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For the problem of joint angle and range estimation with frequency diverse array (FDA), MIMO radar, staggered frequency
increment is proposed to expand the range ambiguity and the joint algorithm of ESPRIT and MUSIC is proposed to reduce the
computational complexity. The uniformly weighted beampattern of FDA is a SINC-like function. Therefore, the grating lobe of
range estimation exists. In this paper, staggered frequency increment is proposed to increase the distance of adjacent grating lobes.
The proposed joint estimation algorithm firstly estimates the angle by using ESPRIT algorithm.Thenwe get the range estimation by
MUSIC one-dimensional range search using the above estimated angle. In simulation results section, it is indicated in simulation
results that the proposed method improves the range grating lobe and reduces the complexity.

1. Introduction

Frequency diverse array (FDA) has many potential advan-
tages in radar applications [1–5]. The concept of FDA is
described in [1] for the first time. References [2, 3] summarize
the development of FDA. References [4] and [5], respectively,
address an important issue, decoupling of the slant range and
spatial angle of FDA, by use of random carrier frequency and
prime-carrier frequency. Its beampattern not only is decided
by the spatial angle, but also is dependent on the target’s slant
range. Therefore, it has its own unique advantages in target
antijamming and parameter estimation. In addition, multiple
input and multiple output (MIMO) radar can provide the
waveform diversity advantage. So, the FDA-MIMO radar
has received a wide attention [6–9]. One of the important
problems in FDA-MIMO radar is still the design of range-
independent transmitted waveforms. The joint estimation of
angle and slant range is an important topic for FDA-MIMO
radar [10, 11]. Reference [10] uses the subaperture synthesis
method to solve the joint estimation of angle and range.
Reference [11] proposes a method of transmitting two pulses
to solve the joint estimation of angle and range, without
optimizing the carrier frequency. It is a simple but practical.

For simplicity, slant range is expressed directly as range in the
rest of the paper.

The uniformly weighted beampattern of FDA is a SINC-
like function. Therefore, it forms grating lobe for the range
and angle estimation; that is, the range and angle estimation
is ambiguous. For FDA-MIMO radar, the ambiguous of angle
estimation disappears because of the received array inMIMO.
But the grating lobe of range estimation exists.

On the other hand, generally speaking, joint estimation
of angle and range needs to search in the two range-angle
dimensions. Reference [11] proposes the use of a double trans-
mitted pulses method, which only needs one-dimensional
searching. It can greatly reduce the computational complex-
ity. For further reducing the complexity, a joint estimation
algorithm of ESPRIT and MUSIC is proposed in this paper.
First, ESPRIT algorithm is used to estimate the angle. Then
the range estimation is obtained by MUSIC one-dimensional
searching using the above estimated angle. The angle and
range estimations are automatically paired.The calculation of
this method is smaller than that of [11].

Overall, there are two main contributions in this paper.
First, we use the staggered frequency increment to expand the
ambiguous range in the slant range estimation. Second, we
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use joint ESPRIT andMUSIC estimation algorithm to reduce
the computational complexity.

Notations are as follows: Superscripts (⋅)𝑇 and (⋅)𝐻 denote
complex transpose and conjugate transpose, respectively.⊗ denotes Kronecker product. 𝐼𝑀 is an 𝑀 × 𝑀 identity
matrix. 0(𝑀−1)×1diag[⋅] denotes diagonalization. ∠(⋅) denotes
the angle of the complex value, and the range is from −𝜋 to 𝜋.
2. Signal Model

Here we give a sketch of FDA-MIMO radar with one single
target in Figure 1. In Figure 1, 𝑟 is the target’s range, 𝜃
denotes the source’s angle, and 𝑓0, Δ𝑓, 𝑑,𝑀 denote reference
carrier frequency, frequency increment, distance between the
adjacent elements, and number of elements, respectively.

