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  Introduction

  Advances in high-throughput technologies for next-
generation sequencing have empowered the interrogation 
of thousands of individual genomes. Valuable emerging 
resources such as the 1000 Genomes  [1]  and UK10K Proj-
ects (http://www.uk10k.org/) provide reference panels for 
imputation and a deep catalogue of human sequence vari-
ation. Next-generation association studies are poised to 
survey most of the common and rare genetic variation of 
the human genome. Whole-exome and whole-genome se-
quence-based studies are being designed and increasingly 
carried out, both for common and rare diseases.

  A major challenge in interpreting whole-exome/ge-
nome data is predicting which of the discovered variants 
are likely to be functional or disease-causing and which 
are neutral. To address this question in silico, several func-
tional annotation tools focusing on the analysis of non-
synonymous coding variants (ns variants) have been im-
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  Abstract

   Aims:  Next-generation sequencing has opened the possibil-

ity of large-scale sequence-based disease association stud-

ies. A major challenge in interpreting whole-exome data is 

predicting which of the discovered variants are deleterious 

or neutral. To address this question in silico, we have devel-

oped a score called Combined Annotation scoRing toOL 

(CAROL), which combines information from 2 bioinformatics 

tools: PolyPhen-2 and SIFT, in order to improve the predic-

tion of the effect of non-synonymous coding variants.  Meth-

ods:  We used a weighted  Z  method that combines the prob-

abilistic scores of PolyPhen-2 and SIFT. We defined 2 dataset 

pairs to train and test CAROL using information from the db-

SNP: ‘HGMD-PUBLIC’ and 1000 Genomes Project databases. 

The training pair comprises a total of 980 positive control 

(disease-causing) and 4,845 negative control (non-disease-

causing) variants. The test pair consists of 1,959 positive and 

9,691 negative controls.  Results:  CAROL has higher predic-

tive power and accuracy for the effect of non-synonymous 

variants than each individual annotation tool (PolyPhen-2 

and SIFT) and benefits from higher coverage.  Conclusion:  
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plemented. These tools are mainly based on sequence ho-
mology  [2–4] ; empirically derived rules  [5, 6] ; structural 
and functional features  [7–12] ; artificial neural networks 
 [13–16] ; decision trees  [17, 18] ; random forests  [19] ; support 
vector machines  [20–23] ; and Bayesian classifiers  [24] .

  Two widely used functional annotation tools are the 
Polymorphism Phenotyping-2 (PolyPhen-2) and Sorting 
Intolerant From Tolerant (SIFT). Their common feature 
is the fact they both account for evolutionary protein pat-
terns. PolyPhen-2 differs from SIFT in that it predicts the 
functional effects of mutations based on the posterior 
probability that a given mutation be deleterious, whilst 
SIFT directly computes the probability of an amino acid 
substitution occurring at each position of multiple aligned 
homologous sequences  [2, 3, 24] . PolyPhen-2 also ac-
counts for sequence and structural based-features, i.e. the 
specific site in which the substitution occurs and 3D 
structure of the protein  [5, 6] .

  We developed a new algorithm called Combined An-
notation scoRing toOL (CAROL),   which combines infor-
mation from PolyPhen-2 and SIFT. We use a weighted  Z  
method to derive the combined score. We calibrate and 
validate CAROL using positive (known disease-causing) 
and negative (postulated non-disease-causing) control 
variants. CAROL has high predictive power for the effect 
of ns variants and has the distinct advantage of high cov-
erage, i.e. low missing data rates.

  Methods

  Functional Annotation Tools
  The profile scores of two typically used annotation tools were 

combined in order to obtain a score that better predicts the func-
tional effect of amino acid substitutions. PolyPhen-2 performs 
multiple alignments with homologous sequences using BLAST 
and calculates position-specific independent count (PSIC) scores 
for each position ( i ) of the sequence in the profile matrix. The 
PSIC score is given by the log-likelihood of the given amino acid 
occurring at a particular position  [25] . PolyPhen-2 then computes 
the absolute value of the difference between profile scores of both 
wild-type and variant amino acid residues for a specific position 
( dScore = Score 1 –  Score 2), which corresponds approximately to 
the log-likelihood of substituting the wild-type amino acid for the 
mutant amino acid. Moreover, it also annotates the substitution 
site, e.g. active or binding, maps the substitution site to a known 
protein 3D structure, which indicates whether the substitution 
will affect any important feature of the protein, and checks for any 
contact with functional sites, e.g. contact with ligands, interaction 
between subunits of the protein alignment and contact with ‘crit-
ical’ residues  [5, 24]  by using a machine-learning approach. The 
prediction of the functional effect is calculated by naïve Bayes 
posterior probability and the qualitative prediction is based on 
cut-offs of the score.

