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A combined NLP-differential evolution algorithm approach for the

optimization of looped water distribution systems

Feifei Zheng,1 Angus R. Simpson,1 and Aaron C. Zecchin1

Received 11 January 2011; revised 5 May 2011; accepted 11 July 2011; published 27 August 2011.

[1] This paper proposes a novel optimization approach for the least cost design of looped
water distribution systems (WDSs). Three distinct steps are involved in the proposed
optimization approach. In the first step, the shortest-distance tree within the looped network
is identified using the Dijkstra graph theory algorithm, for which an extension is proposed to
find the shortest-distance tree for multisource WDSs. In the second step, a nonlinear
programming (NLP) solver is employed to optimize the pipe diameters for the shortest-
distance tree (chords of the shortest-distance tree are allocated the minimum allowable pipe
sizes). Finally, in the third step, the original looped water network is optimized using a
differential evolution (DE) algorithm seeded with diameters in the proximity of the
continuous pipe sizes obtained in step two. As such, the proposed optimization approach
combines the traditional deterministic optimization technique of NLP with the emerging
evolutionary algorithm DE via the proposed network decomposition. The proposed
methodology has been tested on four looped WDSs with the number of decision variables
ranging from 21 to 454. Results obtained show the proposed approach is able to find optimal
solutions with significantly less computational effort than other optimization techniques.

Citation: Zheng, F., A. R. Simpson, and A. C. Zecchin (2011), A combined NLP-differential evolution algorithm approach for the

optimization of looped water distribution systems, Water Resour. Res., 47, W08531, doi:10.1029/2011WR010394.

1. Introduction

[2] In most cases, the design and construction of water
distribution systems (WDSs) is costly, often in the order of
millions of dollars for larger capital works. Thus, the optimi-
zation of WDSs has historically been investigated by many
researchers in order to potentially save significant costs. The
nonlinear relationship between pipe head loss and discharge,
plus the discrete nature of pipe sizes that can be used, bring
about many complexities for optimally designing WDSs.
This is increasingly difficult for looped WDSs, in which
pipe flows and nodal heads are unknown quantities. Two
aspects contribute to the nonsmoothness properties of the
WDS optimization problems. These include: (1) the pipe di-
ameter choices being composed of discrete sizes rather than
being continuous decision variables; and (2) the nonlinear
value term involving the velocity within the head loss equa-
tions. Generally, there are two different types of WDS opti-
mization problems. One is the completely new WDS design
problem, while the other is the expansion of the existing
WDSs (such as the optimal rehabilitation of WDSs where
there are some already existing pipes).

[3] Historically, a number of traditional optimization
techniques have previously been applied to water network
optimal design, including linear programming (LP) [Alpero-
vits and Shamir, 1977; Fujiwara et al., 1987; Bhave and
Sonak, 1992; Sonak and Bhave, 1993] and nonlinear

programming (NLP) [Lansey and Mays, 1989; Fujiwara
and Khang, 1990]. These methods are deterministic and ex-
hibit fast convergence. Often convergence to local optimal
solutions occurs because of the nonsmoothness properties of
the WDS optimization problem. In addition, the final solu-
tion is usually given in terms of continuous pipe sizes or split
pipe sizes, which represents a significant practical limitation.

[4] In the last two decades, considerable research has
been undertaken into the optimization of WDSs using evolu-
tionary algorithms (EAs). EAs are able to handle discrete
search spaces directly and are less likely to be trapped at
local optima. The search strategy of EAs differs compared
with traditional optimization techniques (such as LP or NLP)
in that they explore the search space broadly on the basis of
stochastic evolution rather than on gradient information.
Genetic algorithms (GAs) were one of the first EAs applied
to the optimal design of WDSs [Murphy and Simpson, 1992;
Simpson et al., 1994, Savic and Walters, 1997; Montesinos
et al., 1999]. Other applications have included Cunha and
Sousa [2001], who employed simulated annealing; Geem
et al. [2002], who developed a harmony search model;
Eusuff and Lansey [2003], who proposed a shuffled frog
leaping algorithm (SFLA); Maier et al. [2003], who applied
an ant colony optimization approach; and Suribabu and Nee-
lakantan [2006], who introduced particle swarm optimiza-
tion (PSO). These techniques have been successfully applied
to a number of WDS optimization problems, and have been
demonstrated to be more effective in finding optimal solu-
tions compared with traditional optimization techniques.