It is well known that when the transmit array is uniformly
weighted, the transmitted beampattern can be expressed as
[2]

|𝐴𝐹 (𝑟, 𝜃)|
= sin [𝑀𝜋 (−Δ𝑓𝑟/𝑐 + 𝑓0𝑑 sin 𝜃/𝑐 + Δ𝑓𝑑 sin 𝜃/𝑐)]

sin [𝜋 (−Δ𝑓𝑟/𝑐 + 𝑓0𝑑 sin 𝜃/𝑐 + Δ𝑓𝑑 sin 𝜃/𝑐)]
(1)

where 𝑐 denotes light speed. This is a SINC-like function,
and it is obvious that grating lobe will appear at Δ𝑓𝑟/𝑐 +𝑑𝑓0 sin 𝜃/𝑐 + 𝑑Δ𝑓 sin 𝜃/𝑐 = 𝑘, 𝑘 = 0, ±1, ±2, . . .. Therefore,
it forms grating lobe for the range and angle estimation; that
is, the range and angle estimation is ambiguous. For FDA-
MIMO radar, the ambiguity of angle estimation disappeared
because of the received array in MIMO. However, the range
estimation is still ambiguous.

We know that the range resolution in radar system is
equal to 𝑐/2(𝑀 − 1)Δ𝑓 [11]. For the fixed size of array, the
frequency increment Δ𝑓 will be very large if we need high
range resolution. For large Δ𝑓, the range ambiguity caused
by the beampattern will become very close. For example,
range resolution is 150m with a 21-sensor meter-wave radar;
it needs 1MHz bandwidth.Then the frequency incrementΔ𝑓
is equal to 50K Hz. We set the target’s angle 𝜃 = 0∘; we haveΔ𝑓𝑟/𝑐 = 𝑘, 𝑘 = 0, ±1, ±2, . . .; it implies range ambiguity will
appear in 6 km periodically. In this paper, we propose the use
of staggered frequency increment to expand the ambiguity
range of range estimation, in particular, the array transmits
pulses with different frequency increments.

For an 𝑀 -element FDA, the carrier frequency of each
element is

𝑓𝑚 = 𝑓0 + 𝑚Δ𝑓, 𝑚 = 0, ⋅ ⋅ ⋅ ,𝑀 − 1 (2)

Uniform linear array (ULA) in both the transmitted and
received arrays is considered in our paper. Then according to
[11], we know that the transmitted steering vector equals

𝑎𝑡 (𝑟, 𝜃)
= [1, ⋅ ⋅ ⋅ , 𝑒(−𝑗2𝜋(𝑀−1)⋅(−Δ𝑓𝑟/𝑐+𝑓0𝑑 sin 𝜃/𝑐+Δ𝑓𝑑 sin 𝜃/𝑐))] (3)

𝑐 is the speed of light, which is a constant. It is noted that
the transmitted steering vector is dependent on the two
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Figure 1: Sketch of FDA-MIMO radar with one single target.

dimensions of angle and range. Assuming that the MIMO
radar is collocated, the received steering vector equals

𝑎𝑟 (𝜃) = [1, 𝑒−𝑗2𝜋𝑑 sin 𝜃/𝜆, ⋅ ⋅ ⋅ , 𝑒−𝑗2𝜋𝑑 sin 𝜃(𝑀−1)/𝜆]𝑇 (4)

Then the whole steering vector of the FDA-MIMO radar can
be written as

𝑎 (𝑟, 𝜃) = 𝑎𝑡 (𝑟, 𝜃) ⊗ 𝑎𝑟 (𝜃) (5)

The received data of the FDA-MIMO radar can be expressed
as

𝑥 (𝑡) = 𝐾∑
𝑘=1
𝑎 (𝑟𝑘, 𝜃𝑘) 𝑠𝑘 (𝑡) + 𝑛 (𝑡) = 𝐴𝑠 (𝑡) + 𝑛 (𝑡) (6)

where 𝐾 denotes the number of targets. Steering matrix

equals 𝐴 = [𝑎(𝑟1, 𝜃1), ⋅ ⋅ ⋅ , 𝑎(𝑟𝐾, 𝜃𝐾)] ∈ C
𝑀2×𝐾. The source

vector equals 𝑠(𝑡) = [𝑠1(𝑡), ⋅ ⋅ ⋅ , 𝑠𝐾(𝑡)]𝑇 ∈ C
𝐾×1, and the

sources are set as zero mean Gaussian random process. The
noise vector 𝑛(𝑡) is also set as complex Gaussian white noise.
Then the purpose of this paper is to calculate the range and
angle of the 𝐾 targets according to (6).

