
  

 

 

Tilburg University

A Combined Forecast-Inventory Control Procedure for Spare Parts

Heuts, R.M.J.; Strijbosch, L.W.G.; van der Schoot, E.H.M.

Publication date:
1999

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Heuts, R. M. J., Strijbosch, L. W. G., & van der Schoot, E. H. M. (1999). A Combined Forecast-Inventory Control
Procedure for Spare Parts. (FEW Research Memorandum; Vol. 772). Operations research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 24. Aug. 2022

https://research.tilburguniversity.edu/en/publications/333581ee-2340-4176-9933-db09c668632d


1

A combined forecast-inventory control procedure for spare parts

Presented at the Conference on Flexible Automation & Intelligent Manufacturing (FAIM’99)

R.M.J. Heuts1, L.W.G. Strijbosch 2  and E.H.M. van der Schoot3

1CentER for Economic Research, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands
2 Faculty of Economics and Business Administration, Tilburg University, P.O. Box 90153, 5000 LE
Tilburg, The Netherlands
3 CMG Trade, Transport & Industry, SAP Competence Center, P.O. Box 8566, 3009 AN, The Netherlands

Abstract

The interaction between forecast and inventory control has been under-exposed in the literature. This paper

introduces a combined forecast-inventory control procedure that is appropriate especially for the lumpy

demand character of spare parts. The proposed procedure is succesfully implemented in practice.

1. Introduction

MARS (at Veghel, The Netherlands), produces confectionery for the European market with highly

automated machines, 24 hours per day, 365 days per year. A spare parts distribution centre accommodates

all necessary spare parts in order to maintain the equipment. This centre is divided into two sections: an

open (for ‘cheep’ parts) and a closed (for ‘expensive’ and/or very critical parts; often with low usage)

storage section. The idea behind the origin of the open storage section is that the controlling costs of cheep

spare parts are often much higher than the purchase price for such parts. The open storage section has been

created in 1991 and yielded reduction of waiting times for repairmen and savings on total controlling costs.

In the open storage section the repairmen can retrieve cheep spare parts without making any

registration. Two distributors nearby the distribution centre take care of the inventory control. Those

distributors have to deliver spare parts within four working days, by contract. Therefore these distributors

have to stock enough spare parts. In the open storage section the physical stock is controlled every day by a

controller of the distributors. This controller uses a kind of ),( Qs -inventory control system, where the

parameters are set manually and by experience, taking into account that ordering should take place in

multiples of package sizes. When the physical inventory is beneath its order point then the code of this

service part is scanned. The computer system SAP/R3 checks if already an order is outstanding for scanned

parts. If not the part is ordered. The daily visual control of the physical inventory implies that no
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registrations of usage are needed. When a service part is not on stock, then it is almost always available at

the nearby distributor. The delivery time is within four days more or less without variation.

In the closed storage section repairmen ought to register the retrieval of parts. MARS itself controls

the inventory position in that case. In this section also a kind of ),( Qs -inventory control is used, whereby

every transaction is registered. Again the reorder point and order size are based on intuition and experience

regarding inventory turn over rates, product value and transportation/ordering costs. There is an endeaver to

restrict the number of different distributors from 250 to 100. The lead-times from those distributors are

quite different in length. Some variation in lead-time is possible; however, this mainly depends on the

arrangements on deliverance. To reduce complexity we therefore assume fixed lead-times. After delivery

of the service parts, they are checked and registered in the SAP/R3 system. The research project undertaken

was primarily adressed to this closed section part.

Of all spare parts at MARS 40% had no usage during the years 1995-1997 and even 80% had no

usage (cf. Table 1, Usage=0) in the period from Sept.’97 to Febr.’98. Only 1.2% spare parts had a mean

usage per day of more than 0.15 (cf. Table 1, Usage>0.1). Thus, demand for spare parts is very erratic.