  SIFT firstly searches for homologous sequences and chooses 
closely related sequences, which might share similar function. It 
then obtains multiple alignments for those sequences and calcu-
lates the normalized probabilities and conservation scores for 
each position in the multiple aligned sequences  [2, 3, 26] . The nor-
malized probability is determined by the ratio between the prob-
ability of observing the variant amino acid at position  i  in  n  ho-
mologous sequences and the maximum probability of the most 
frequent amino acid in position  i , that is the wild-type amino acid 
most of the time. For SIFT scores  1 0.05 the amino acid substitu-
tion is predicted to be tolerant, meaning that the variant amino 
acid has probabilities close to the wild-type amino acid and for 
SIFT scores  ! 0.05 the mutation is predicted to be deleterious (in 
this case the probability of the variant amino acid is much lower 
compared with the wild-type amino acid)  [26] .

  As PolyPhen-2 and SIFT scores are not at comparable scales, 
we calculated the probability of the complement of the SIFT 
scores. The scaled scores ( P  k ) range between 0 and 1, in which 
scores closer to 1 indicate that the amino acid substitution is del-
eterious, and scores closer to 0 that it is neutral.

  CAROL Algorithm
  The CAROL algorithm is based on a weighted  Z  method, 

which combines the probabilistic score for each annotation tool 
( P  k ):

  
  

2
,k k k

k k

w Z
CAROL

w

  where  Z  k  is the standard normal deviates for each  k -th annotation 
tool, and  w  k  is the weight for the  k -th tool, which is defined by the 
following log-likelihood:

   w  k  = ln(1 –  P  k ) –1 .

  According to  w  k , more weight will be given to bigger  P  k , which 
reflects a higher probability that a mutation is deleterious.  w  k  
ranges between 0 and 6.9 as by default scores of 1 in SIFT and 
PolyPhen-2 are converted to 0.999. The derived probability of the 
CAROL score ranges between 0 and 1. As we are classifying a dif-
ferent dataset of that utilized by PolyPhen-2 and SIFT, we opti-
mised PolyPhen-2, SIFT and CAROL’s power to predict deleteri-
ous and neutral effects at a threshold of 0.57, 0.96 and 0.98, respec-
tively. The optimal threshold decision relied on the principle of 
obtaining the largest sensitivity whilst committing the smallest 
number of false positives, and it was determined by plotting a re-
ceiver operating characteristic (ROC) curve.

  We investigated the incorporation of further functional an-
notation and conservation scores such as Protein ANalysis 
THrough Evolutionary Relationships (PANTHER)  [4]  and Ge-
nomic Evolutionary Rate Profiling (GERP)  [27] , but found that 
PolyPhen-2 and SIFT produced the most robust combination (on-
line suppl. fig. S1; for all online supplementary material, see www.
karger.com/doi/10.1159/000334984). PANTHER uses information 
from Hidden Markov Model (HMM) to classify both protein’s 
family and subfamily in order to predict protein function. In anal-
ogy to the other mentioned tools, PANTHER identifies and anno-
tates conserved motifs in protein sequences. GERP test relies on 
the concept of rejected substitution to identify constrained ele-
ments. In other words, GERP identifies sequences that harbour 
fewer mutations than would be expected for neutral sequences re-
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flecting the intensity of purifying past selection  [27] . In addition 
to CAROL we explored three further combinations: CAROL+
GERP, CAROL+PANTHER and CAROL+PANTHER+GERP (on-
line suppl. fig. S1). The same weighted  Z  method was applied in-
corporating  P  k  given by PANTHER (corresponding to the proba-
bility of the complement of  P  deleterious ). The weighting model was 
redefined when GERP ( w  G ) was incorporated to:

  
  

ln .
1

G

k

GERP
w

P

  We then compared the predictive power of CAROL with 
CONDEL (CONsensus DELeteriousness score of missense muta-
tions) annotation tool. CONDEL is based on a weighted average 
of the normalized scores  [28]  that combines information from 
different annotation tools.