3. A Joint Estimation Method of
ESPRIT and MUSIC with Staggered
Frequency Increment

3.1. Staggered Frequency Increment for Range Disambiguation.
It is well known that FDA-MIMO radar is ambiguous in
range estimation, and its ambiguous value equals Δ𝑓𝑟/𝑐 +𝑑𝑓0 sin 𝜃/𝑐 + 𝑑Δ𝑓 sin 𝜃/𝑐 = 𝑘, 𝑘 = 0, ±1, ±2, . . .. In the
field of clutter rejection, staggered frequency technology
in Moving Target Indicator (MTI) is used to disambiguate
the ambiguous range estimation caused by high repetition
frequency [12]. Motivated by this, different frequency incre-
ments between pulses are used to disambiguate the ambigu-
ous range estimation caused by high frequency increment.
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For simplicity, we take two frequency increments for example,
as follows:

Δ𝑓1𝑟amb1𝑐 + 𝑑𝑓0 sin 𝜃
𝑐 + 𝑑Δ𝑓1 sin 𝜃

𝑐 = 𝑘1,
𝑘1 = 0, ±1, ±2, . . .

Δ𝑓2𝑟amb2𝑐 + 𝑑𝑓0 sin 𝜃
𝑐 + 𝑑Δ𝑓2 sin 𝜃

𝑐 = 𝑘2,
𝑘2 = 0, ±1, ±2, . . .

(7)

where Δ𝑓1 is the frequency increment of the first transmitted
pulse. Δ𝑓2 is the frequency increment of the second trans-
mitted pulse. 𝑟amb1 represents the maximum unambiguous
value corresponding to Δ𝑓1. 𝑟amb2 represents the maximum
unambiguous value corresponding to Δ𝑓2. Then the maxi-
mum unambiguous value of the two pulses is the overlapping
part of 𝑟amb1 and 𝑟amb2; that is, 𝑟amb = min amb{𝑟amb1, 𝑟amb2},
where min amb{𝑥, 𝑦} denotes the smallest part of the same
value of sets 𝑥 and 𝑦.

From the above analysis, we can see that as long as Δ𝑓1
andΔ𝑓2 are not equal to 0, the maximum unambiguous value𝑟amb can be extended. But we need to find a proper proportion
of Δ𝑓1 and Δ𝑓2 to maximize it. According to MTI selection
criteria, we know that settingΔ𝑓1 andΔ𝑓2 as amutually prime
relationship will maximize the value 𝑟amb. Here coprime-rule
is analyzed in detail. It is difficult to analyzewith (7) under the
effect of unknown parameter 𝜃. Because the period of range
ambiguous value has nothing to dowith the value of the angle𝜃, the 𝜃 is set as 0∘. Then (7) is simplified into the following
form:

Δ𝑓1𝑟amb1𝑐 = 𝑘1, 𝑘1 = 0, ±1, ±2, . . .
Δ𝑓2𝑟amb2𝑐 = 𝑘2, 𝑘2 = 0, ±1, ±2, . . .