Table 1: Relative frequency of daily usage during Sept.’97- Febr.’98

Usage 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2 3 4 >4.5

% 80 19 0.5 0.2 0.2 0.1 0.04 0.02 0.02 0.01 0.02 0.03 0.03 0.01 0.03

As the company is aware of the intuitive nature of the inventory control procedure, a study was

undertaken (van der Schoot, 1998) to design and test a procedure which could outperform the existing one

in service and/or costs. Management considers it important to have one well-defined procedure, which

could be used for all spare parts, independent of their demand characteristics. Given the information lack

regarding the performance of the existing policy and the intuitive nature of it, we firstly had to invent a

simple and formal control rule approximating closely or even outperforming the existing one. In this way it

would become possible to compare the simple approach adhered by the company with a more advanced

policy involving more computer time, a less intuitive decision rule, and formulas which are difficult to

comprehend by the employees concerned. Furthermore, with formally described inventory policies a

simulation study could be set up to investigate the performance of both (the existing and the proposed)

systems. It is clear that only substantial improvements upon the existing policy could convince

management to pass on to a newly designed more complex system.

The next section discusses the characteristics of the spare parts demand and some possible control

procedures. After introducing the necessary notation we formulate the used models precisely and describe

the main results of a Monte Carlo investigation. The last section contains the conclusions and suggestions

for further research.
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2. Some remarks on spare part data and model selection

Ten representative spare parts were selected from the closed storage section to get an impression of the

demand data of spare parts at MARS. For these ten parts the mean time (days) between usage (interarrival

time), )(AE , the mean demand when the part is required, )( *DE , and the demand variance, )( *DVar

were obtained empirically. Together with the fixed lead-time (in days), L , the parts value, v , and the

ordering cost, these figures are recorded in Table 2 illustrating the variability of the main characteristics

which is representative for many parts. Some parts are needed seldom (M8, M9), while the required

number is 1 or 2 (M9), or varies between 1 and for example 7 (M8); other parts are needed frequently like

M0, M1, M2, M4 also with strongly varying required numbers. Part M2, a very critical part in spite of the

low price, is measured in centimeters. The coefficient of variation of the interarrival time which is an

important characteristic when designing a new control procedure, appears to be close to one as can be

expected from the nature of demand (failures of machines). Due to the limited period for which historical

information was available this could not be checked for M8 and M9, unfortunately. However, we assume

from now on that this coefficient of variation equals )(/11 AE− , the coefficient of variation of the

underlying geometric variable.

Table 2: Some data information on ten selected spare parts.

Material )(AE )( *DE )( *DVar Lead-time (L ) Value (v ) Ordering cost

M0 5.9 1.6 1.0 5 14.50 13.62

M1 7.0 21.0 447.6 5 11.83 13.62

M2 7.5 122.7 7709.6 14 1.18 38.62

M3 7.7 3.4 14.2 14 28.00 38.62

M4 24.0 19.4 48.2 30 58.00 38.62

M5 24.5 2.8 4.4 21 22.50 38.62

M6 24.7 7.0 8.0 30 20.02 13.62

M7 24.8 1.2 0.2 25 93.65 38.62

M8 119.0 2.5 4.5 31 725.00 38.62

M9 204.0 1.5 0.5 42 444.00 38.62

Lead-time variability is sufficiently low (see introduction) to assume it to be deterministic. Table 2

demonstrates that demand is very intermittent, in general. A well-defined control policy has to account for

these demand patterns. In consultation with the company a service criterion should be used to determine the

decision parameters s  and Q . The main reason for this choice is the lack of cost information on the

various cost components needed for a cost model. Of the commonly used service criteria the so-called 2P -
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criterion (also called the fill rate) has been chosen, meaning that on the average during a delivery cycle, a

shortage of )1(100 2P−  percent of the mean demand during an arbitrary cycle is allowed.

In the literature several approaches (Silver et al., 1998) are available for the determination of the

parameters s and Q in an (s,Q)-inventory model,where s is the reorder point and Q the order quantity.

Assuming normality of demand during lead-time, the reorder point s can be obtained from

(1) LL kxs σ̂ˆ +=

where the safety stock Lkσ̂ is the product of the forecast error standard deviation of demand during the

lead-time and the safety factor k , which very much depends on the desired type of service and the

normality assumption. Some objections against the normality assumption are:

- non-unit demand can lead to an inventory level under swhen the order is placed;

- a large coefficient of variation leads to an unacceptable large chance of negative demands in the

model;

- skewness is not taken into account.

