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direction, thus exposing the wire normal to the wind to 
measure directly the velocity magnitude. The second probe 
was mounted in the vertical direction and was rotated during 
operation around its own axis to measure the transversal 
velocity components, by exploiting the angular sensitivity of 
wire. The so-called “triple decomposition” was performed on 
hot wire data, by extracting the time-averaged, phase-
resolved, and turbulent components of the velocity, as 
discussed by Persico et al [8]. The phase-resolved component 
was obtained by ensemble averaging the velocity signals, 
using the encoder as a key-phasor. The streamwise 
turbulence intensity was determined by extracting the 
unresolved unsteady fluctuations of the velocity signal. A 
pneumatic five-hole probe was also applied throughout the 
tests to measure the pressure level and the 3D flow direction. 
Measured pressure values confirmed the absence of 
blockage-induced over-speeds outside the wake region; flow 
angle measurements with the vertical hot wire and the 
pneumatic probe also indicated negligible transversal and 
vertical velocity components in the wake at midspan. 

NUMERICAL SIMULATIONS 
The two-dimensional simulations presented in this paper 

were carried out using the commercial code ANSYS® 
FLUENT® [10]. The time-dependent unsteady Reynolds-
averaged Navier–Stokes (U-RANS) approach was adopted in 
a pressure-based formulation. The fluid was air, which was 
modeled as an ideal compressible fluid following the 
suggestion of Balduzzi et al [9]. Inlet air conditions were the 
same monitored during the experimental tests, i.e. a pressure 
of 1.01×105 Pa, a temperature of 293 K and an inlet 
turbulence level of 1%. Some of the authors have recently 
presented (Balduzzi et al [9]) the assessment and validation 
of the main settings for a proper CFD simulation of Darrieus 
wind turbines using the FLUENT® code, whose accuracy has 
been also successfully verified by means of experimental 
data (Balduzzi et al [11]). Moreover, in recent works 
(Balduzzi et al [12] and Bianchini et al [13]) the accuracy of 
the proposed numerical approach has been verified exactly 
on the same case study considered here. For the sake of 
completeness, the main numerical settings are briefly 
summarized below. The turbulence closure was achieved by 
means of the k-ω shear stress transport (SST) model (Menter 
[14]), coupled with the Enhanced Wall Treatment embedded 
in the FLUENT® code for the computation of the boundary 
layer in the near-wall regions; since the y+ was constantly 
kept < 1 in the boundary layer, the linear law of the wall is 
actually used. 

The Coupled algorithm was employed to handle the 
pressure-velocity coupling. The second order upwind scheme 
was used for the spatial discretization of the whole set of 
RANS and turbulence equations, as well as the bounded 
second order for time differencing to obtain a good 
resolution (Amet et al [15]). The global convergence of each 
simulation was monitored by considering the difference 
between the mean values of the torque coefficient over two 
subsequent revolutions: according to Balduzzi et al [11], the 
periodicity error threshold was set to 0.1%. 

To simulate the rotation of the turbine, the sliding mesh 
technique was employed, i.e. the computed domain was split 
into a circular zone containing the turbine, rotating with the 
same angular velocity of the rotor, and an outer  rectangular 
fixed zone, determining the overall domain extent. The final 
dimensions of both domains were defined, according to the 
sensitivity analysis reported by Balduzzi et al [9], so to allow 
a full and unconstrained development of the turbine wake. In 
this way, CFD results can be properly compared to 
experiments obtained in unconfined configuration. A 
velocity-inlet boundary condition was imposed at the inlet 
section (40D upwind from the revolution axis). The ambient 
pressure condition was imposed at the outlet boundary (100D 
downwind), while a symmetry condition was defined on 
lateral boundaries (30D). 

In the present study, the finest mesh defined during the 
sensitivity analyses reported by Balduzzi et al [12] was used 
for all the three considered tip-speed ratios. Even if 
redundant at TSR=3.3, this refinement level indeed ensured a 
very accurate discretization of the whole area around the 
rotor, greatly limiting any bias error due to the numerical 
discretization. The mesh is of unstructured and hybrid type, 
with triangular elements in the core flow region, and an O-
grid made of quads in the boundary layer. As discussed, the 
first element height was chosen to guarantee that the 
dimensionless wall distance at the grid nodes of the first 
layer above the blade wall does not exceed y+ ~ 1. The 
expansion ratio for the growth of elements starting from the 
surface was kept below 1.1 to achieve good mesh quality. 
The airfoil surface was discretized with 1400 nodes, resulting 
in 1.2×106 elements for the rotating region, while the 
stationary region was discretized with 2.0×105 elements. The 
mesh characteristics fully accomplish the criteria based on 
dimensionless thresholds proposed by Balduzzi et al [16]. 
Based on the same criteria, in order to limit the Courant 
Number in proximity of the blades, an angular timestep of 
0.21° was used, i.e. the finest one identified by Bianchini et 
al in [13]. With the described settings, the calculation time to 
achieve a complete revolution of the rotor is around 24 hours 
in a 16 CPUs (2.8 MHz each) calculation center. The 
required number of revolutions to achieve a periodic solution 
is dependent on the TSR, varying from 10 to 20 revolutions. 

Figure 2 finally shows some visual details of the mesh in 
the rotating region (a) and near the leading edge (b). 

RESULTS AND DISCUSSION 
To assess the prediction capability of the CFD approach, 

Fig. 3 compares the curve of experimental power coefficient 
cP, defined according to Eq. 1 and measured by Dossena et al 
[7], with the one obtained with present simulations. 

3
0

P

2
1

c 
AV

P

ρ
= . (1) 

It is worth remarking that numerical results were 
corrected to account for the parasitic torque of the supporting 
struts of the rotor, which were of course not simulated in the 
two-dimensional approach.   
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the velocity deficit is now increased due to the higher load 
experienced by the turbine. 

NOMENCLATURE 
A turbine swept area [m2] 
cP power coefficient [-] 
cT torque coefficient [-] 
CFD Computational Fluid Dynamics 
D, R turbine diameter, radius [m] 
ITU turbulence intensity [m] 
k turbulent kinetic energy [m2s-2] 
P power [W] 
RANS Reynolds-Averaged Navier-Stokes 
SST Shear Stress Transport 
T torque [Nm] 
TSR Tip-Speed Ratio 
V wind speed [m/s] 
VAWT Vertical Axis Wind Turbines 
y+ dimensionless wall distance [-] 

Greek letters 
ϑ azimuthal angle [deg] 
ρ air density [kg/m3] 
ω Specific turbulence dissipation rate [s-1] 
Ω revolution speed [rpm] 

Subscripts 
0 value at inlet 
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