%,
and the RMSE error is reduced by up to 5.56%. +e cal-
culation accuracy of CNN and LSTM-CNN is the closest to
the method used in this study, but there is still a gap between
the accuracy values. It can be seen that the research in this
paper includes a data processing module and LSTM

prediction model based on the attention mechanism, which
has good accuracy and robustness in practical applications.

Figure 17 shows a comparison of the training time of
different algorithms before and after data processing on the
entire road network. In each histogram, the dark color
indicates that the input data are the data processed by the
method used in this study, and the light color indicates that
the input data are the data processed by the interpolation
method. It can be seen that although the training time of
each algorithm is different, the training time has been
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Figure 15: Comparison of prediction results by different sequence input methods: (a) trend series forecast; (b) residual sequence prediction;
(c) trend and residual mixed forecast; (d) undecomposed sequence prediction.

Figure 16: Classification of road network, where the red sections
are expressways, the orange sections are the arterial roads, the green
sections are the secondary roads, and the gray sections are the
branch roads.

Table 5: Evaluation of the prediction results for each road grade.

Road type Expressway
Arterial
road

Secondary
road

Branch
way

MAE
(km/h)

2.02 2.16 2.27 2.47

RMSE
(km/h)

3.12 3.15 3.53 3.76
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shortened after using this method to process the data. +is is
due to the data processing and repair method adopted in this
study, which proves that this method can not only optimize
the model prediction accuracy but also effectively reduce the
computational cost of model training and improve the ef-
ficiency of the model. Compared with other models, the
LSTM model consumes less time. After introducing the
attention mechanism, the efficiency of the LSTM model can
be further improved. In addition, in the verification of
prediction accuracy, the performance of CNN network-
related algorithms that are close to the method used in this
study has poor performance in training time and is less
practical because of overfitting. +e above example verifi-
cation proves that the research method in this study is not
only more accurate than other models in terms of prediction
accuracy but also has a shorter model training time and
higher model efficiency.

TransCAD is used to import data for map matching
and speed classification and to compare the real speed
distribution of the road network and the prediction results.
Figure 18 shows the traffic conditions at a certain moment
in the morning rush hour as taken from real data. +e
speed values are divided into 20 groups with an interval of
5 km/h, with different colors indicating the speed group.
+e closer the color is to red, the lower the traffic speed of
the road section. +e closer the color is to green, the higher
the traffic speed of the road section. A black line indicates
that the data of the section are temporarily missing. It can

be seen from the figure that high-grade roads have more
traffic travel demand than low-grade roads, but higher
grade roads have better road environments and real-time
road conditions.+ere is less traffic flow in low-speed areas
than low-grade roads, and the traffic flow is smoother. In
contrast, low-grade roads have obvious congestion in
many areas during rush hour; that is, the traffic flow is low.
Figure 19 shows the prediction effect of road network
speed distribution during the peak hour period. It is found
that the distribution map is almost synchronized with the
real distribution, and even some original sections with
missing data were repaired and given specific values in the
forecast.

In summary, through the verification and comparative
analysis of the hybrid prediction method (ATT-LSTM), it is
found that this method has outstanding performance and
applicability for short-term traffic speed prediction on urban
road networks. Specifically, different from other studies, the
application scenario in this article is an urban road network
with varied road levels (including expressways, main roads,
secondary roads, and branch roads). Especially, for the raw
data with a certain missing, this paper firstly fills out in-
complete data according to its missing type, which effectively
improves the quality of the data, enhances the usability of
sample data, and improves the accuracy of the model to a
certain extent. At the same time, the attention mechanism is
used to effectively assign weights to distinguish the im-
portance of traffic sequences, which helpfully reduces the
training time of the model and improves the computational
efficiency of the model. +e experiment results have proved
that the proposed method is superior to other advanced
methods both in predicting accuracy and computational
efficiency.

Table 6: Average prediction error of each algorithm.

Model
5min 10min 15min

MAE (km/h) RMSE (km/h) MAE (km/h) RMSE (km/h) MAE (km/h) RMSE (km/h)

ATT-LSTM 2.23 3.39 2.75 4.08 3.26 4.37

LSTM 2.51 3.47 3.14 4.32 3.60 4.53
RNN 3.54 4.73 4.36 5.29 4.85 5.70
LSTM-CNN 2.77 3.93 3.48 4.81 3.93 5.04
CNN 2.69 3.88 3.45 4.38 4.21 5.16
ANN 4.53 5.69 5.10 5.83 5.48 6.59
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Figure 17: Average training time of various algorithms.

Figure 18: +e distribution of real traffic velocity on the road
network.
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6. Conclusion

In this paper, we propose an entire forecasting framework
of short-term traffic speed combined with the data pre-
process module and prediction module. In the data pre-
processing module, in order to improve the sample data
quality, we use the naive Bayes and dynamic time warping
methods to fill the sparse traffic speed data to provide a
complete dataset for the prediction work. In the prediction
module, for the sake of improving the accuracy of short-
time traffic velocity prediction, attention mechanism is
introduced. An ATT-LSTM traffic speed prediction model
is proposed. Firstly, a window is selected in the input se-
quence according to the target prediction value. Next, the
window is matched to obtain the attention weight. And
then, we calculate the predicted value encoded by the LSTM
through the attention distribution probability. Finally, the
model is verified using road network data from Nanshan
District, Shenzhen. Compared with deep learning algo-
rithms such as RNN, CNN, and LSTM-CNN, the ATT-
LSTM model has more advantages in terms of prediction
accuracy and calculating efficiency. +e attention mecha-
nism can further improve the computational efficiency of
the prediction model. In addition, after introducing the
attention mechanism, the error of the prediction model is
significantly reduced. +e MAE is reduced by up to 12.4%,
and the RMSE is reduced by up to 5.5%. +is demonstrates
that the attention mechanism can effectively improve the
accuracy of the prediction results.

Due to the limitations in the objective conditions during
the research period, the research content needs to be further
improved. In future work, we plan to conduct a deeper
discussion on related work, including the following two
aspects: (1) while subdividing missing types and optimizing
models, we should look back at longer historical data to
obtain more accurate estimates; (2) in the next prediction
model, we should consider more integrated data sources and
addmore dimensional factors that affect the traffic operation
state of urban road networks, so as to further improve the
accuracy and practicability of prediction.
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