However, the simplicity of the reorder point formula and its relatively easy implementation explains its

widely usage in many inventory management systems and commercial software. This standard procedure is

a useful candidate to approach the existing intuitive control procedure of MARS. It is simple to understand,

applicable in many situations and -what is most important- closely related to what management considers

appropriate. As management is inclined to use equal safety factors over different spare parts, individually

determined safety factors should outperform the system adhered by the company. Then, showing that an

advanced system is even better only requiring the implementation of some software and a little more

computer time, better values for the decision parameters could be determined on a regular basis, yielding a

closer approximation of the desired service level.

For spare parts inventory management, the literature often suggests the compound Poisson process

concept for demand during lead-time. However, using a compound Poisson process assumes that empirical

information is available of each individual demand and its demand size. In practice this is often not a very

realistic starting point. Rather one has information on discrete time units, such as days or weeks, where

demand is aggregated over time units. Also in the present case one works with demand per day

information. Janssen et al. (1998) describe an ),,( QsR  inventory model with a service level restriction,

and where demand is modelled as a compound Bernoulli process, which very much resembles the

compound Poisson modelling concept when the time unit is chosen small. They have shown that this kind

of modelling is especially suitable for intermittent demand. Further they also show that incorporating the

undershoot of the reorder level yields a substantial improvement on the attained performance levels when

demand is intermittent. However, in the article of Janssen et al. (1998) this procedure is only tested with

known parameter values of the demand distribution. The Bernoulli demand modelling concept seems a

very good candidate for using it as the basis of a newly designed more advanced system for application in

the present case.



5

Forecasting unknown demand parameters

A problem of many methods, suggested in the literature, is the limited reported experience of applying

these methods in practice. It is often unknown to what extent an a priori chosen performance level is

attained. The performance of these methods is not known when using parameter estimates in stead of the

true values of the parameters. Silver and Rahnama (1987) reported on a ),( Qs -model with a cost criterion,

where underestimating the safety factor tends to lead to a higher cost penalty than equivalently

overestimating it. Therefore they suggest to bias the safety factor deliberately upwards so as to reduce the

expected cost penalty associated with statistically estimating the reorder point. An important conclusion of

this study should be that all methods, which are advocated in literature, should be tested, not with complete

information on those parameters, but with an estimation procedure included. The common way to produce

estimates of parameters of demand distributions is by forecasting. Especially exponential smoothing is

applied, for its ability to incorporate non-stationary behaviour of demand. Strijbosch et al. (1997) and

Strijbosch and Moors (1999) investigate the effect of exponentially smoothing demand analytically and by

simulation in a ),( SR -control policy when demand is normally or gamma distributed and leadtimes are

zero. Table 2 suggests that simple exponential smoothing is not appropriate. Croston (1972) showed that

when demand is intermittent, which is obviously the case for spare parts, the forecast error can be reduced

by smoothing the time between demands and the demand sizes separately, and using these for the

forecasting of lead-time demand. Many authors after 1972 showed the relevance of this Croston method.

3. Notation

The notation to be used includes

L = the deterministic lead-time in days

tD = total demand on day t

)(LZt = ∑ = +
L

tD
1τ τ , total demand during the days Ltt ++ ,...,1

)(ˆ τtD = forecast of demand on day t  for day τ+t

)(ˆ LZt = ∑ =
L

tD
1

)(ˆ
τ τ , forecast of demand during the days Ltt ++ ,...,1

)(τte = )(ˆ ττ tt DD −+ , forecast error for τ+tD

)(LEt = )(
1

ττ∑ =
L

te , forecast error for )(LZt

p = the probability of a positive demand on a day

zA = the z-th interarrival time (in days) between two days with positive demand;

1,)1()( 1 ≥−== − kppkAP k
z ; pAE z /1)( = ;  2/)1()( ppAVar z −=
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*
zD = the z-th (total) demand size on a day (if positive) ; )( *

zDE = a ; )( *
zDVar = 2σ

Q = fixed order quantity when the inventory position gets under the reorder point

s = the reorder point

)(⋅DF = the distribution function of tD

)(* ⋅
D

F = the distribution function of *
zD

)(* LZ = the demand during the lead-time if it is positive.