  Calibration and Validation
  To calibrate and validate CAROL, we defined two sets of 

positive and negative control variants selected from the Human 
Gene Mutation Database (HGMD-PUBLIC version) (http://www.
hgmd.cf.ac.uk/ac/index.php), dbSNP Short Genetic Variations 
(http://www.ncbi.nlm.nih.gov/projects/SNP/) and 1000 Genomes 
Project  [1] . HGMD is the most curated database of germline mu-
tations in nuclear genes underpinning or associated with human 
inherited disorders  [29] . dbSNP is a public catalogue of human 
genetic variation including both disease-causing clinical muta-
tions, provided by locus-specific mutation databases (LSDBs), as 
well as neutral polymorphisms  [30] . The 1000 Genomes Project 
aims to survey the majority of human genetic variation with allele 
frequency  1 1%  [1] .

  Positive control variants were selected if they were annotated 
as ‘Clinical/LSDB variations’ present in the dbSNP and ‘HGMD-
PUBLIC’ databases and if they were not found in the 1000 Ge-
nomes Project data. Negative control variants were selected if they 
had a 1000 Genomes Project frequency higher than 10% in all 
populations, if they were not annotated as ‘Clinical/LSDB varia-
tions’ in dbSNP, and if they were not included in the ‘HGMD-
PUBLIC’ database. All positive and negative controls were ns 
variants, extracted using Ensembl API 62 (assembly GRCh37.p2) 
 [31] , having consequence ‘NON_SYNONYMOUS_CODING’ 
and excluding secondary consequences of ‘SPLICE_SITE’. The 
1000 Genomes variants were obtained from dbSNP 132. The two 
sets were subsequently separated into training and testing sets in 
order to mitigate the risk of overtraining.

  Running Parameters
  PolyPhen-2, SIFT and CONDEL predictions were obtained in 

Ensembl API release 62 (more information is available at: http://
www.ensembl.org/info/docs/variation/index.html). The version 
of CONDEL available in Ensembl only finds a weighted average 
between PolyPhen-2 and SIFT. PANTHER version 1.02 was in-
stalled and run in-house. We followed the standard parameters 
suggested by its authors (http://www.pantherdb.org/). We used 
the latest HMM library version 7.0. GERP scores for mammal spe-
cies were also extracted using Ensembl API (for more informa-
tion, see http://www.ensembl.org/Help/Faq?kw=compara). The 
CAROL algorithm was written in  R  language and can be accessed 
at: http://www.sanger.ac.uk/resources/software/carol/.

  Results

  HGMD-PUBLIC had 6,685 ns variant entries, the 1000 
Genomes Project had 66,942 ns variant entries and db-
SNP had 513,794 ns variant entries, of which 6,316 ns vari-
ants were classified as clinically related. In total, we com-
piled 2,939 positive and 14,536 negative control variants. 
We used a training set of 980 positive and 4,845 negative 
control variants to evaluate different versions of the com-
bined annotation tool and to define optimal thresholds 
for each annotation tool. We subsequently tested CAROL 
on an independent set of 1,959 positive and 9,691 negative 
controls. Online suppl. figure S2 shows the probability 
distribution of  P  k , for both positive and negative testing 
controls, for PolyPhen-2, SIFT and CAROL.

  Performance statistics for the 3 different annotation 
tools are illustrated in  table 1 . CAROL correctly predicted 
83% of the disease-causing substitutions as deleterious, 
corresponding to the most accurate prediction out of the 3 
tools (80% for PolyPhen-2 and 81.9% for SIFT). CAROL 
also correctly classified 72.7% of the neutral variants as 
true negatives, which was similar to SIFT (72.7%) and 
higher than PolyPhen-2 (70.5%). CAROL was found to 
have the lowest type II error rate (17%) compared with 
PolyPhen-2 (20%) and SIFT (18.1%). CAROL’s type I error 

  Table 1.  S ensitivity, specificity, type II error rate, type I error rate, 
missing values (NAs), total accuracy and area under ROC curve 
estimation for PolyPhen-2, SIFT and CAROL using an optimal 
threshold of 0.57, 0.96 and 0.98, respectively

 PolyPhen-2  SIFT  CAROL 

 Sensitivity  0.800  0.819  0.830 

 Specificity  0.705  0.727  0.727 
 Type II error  0.200  0.181  0.170 

 Type I error  0.295  0.273  0.273 
 NAs  0.116–0.125  0.004–0.177  0.001–0.072 

 Total accuracy  0.721  0.744  0.745 

 ROC area  0.836  0.821  0.852 

 N umbers in bold denote where CAROL performs better than 
the other 2 annotation tools.