(8)

Equation (8) is solved easily:

𝑟amb = min amb {𝑟amb1, 𝑟amb2}
= min amb{ 𝑐𝑘1Δ𝑓1 ,

𝑐𝑘2Δ𝑓2}
(9)

For (9), the first periodically maximum unambiguous value
is calculated with 𝑘1 = 𝑘2 = 1. The ratio of 𝑐/Δ𝑓1 and 𝑐/Δ𝑓2 is
selected as coprime relation. It implies that staggered ratio ofΔ𝑓1 and Δ𝑓2 is selected as coprime-rule. Then, the maximum
ambiguous value is equal to

𝑟amb = min amb{ 𝑐
Δ𝑓1 ,

𝑐
Δ𝑓2} = 𝑐

Δ𝑓1 ⋅
𝑐

Δ𝑓2 (10)

To sum up, when using a single frequency increment, i.e.,Δ𝑓1, the maximum unambiguous range is 𝑐/Δ𝑓1. WhenΔ𝑓2 is used, the maximum unambiguous range is 𝑐/Δ𝑓2.
When proposed mutual-prime frequency increment is used,
maximum unambiguous range becomes 𝑟amb = 𝑐/Δ𝑓1 ⋅ 𝑐/Δ𝑓2,
which is much extended.

3.2. Joint Estimation of Angle and Range Based on ESPRIT
and MUSIC. To make use of the ESPRIT algorithm, we have
to figure out the rotational invariance of the received data
𝑥(𝑡). Because of the range 𝑟 dependency, it is difficult to find
its rotational invariance for the whole steering vector 𝑎(𝑟, 𝜃).
But for the received steering vector 𝑎𝑟(𝜃) of ULA, it is easy
to find the rotational invariance in the angle domain. Then
the rotational invariance is extended to the whole steering
vector. It is our main contribution in this subsection. In the
following, the derivation in detail is given. We define 𝑎1(𝑟, 𝜃)
as 𝑎1(𝑟, 𝜃) ≜ 𝑎𝑡(𝑟, 𝜃) ⊗ 𝑎𝑟,1(𝜃), where 𝑎𝑟,1(𝜃) represents the
steering vector of the first 𝑀 − 1 received elements; then
𝑎𝑟,1(𝜃) equals
𝑎𝑟,1 (𝜃) = [1, 𝑒−𝑗2𝜋𝑑 sin 𝜃/𝜆, ⋅ ⋅ ⋅ , 𝑒−𝑗2𝜋𝑑 sin 𝜃(𝑀−2)/𝜆]𝑇 (11)

We define 𝑎2(𝑟, 𝜃) as 𝑎2(𝑟, 𝜃) ≜ 𝑎𝑡(𝑟, 𝜃) ⊗ 𝑎𝑟,2(𝜃), where
𝑎𝑟,2(𝜃) represents the steering vector of the last𝑀−1 received
elements; then 𝑎𝑟,2(𝜃) equals
𝑎𝑟,2 (𝜃) = [𝑒−𝑗2𝜋𝑑 sin 𝜃/𝜆, ⋅ ⋅ ⋅ , 𝑒−𝑗2𝜋𝑑 sin 𝜃(𝑀−1)/𝜆]𝑇 (12)

For 𝑎1(𝑟, 𝜃) and 𝑎2(𝑟, 𝜃), there is the following rotational
invariant relationship:

𝑎2 (𝑟, 𝜃) = 𝑎𝑡 (𝑟, 𝜃) ⊗ 𝑎𝑟,2 (𝜃)
= 𝑎𝑡 (𝑟, 𝜃) ⊗ [𝑎𝑟,1 (𝜃) 𝑒−𝑗2𝜋𝑑 sin 𝜃/𝜆]
= 𝑎1 (𝑟, 𝜃) 𝑒−𝑗2𝜋𝑑 sin 𝜃/𝜆

(13)

Equation (13) can be converted to

𝐽2𝑎 (𝑟, 𝜃) = 𝑒−𝑗2𝜋𝑑 sin 𝜃/𝜆𝐽1𝑎 (𝑟, 𝜃) (14)

where the selection matrices equal 𝐽1 = 𝐼𝑀 ⊗ [𝐼𝑀 0(𝑀−1)×1]
and 𝐽2 = 𝐼𝑀 ⊗ [0(𝑀−1)×1 𝐼𝑀]. We can see that (14) describes
a rotational invariance of the whole steering vector. Equation
(14) can be expressed as matrix form with all 𝐾 targets, as
follows.