Lp = probability of positive demand during the lead-time

U = the undershoot of the reorder point

*Z = ULZ +)(*

*D
c = a/σ , the coefficient of variation of *

zD

+)(x = )0,max(x

4. Model formulation

This section will be split up into three subsections; one on the forecasting approach, the next on the simple

inventory model which will be used to simulate the company’s preferred model and the last on the

advanced model which should outperform the simple model. Both models apply the forecasting method

explained in the next subsection.

4.1 Forecasting the intermittent demand structure of the spare parts

In the ),( Qs  inventory models described in the next two subsections it is of interest to calculate forecasts,

not for a single period, but rather the sum of forecasts for the next L  periods, )(ˆ LZt . The forecast error is

given by ∑∑ == + −=−= L
t

L
tttt DDLZLZLE

11
)(ˆ)(ˆ)()( ττ τ τ . As we are dealing with spare parts, seasonal or

trend effects are not very likely (except in some special cases). Thus a forecasting procedure based on

single exponential smoothing (SES) seems to be a good choice. As a consequence, all LDt ...,1),(ˆ =ττ  are

identical. For safety stock determination, we are interested in

(2) { } { } { }∑∑ == + += L
t

L
tt DVarDVarLEVar

11
)(ˆ)( ττ τ τ

As we assume that all tD  are i.i.d., LDD tt ...,2),(ˆ)1(ˆ == ττ , and LDt ,...,1, =+ ττ  are  independent of

)1(ˆ
tD ,  the next expression follows:

(3) { } { } { })1(ˆ)( 2
ttt DVarLDVarLLEVar += +τ
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One (or more) days of usage and a large number of days of non-usage typically characterize the demand of

spare parts. Consequently, we consider tD  as the product of two independent variables x and y, where x

has a Bernoulli distribution with parameter p ( 1=x  means: demand is positive) and y having the same

distribution as *
zD  with mean a and variance 2σ . For this type of intermittent (or lumpy) demand Croston

(1972) introduced a point forecasting procedure, which separates interarrival times of non-usage and order

sizes at a demand occurrence. Johnston and Boylan (1996) and Willemain et al. (1994) show that this idea

of Croston is superior to applying SES to all the demand data, zero demand or not. We employ this idea by

transforming the demand data tD  into the series *
zD  and zA  such that index z consecutively only numbers

the days with positive (total) demand (denoted by *
zD ), while zA  is the number of days since the previous

day of positive demand. On both *zD  and zA  SES is applied. To be more precise,

(4) )1(ˆ)1()1(ˆ *
1

**
−−+= zzz DDD αα

(5) )1(ˆ)1()1(ˆ
1−−+= zzz AAA ββ

(6) ,...2,1,
)1(ˆ
)1(ˆ

)(ˆ
*

== ττ
z

z
t

A

D
D

where indices z and t are related in an obvious way: *zD  (having mean a and variance 2σ ) is the last

observed (positive) demand on day t or previous to day t. Using the approximations { } aDE z ≈)1(ˆ * ,

{ } pAE z 1)1(ˆ ≈ , { } 2*

2
)1(ˆ σ

α
α
−

≈zDVar , { }
2

1

2
)1(ˆ

p

p
AVar z

−
−

≈
β

β
 (these approximations hold when

enough historical information is available and the demand data is stationary; see e.g. Brown, 1963), and

)()( 222222
yyxxyxyxVar µσµσµµ +≈  (for independent variables x and y; see Mood et al., 1974) we may

write

(7) { } 





−

−
+

−
≈ 222 )1(

22
)1(ˆ appDVar t β

βσ
α

α

As tD  can be considered as the product of two independent variables x and y (see before), the next

expression follows (using 222222)( yxyxxyxyVar σσσµσµ ++=  for independent variables x and y; see Mood et

al., 1974):

(8) { } )1(22 ppapDVar t −+≈+ στ

As a result

(9) { }








−++





−

−
+

−
≈ )1()1(

22
)( 2222 paappLpLLEVar t σ

β
βσ

α
α

In this expression the unknown parameters can be estimated as follows:

(10) 2)2(25.1ˆ),1(ˆˆ),1(ˆ1ˆ * ασ −=== zzz MADDaAp
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yielding ( ))(ˆ LEraV t  as an estimate of ( ))(LEVar t . The estimate for σ  is obtained according to a well-

known relationship (Brown, 1963) and zMAD  is obtained by SES too:

(11) 1
*

1
* )1(|ˆ| −− −+−= zzzz MADDDMAD ωω  

4.2. The simple ),( Qs  inventory model as an approximation for a MARS intuitive approach

When applying the simple method (1), we need the estimates Lx̂  and Lσ̂ . These can be obtained with the

aforementioned forecasting procedure:

(12) )(ˆˆ LZx tL =

(13) ))((ˆˆ 2 LEraV tL =σ

The safety factor k can be obtained by solving the corresponding service equation (Silver et al., 1998):

( )21)( P
Q

kG
L

u −=
σ

 where )(kGu  is defined ( )duukukG
ku 2exp

2

1
)()( 2−−= ∫

∞

π
.

4.3. The advanced (s,Q) inventory model

Janssen et al. (1998) analysed an ),,( QsR  inventory model, which was shown to be especially suitable for

slow moving items such as spare parts. As in the MARS case we have the option to order every day, the

),,( QsR  model reduces to an ),( Qs  model which is a special case, which in addition can be combined

with the forementioned intermittent forecasting procedure. This inventory model is based on some

important assumptions, some of which are based on the MARS situation ((a), (c), (e)):

(a) lead-time will be considered as fixed and integer;

(b) both the demand during lead-time (if positive) and the undershoot of the reorder level are distributed as

mixed Erlang distributions;

(c) the reorder point s is positive;

(d) daily demand is i.i.d. and considered as a continuous variable;

(e) a service criterion (the so-called fill rate performance) is used with back ordering possibility;

(f) the order quantity Q  is fixed a priori.

Dunsmuir and Snyder (1989) developed an ),( Qs  inventory model where intermittent demand was

modelled as a compound Bernoulli process (CBM), that is, with a fixed probability a positive demand

during a time unit occurs, otherwise there is zero demand. Janssen et al. have adapted the method presented

by Dunsmuir and Snyder, taking into account undershoot of the reorder point, possible shortages at the

beginning of a replenishment cycle and the possibility of stochastic lead-times and a periodic review
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period. Using their method of approach the fill rate service equation (also known as 2P -service equation)

for the ),( Qs  model, can be shown to look as:

(14) { } QQsUEsUEpQsZEsZEpP LL /))()()(1())()((1 **
2

++++ −−−−−+−−−−=−

from which the reorder level s can be determined when Q is fixed. Here and in the sequel we employ the

same notation as in the previous section. However, we omit the indices.

Management wanted the order quantity to be at least equal to the demand during lead-time. As

LpLZELZE /))(())(( * =  and L
L pp )1(1 −−= , we decided in favour of LpLZLZ /)(ˆ)(ˆ * =  in the Q

fixing, as it is in general more conservative than )(ˆ LZ . Thus the order quantity Q was fixed as follows:

(15)
elsewhereLZ

LZEOQifEOQQ

),(ˆ5.1

)(ˆ5.1
*

*

=

>=

Besides, Janssen et al. (1998) have shown that when a more sophisticated approach is followed by

minimizing the ordering cost plus the holding cost subject to the fill rate constraint, the EOQ is near to

optimality when the holding cost is small. So a more complex simultaneous procedure for fixing s and Q

seems not appropriate.

To solve the above service equation we evaluate expressions of the type ( )+⋅E  using mixed Erlang

distributions (cf. Janssen et al., 1998; Tijms and Groenevelt, 1984), which are fitted on the basis of the

forecasted moments of their corresponding stochastic variables U and ULZZ += )(** . The first two

moments of the undershoot U can be approximated in the following way, using renewal theory:

(16) ( ) ( ) ( ))(2)(2)( *2*2 DEDEDEDEUE 


=≈

(17) ))(3()())(3()()( *3*32 DEDEDEDEUE =≈

The variance of U follows from 22 ))(()()( UEUEUVar −= . From experience we observe right skewness

in the *D  process. If we assume that *D  can be approximated by a gamma distribution, then

(18) 3223* )21)(1()( ** accDE
DD

++=

In this way *D  is only a function of its first two moments, which can be estimated by the forecasting

equations (4), (10) and (11). Using (16) an estimate of Û  for )(UE  can be obtained:

[ ]
a

a

DE

DEDVar
UE

2)(2

)()(
)(

22

*

2** +=+≈ σ
, 

a

a
U

ˆ2

ˆˆˆ
22 += σ

Analogously we obtain )(ˆ UraV  from (16) through (18).