  Sensitivity equals the number of true positives divided by the 
number of true positives plus false negatives; Specificity equals 
the number of true negatives divided by the number of true nega-
tives plus false positives; Type II error equals 1 – sensitivity; Type 
II error equals 1 – specificity; Total accuracy equals the number 
of true positives plus negatives divided by the number of total 
positives plus negatives; ROC area equals the value of the Wilcox-
on-Mann-Whitney test statistic [as in ref.  32 ]. 
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rate was 27.3%, similar to SIFT (27.3%) and lower that Poly-
Phen-2 (29.5%) ( table 1 ). The lowest rate of missing data 
was observed for CAROL, it increased coverage compared 
to SIFT by 0.3% for the positive control set and 4.5% for the 
negative control set; and compared to PolyPhen-2, it in-
creased coverage by 11.5% for the positive control set and 
5.3% for the negative control set. Online suppl. table S1 il-
lustrates the performance statistics for the training and the 
total datasets, in which similar results were obtained.

  In general, CAROL performed better than SIFT and 
PolyPhen-2, as shown by the total accuracy in  table 1  and 
ROC curve ( fig. 1 ). The ROC curve plots the proportion 
of variants correctly classified as deleterious (true posi-
tive rate or sensitivity) against the proportion of variants 
wrongly classified as so (false positive rate or type I error) 
for the 3 different prediction tools. In a ROC curve, an 
ideal prediction would give a vertical line of error noise 
0, and a totally random prediction would give a line with 
a slope of 1. The estimated area under the curve was 
83.6%, 82.1%, and 85.2%, for PolyPhen-2, SIFT and CAR-
OL, respectively ( table 1 ). CAROL achieved the highest 
accuracy of 74.5% compared with PolyPhen-2 (72.1%) 
and SIFT (74.4%), which is calculated by the number of 
true positives plus negatives divided by the number of
total positives plus negatives. This indicates that CAROL 

gives relatively more accurate predictions compared with 
PolyPhen-2 and SIFT.

  Importantly, CAROL has considerably increased cov-
erage, i.e. lower rates of missing data, compared with the 
other tools. This is due to the fact that CAROL integrates 
the scores of the 2 component methods, and can still pro-
vide a score when one of the component methods does 
not. A common reason that might explain why Poly-
Phen-2 and SIFT did not make a prediction is because 
they were unable to find sufficient related protein se-
quences at the position of interest in their respective mul-
tiple sequence alignment pipelines. The addition of more 
predictive tools could in fact increase the coverage of 
CAROL, although it would not be considerable as its 
missing rate is already very low. CAROL’s performance 
was also slightly superior compared to that of CONDEL, 
as represented by its ROC curve, which has a predictive 
power of 0.849 (online suppl. fig. S3).

  Discussion

  Next-generation sequencing has opened the possibil-
ity of large-scale sequence-based disease association 
studies. A major challenge in interpreting whole-exome/
genome data is predicting the functional consequence of 
the discovered variants. Currently there are over 40 func-
tional annotation tools, each one focusing particularly on 
different protein features. Combining all these tools is 
beyond the scope of this work. A recent approach based 
on the combination of different tools to improve the pre-
diction of the effect on ns coding variants was proposed: 
CONDEL  [ 28 ] . Here we introduce CAROL as a new 
method, which is an automated way of combining profile 
scores across the 2 most commonly used functional an-
notation tools: PolyPhen-2 and SIFT, by over-weighting 
sequence positions where the variant amino acid is most 
likely to be deleterious.

  CAROL was found to have a higher predictive power 
and accuracy for the effect of ns variants than each of the 
2 individual annotation tools. CAROL also has a lower 
type I error rate compared with SIFT and PolyPhen-2. A 
possible reason for the observed rate of type I error in the 
3 annotation tools is that the negative set may contain a 
sizeable amount of mildly deleterious alleles. CAROL has 
the distinct advantage of higher coverage, i.e. less missing 
data, making it a well-suited approach for the automated 
prediction of whole-genome/exome ns variants and di-
rectly applicable to large-scale data generated by rese-
quencing projects.
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  Fig. 1.  Receiver operating characteristic (ROC) curves of the 3 
prediction tools. CAROL score makes a larger number of correct 
predictions (true positives, y-axis) for a given number of errors 
(false positives, x-axis) compared with SIFT and PolyPhen-2. 
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  The assignment of functional scores has so far mainly 
focused on coding variants, although the majority of 
human genome sequence variation resides outside pro-
tein-coding regions. Non-coding variants demonstrably 
harbour important functional elements, and there are 
numerous examples of robust association between non-
coding variants and complex diseases. Whilst challeng-
ing, developing functional annotation tools to compre-
hensively predict the effect of non-coding variants is an 
important research direction.
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