𝐽2𝐴 (𝑟, 𝜃) = 𝐽1𝐴 (𝑟, 𝜃)Θ (𝜃)
Θ (𝜃) ≜ diag [𝑒−𝑗2𝜋𝑑 sin 𝜃1/𝜆, ⋅ ⋅ ⋅ , 𝑒−𝑗2𝜋𝑑 sin 𝜃𝐾/𝜆] (15)

It is noted that the matrix Θ(𝜃) depends only on angle 𝜃,
and the angle estimation can be calculated according to
the rotational invariant relation of formula (15). Firstly, the
received data in (6) is used to calculate the covariance matrix
and then eigendecomposition is implemented to obtain its
signal subspace and noise subspace. For the signal subspace,
we have 𝐸𝑆 = 𝐴𝑇, 𝑇 is a nonsingular matrix. Substituting it
into formula (15), we have

𝐽2𝐸𝑆 = 𝐽1𝐸𝑆Ψ (𝜃) (16)

where Ψ(𝜃) = 𝑇−1Φ(𝜃)𝑇. Under the condition of noise, (16)
can be solved by least square or total least square method;
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Figure 2: The estimated results of range spectrum with first target.

then the estimation of Ψ(𝜃) is obtained. Therefore, the angle

estimation 𝜃 can be calculated by the following formula:

𝜃𝑘 = − arcsin{ 𝜆
2𝜋𝑑∠ ([Φ (𝜃)]𝑘𝑘)} , 𝑘 = 1, ⋅ ⋅ ⋅ , 𝐾 (17)

The diagonal elements [Φ(𝜃)]𝑘𝑘 of the matrixΦ(𝜃) are equal
to the eigenvalues after the eigendecomposition with Ψ(𝜃).
According to the signal model of Section 2, it is well known
that the estimation of angle and range can be realized by the
two-dimensional conventional MUSIC search algorithm:

𝑓2D-MUSIC (𝜃, 𝑟) = 1
𝑎 (𝜃, 𝑟)𝐻𝐸𝑁𝐸𝐻𝑁𝑎 (𝜃, 𝑟) (18)

The estimated angle 𝜃 is used to avoid two-dimensional

searching. Each estimated angle 𝜃𝑘, 𝑘 = 1, ⋅ ⋅ ⋅ , 𝐾 is substi-
tuted into (18), and the range estimation can be obtained by
the following one-dimensional search:

𝑟𝑘 = max[
[

1
𝑎 (𝜃𝑘, 𝑟𝑘)𝐻𝐸𝑁𝐸𝐻𝑁𝑎 (𝜃𝑘, 𝑟𝑘)

]
]

,

𝑘 = 1, ⋅ ⋅ ⋅ , 𝐾
(19)

Note that the angle and range is automatically paired. The
algorithm is performed by firstly finding the angle of the
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target and secondly determining the range of target.The one-
dimensional search method requires𝐾 times successive one-
dimensional search, which is the same as [11].

Note 1. This algorithm does not consider the range ambiguity
caused by high pulse repetition frequency. The problem can
be solved by the method of [13].

Note 2. In order to ensure that angle estimation is unambigu-
ous, the large frequency increment is selected to compute the
distance of the adjacent elements; that is, 𝑑 = 𝑐/2[𝑓 + (𝑀 −1)max(Δ𝑓1, Δ𝑓2)].
4. Simulation Results

The number of elements is 𝑀 = 10. The same range bin has𝐾 = 3 targets. Their angles are 𝜃 = [10∘, 20∘, 30∘]. The ranges
are set as 𝑟 = [10km, 20km, 30km]. The number of snapshots
is 𝐿 = 200. The signal to noise ratio (SNR) is SNR = 20 dB.
We set that the staggered frequency increment equals 10 kHz
and 7.5kHz.Then the ratioΔ𝑓1 : Δ𝑓2 = 4 : 3, which is coprime
relation.