As [ ] 22* /))(()1(/))(())(( LLL pLZEppLZVarLZVar −−=  (cf. Janssen et al., 1998) we obtain:

[ ] 22* ˆ/)(ˆ)ˆ1(ˆ/))((ˆ))((ˆ LLL pLZppLZraVLZraV −−=
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where LpaLZ ˆˆ)(ˆ =  and ))((ˆ))((ˆ LEraVLZraV =  (cf. (9)). At last, we need the relations ULZZ ˆ)(ˆˆ ** +=

and )(ˆ))((ˆ)(ˆ ** UraVLZraVZraV += .

By renewal theory Janssen et al. (1998) have shown that the expected average physical stock is

equal to

(19)
[ ] [ ]

Q

sQs
p

Q

LZsELZQsE
pQs LL 2

)(
)1(

2

)()(
),(

22

2
*

2
*

1
++−+




 −−


 −+
=

++

µ

It should be noted that in all cases we analyzed, which had high P2-service levels and positive reorder

points, the complex formula above could safely be approximated by the following simple one:

(20) )(2/),(2 LZEQsQs −+=µ

5. Simulation experiments

Monte Carlo experimentation will be employed to study the performance of the combined simple and

advanced forecasting/inventory control procedures in the previous sections. Using those regimes, we will

investigate by simulation both the attained (2P -)service and average inventory levels thereby simulating

data which resemble the company’s usage data for various spare parts (cf. Table 2), so that the results are

relevant for the company. An important aspect of the simulation study is the use of the forecasting

procedures to estimate the demand parameters. Janssen et al. (1998) tested the CBM method with known

demand parameters. However, using estimated parameter values will influence the performance of the

system (Silver and Rahnama, 1987; Strijbosch et al., 1997; Strijbosch and Moors, 1999). This section

proceeds as follows. Firstly, we describe the design of the simulation program. Next the results of the

simulations will be presented and discussed.

5.1. Simulation design

The simulation program is set up according to the ‘next event’ principle (Kleijnen and van Groenendaal,

1994). This principle means that after taking care of all events on a certain day, the programs continues to

the day of the following event. The events, which may occur, are:

- A delivery by the supplier, resulting in an increase of the inventory position.

- A usage of the spare part, leading to an update of the forecasts of mean time between demands,

mean demand size, and corresponding mean absolute deviation of forecast error.

- The inventory position gets under the reorder level, which evokes an order.

Demand sizes are generated according to a mixed Erlang distribution, whereas the time between demand

occurrences is generated mostly according to a geometric distributed variable +1 (the interarrival time is at
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least 1). Using a run-in period of 100 demands measurements of performance are obtained after 100,000

demand occurrences. After each demand occurrence the forecast parameters ap ˆ,ˆ  and σ̂  are updated.

However, after each period of 90 days the decision parameters s and Q are recalculated using the

corresponding service equation, thereby substituting the present values of the forecast parameters. Next,

(19) and (20) are evaluated and averaged at the end of the simulation run. As is common practice a small

value for ω  is chosen ( 025.0=ω ).

The nature of demand may normally considered to be reasonable stationary. Replacing parts by

better alternatives cause dramatic changes in the demand pattern, for example. These causes cannot be

accounted for by forecasting. The events, which influence the demand pattern strongly, should be

accounted for by the ‘management-by-exception’ principle. Thus, relatively small values for α  and β  are

chosen ( 05.0== βα ). The most important assumptions that are being used throughout the various

simulations are:

(a) non-integer values for the reorder point and the order size generated by the simulation program are

being rounded upwards and

(b) demand sizes generated by the program are being rounded to integers with a minimum of one.

The main output of the simulation program is as follows:

(a) Average (physical) inventory level ),( Qsµ  as a result of the simulation.

(b) Average inventory level according to formulae (19) and (20).

(c) Attained 2P -service level, SL, defined by

(21) ,1
cycleperdemandmean

cyclepershortagemean
SL −=

Mean shortage per cycle is defined as the accumulated shortage at the end of all replenishment cycles

during the simulation horizon divided by the number of cycles, and mean demand per cycle is defined by

aggregated demand over the simulation horizon divided by the number of cycles. A correction for a

possible shortage at the beginning of the replenishment cycle seems not necessary as the service levels used

in the simulation and desired by the company are very high (0.95 and 0.99).

5.2. Simulation results

The simple inventory control procedure will be denoted by STM (standard method), the advanced one by

CBM (compound Bernoulli method). Table 2 has been used to set constant and varying values for the

parameters of the control procedures in the simulation. The simulation yields the performances (realized

service level, and average inventory level as measured during the simulation) of both procedures for each

of the two desired service levels (0.95 and 0.99) as a function of one varying key variable. The constant

(varying) values of the parameters are set as follows:

)200,100,75,50,25,20,15,10,5(25)( =AE ,
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3)( * =DE ,

)20,15,10,8,6,4,2,0(9)( * =DVar ,

)50,40,30,20,10,5(20)( =LE ,

)6.1,4.1,2.1,0.1,8.0,6.0,4.0())(/(11 AEcA −= .

 When, as is the case in the underlying CBM, the interarrival time has a geometric distribution with

minimal value 1, the corresponding coefficient of variation Ac  equals )(/11 AE− , which is close to 1 in

many cases. As there is some doubt on the validity of the assumption of the geometric distribution, we have

performed a simulation experiment where the interarrival time is generated by a gamma distribution with

varying Ac .

Table 3: Attained service levels for varying delivery times; tabulated are )ˆ(*100 ,22 CBMPP − ,

and )ˆ(*100 ,22 STMPP − within parentheses.

2P                                      Delivery time

5 10 20 30 40 50

0.95 2 (18) 2 (14) 2 (11) 2 (10) 2 (9) 2 (9)

0.99 1 (13) 1 (10) 1 (8) 1 (7) 1 (6) 1 (6)

Table 3 shows the simulation results for varying lead-time. As lead-time increases the performance

of CBM is consistent. However, the attained service level is 1-2% under the desired one, which is mainly

due to the fact that the distribution parameters are unknown and substituted by estimated values. A better

approach of the desired service level could simply be obtained in practice by upgrading the 2P -service a

little. On the contrary, STM yields a service level that is much lower in the first place and is not consistent.

The increasing service level for increasing lead-times is due to the fact that the distribution of demand

during lead-time will be closer to the normal distribution as lead-time increases. There is no obvious way to

correct STM such that the attained service level would be closer to the desired level.

Table 4: Attained service levels for varying mean interarrival times; tabulated are

)ˆ(*100 ,22 CBMPP − , and )ˆ(*100 ,22 STMPP − within parentheses.

2P                                                          Mean interarrival time

5 10 15 20 25 50 75 100 200

0.95 2 (7) 2 (8) 2 (10) 2 (11) 2 (11) 2 (15) 2 (17) 2 (18) 3 (22)

0.99 1 (4) 1 (5) 1 ( 6) 1 ( 7) 1 ( 8) 1 (10) 1 (12) 1 (14) 1 (18)
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Table 4 shows the results for varying mean interarrival times using an interarrival time which is

geometric. Again, as should be, CBM produces a consistent level of the attained service. However, STM

turns out to be extremely sensitive to )(AE .

Table 5 shows the results for varying variance of demand size. The decrease of the attained service

level with CBM and increasing )( *DVar is mainly due to the fact that the factor 1.25 used in order to obtain

an estimate of the forecast error standard deviation, should be larger (Jacobs and Wagner, 1989). With

STM, again the normality assumption is less appropriate with increasing )( *DVar , yielding a decreasing

service level.

Table 5: Attained service levels for varying variance of *D ; tabulated are )ˆ(*100 ,22 CBMPP − ,

and )ˆ(*100 ,22 STMPP − within parentheses.

2P                                                   Variance of *D

0 2 4 6 8 10 15 20

0.95 1 (6) 1 (8) 1 (9) 1 (10) 2 (11) 2 (12) 3 (14) 4 (16)

0.99 0 (3) 0 (4) 0 (5) 1 ( 6) 1 ( 7) 1 ( 8) 1 (10) 2 (12)

Table 6: Attained service levels for varying coefficient of variation of the interarrival time;

tabulated are )ˆ(*100 ,22 CBMPP − , and )ˆ(*100 ,22 STMPP − within parentheses.