If the staggered frequency increment is not used, the
ambiguities corresponding to the two frequency increments
are 30km and 40km, respectively. The estimated range spec-
trum of the first target is given in the following. Figures 2(a),
2(b), and 2(c) give the results of the frequency increment of
10kHz, 7.5kHz, and the proposed staggered frequency incre-
ment, respectively.The range estimation results of Figure 2(a)
are 10km, 40km, 70km, 100km, and 130km, corresponding
to the true range of target, the 1st, 2nd, 3rd, and 4th range
ambiguities. The peaks mean the target’s estimation result.
It uses a conventional approach with a frequency linear
increment in one pulse. And the frequency increment is 10
kHz. The range estimation results of Figure 2(b) are 10km,
50km, 90km, and 130km, corresponding to the true range of
target, the 1st, 2nd, and 3rd range ambiguities. It also uses

the conventional approach with a frequency linear increment
in one pulse. And the frequency increment is 7.5 kHz. The
range estimation results of Figure 2(c) are 10km and 130km,
corresponding to the true range of target and the range
ambiguity. It is the result of use of staggered frequency
increment. We can be seen that the range ambiguity in
Figure 2(c) is 120km.These results are in full agreement with
the results of our theoretical analysis. We can clearly see from
Figure 2(c) that a small magnitude remains at a distance
corresponding to kth range ambiguity of the target. In fact,
the result of Figure 2(c) is equal to the extraction of the same
peeks between Figures 2(a) and 2(b).This residual magnitude
is so small that we can ignore.The result is similar to the filter
of MTI [12].

The results of Figures 3, 4, and 5 are given for the angle
and range of the three targets. And, of course, the results are
within the unambiguous range. It can be seen from Figure 3
that the results of 100 Monte Carlo experiments are correct
and the pairing results are right.

A RMSE comparison with [11] is given in Figure 4. For
the fairness of comparison, we transform the DBF algorithm
used in [11] to super resolution algorithm, that is, MUSIC
algorithm based on one dimension search. We know that
the estimation preference of MUSIC algorithm is better than
that of the DBF algorithm under the case of the multiple
targets. We can see that the method in [11] has slightly better
estimation accuracy than that of the proposed algorithm.

We can see from (16) that the proposed algorithm does
not use the full array aperture in the angle estimation step
and uses only the aperture of the received array. Method in
[11] uses (18), and we know that the full array aperture is used.
That is why the method in [11] has better performance than
that of the proposed algorithm.

Last, we give the comparison figure with running time.
The range of range search is set as 5km-35km, and the
searching interval is 5m. For the proposed algorithm, we
use two pulses and successive single pulse to compare the
computational complexity with [11].The range of angle search
in [11] is -90 to 90 degrees, and the interval is set as three
kinds: 0.1 degrees, 0.01 degrees, and 0.001 degrees. It is
indicated in Figure 5 that if the successive single pulse is used,
the computational time of our algorithm is smaller than that
of [11]. When two pulses are used, the computational time is
more than 0.1 degrees, less than 0.001 degrees, and equivalent
almost to 0.01 degrees.

The proposed algorithm using successive single pulse
means that one-pulse data with 10kHz frequency increment
is used firstly, and then another pulse data with 7.5kHz
frequency increment is used. The proposed algorithm using
two pulses means that we set the two-pulse data into (6)
together and then use (16) to estimate the angle.

5. Conclusions

The problem of the ambiguous range and angle estimation
of FDA-MIMO radar has been investigated in this paper.
The unambiguous range is extended by using the staggered
frequency increment. ESPRIT algorithm is used to reduce
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the computational complexity compared with angle search
method. And our method can also get the result of automatic
pairing of angle and range estimation.

We should know that two staggered frequency increments
methods in our paper can be considered as the example of the𝑛 staggered frequencies increments method. Unfortunately,
we cannot give the design for 𝑛 staggered frequencies incre-
ments. It will be the focus of our future work. In addition, the
use of the combination of ESPRIT and MUSIC can be also
improved in the aspect of complexity.
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