2P                          Coefficient of variation of interarrival time

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.95 -2 (12) -1 (14) 1 (16) 2 (18) 5 (21) 7 (23) 10 (25)

0.99 0 (10) 0 (11) 0 (12) 1 (14) 2 (16) 3 (18) 5 (20)

Table 6 shows the extent of robustness of CBM against violating the assumption that interarrival

times are geometrically distributed. For these simulated situations the attained service levels diminish,

which is mainly due to the fact that zA  and zD are not i.i.d. (as is used for both STM and CBM, cf. (7) and

(8)) when Ac  deviates from the corresponding value of a geometric variable (Janssen et al., 1998).

For all different simulation situations (62 in number) µ1(s,Q) , µ2(s,Q) and ),(ˆ Qsµ  (the average physical

inventory during the simulation run) are evaluated. We found that %6
),(ˆ

),(),(
%0 21 <




 −
<

Qs

QsQs

µ
µµ

,
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%7
),(ˆ

),(ˆ),(
%4 2 <

−
<−

Qs

QsQs

µ
µµ

 and %12
),(ˆ

),(ˆ),(
%1 1 <




 −
<

Qs

QsQs

µ
µµ 1. These figures show that the

preference for formula (20) is appropriate. It turns out that formula (20) is a very useful formula to obtain

an estimate of the average inventory in the described situations.

6. CONCLUSIONS

This paper tried to give the management of MARS an idea whether going from an intuitive control to a

more consistent complex combined forecasting/replenishment approach, would pay off. The results of the

new approach were such that they decided to implement it in the near future.

Literature

Brown R.G. (1963). Smoothing, forecasting and prediction. Prentice-Hall: Englewood Cliffs, N.J.

Croston J.D. (1972). Forecasting and stock control for intermittent demands. Operational Research

Quarterly 23, 289-303.

Dunsmuir, W.T.M., and R.D. Snyder (1989). Control of inventories with intermittent demand. European

Journal of Operational Research 40, 16-21.

Jacobs R.A. and H.M. Wagner (1989). Reducing inventory system costs by using robust demand estimators

Mgmt Sci 35, 771-787.

Janssen F.B.S.L.P., Heuts R.M.J. and A.G. de Kok (1998). On the (QsR ,, ) inventory model when demand

is modelled as a compound Bernoulli process. European Journal of Operational Research 104, 423-

436.

Johnston F.R. and J.E. Boylan (1996). Forecasting for items with intermittent demand. Journal of the

Operational Research Society 47, 113-121.

Kleijnen J.P.C. and W. van Groenendaal (1994). Simulation, a statistical perspective. Wiley: Chichester.

Mood A.M., Graybill F.A. and D.C. Boes (1974). Introduction to the theory of statistics. Third Edn.

McGraw-Hill: Tokyo.

van der Schoot, E.H.M. (1998). Voorraadbeheersing van reserveonderdelen bij MARS (in Dutch). Masters

Thesis, Tilburg University, The Netherlands.

Silver E.A., Pyke D. and R. Peterson (1998). Inventory management and production planning and

scheduling. Third Edn. John Wiley: New York.

                                                          
1 The largest percentages occur with the lowest average inventory levels.



15

Silver E.A. and M.R. Rahnama (1987). Biased selection of the inventory reorder point when demand

parameters are statistically estimated. Engineering Costs and Production Economics 12, 283-292.

Strijbosch L.W.G., Moors, J.J.A. and A.G. de Kok (1997). On the interaction between forecasting and

inventory control. Research Memorandum FEW 742, Tilburg University: The Netherlands.

Strijbosch L.W.G. and J.J.A. Moors (1999). Inventory control: the impact of unknown demand distribution.

Research Memorandum FEW 770, Tilburg University: The Netherlands.

Tijms H.C. and H. Groenevelt (1984). Simple approximations for the reorder point in periodic and

continuous review (s, S) inventory systems with service level constraints. European Journal of

Operational Research 17, 175-190.

Willemain T.R., Smart C.N., Shockor J.H. and P.A. DeSautels (1994). Forecasting intermittent demand in

manufacturing: a comparitive evaluation of Croston’s method. International Journal of

Forecasting 10, 529-538.