[5] More recently, Tolson et al. [2009] developed a
hybrid discrete-dynamically dimensioned search (HD-
DDS) algorithm for WDS optimization and concluded that
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HD-DDS was as good as, if not better, than other EAs in
terms of search ability, while being significantly more com-
putationally efficient. The differential evolution (DE) algo-
rithm is a relatively new optimization technique that has
received attention recently within WDS optimization
research. Vasan and Simonovic [2010] and Suribabu [2010]
applied DE to the optimization of WDSs and concluded
that the search ability of DE was found to be better than
other EAs, such as GAs and ant colony optimization. Gen-
erally, EAs have been demonstrated to be robust in finding
optimal design solutions for WDSs. However, they are
computationally expensive, especially when dealing with
large-scale WDSs.

[6] In order to overcome the limitations of each optimi-
zation method (the deterministic and the EA approaches),
a new optimization approach that incorporates both types
of optimization techniques has been previously proposed
by researchers. Reis et al. [2006] proposed a GA-LP model
to obtain the optimized operation of reservoir systems.
Afshar et al. [2009] developed a hybrid two-stage GA-LP
algorithm to optimize the design and operation of a non-
linear, nonconvex, and large-scale cycle storage system. In
terms of WDS design optimization, Krapivka and Ostfeld
[2009] proposed a coupled GA-LP scheme for the least
cost pipe-sizing of water networks. In this method, the
optimization problem was decomposed into an ‘‘inner’’
and an ‘‘outer’’ problem. The ‘‘inner’’ LP was formulated
and solved for a fixed set of flows, while the flows were
altered in the ‘‘outer’’ using a GA. In their proposed opti-
mization approach, an enumeration approach was initially
used to identify all possible spanning trees for a looped
water network. Then a LP solver was employed to opti-
mize the pipe diameter sizes for each spanning tree to
allow the least cost spanning tree to be determined. Lastly,
the spanning tree chords were locked into the minimum
permissible pipe diameters and the least cost spanning tree
was further optimized using the proposed coupled GA-LP
technique. The main advantage of this approach is that the
search space handled by the GA-LP is reduced as the
chords of the spanning tree are set to be the minimum
allowable pipe sizes and removed as decision variables.
However, this approach is computationally expensive for
finding the least cost spanning tree since all the possible
spanning trees need to be evaluated. This method is there-
fore limited in practical applications by the fact that it is
impossible to evaluate all the spanning trees for a rela-
tively large water network, and the global optimal solution
for the original water network could be missed as the span-
ning tree chords are fixed by the minimum allowable pipe
sizes in this method. An additional criticism is that a split-
pipe approach is used in their proposed optimization tech-
nique. The new coupled optimization approach proposed
in this paper overcomes the problems associated with ear-
lier approaches.

[7] The research presented in this paper employs a graph
theory decomposition method to effectively combine the
EA (DE) and NLP. Typically, graph theory has been fre-
quently used to analyze network connectivity properties
and reliabilities [Yang et al., 1996; Shinstine et al., 2002;
Davidson et al., 2005, Deuerlein, 2008], while little effort
has been made to use graph decomposition in the optimiza-
tion of WDSs.

[8] The objective of this paper is to introduce a novel
approach for dealing with two different types of WDS opti-
mization problems (either a completely new design or the
expansion of the existing WDS). Features of this new meth-
odology include the use of an efficient graph theory algo-
rithm in determining the shortest-distance tree for a looped
water network, and the combination of a deterministic opti-
mization technique (NLP) and an evolutionary optimization
algorithm (DE). It is observed that, in most of the tradi-
tional combinations of optimization models [Reis et al.,
2006; Afshar et al., 2009; Krapivka and Ostfeld, 2009],
EAs have been used to determine the regions of optimal
solutions, whereas deterministic methods (such as LP) have
been used to further explore the interior of these regions
identified by EAs. The new proposed combination model
differs with the traditional combination models in that an
NLP is used to identify the approximate region of the opti-
mal solution, while an EA is employed to further search the
interior of the region. In this proposed approach, an NLP
solver is used to optimize the pipe diameters for the shortest-
distance tree within a continuous pipe diameter search
space (as opposed to a discrete diameter search space).
This continuous solution, complemented by the chords of
the shortest-distance tree with minimum allowable pipe
sizes, forms an approximately optimal solution for the orig-
inal water network. A DE is then seeded in the vicinity
of this approximately optimal solution, thereby allowing
the DE search to concentrate only on promising regions of
the search space. As a result, better quality solutions are
expected to be reached more efficiently, and with a higher
likelihood. A total of four WDS case studies, including an
expansion of an existing WDS and three new designs where
they are no existing pipes, have been used to verify the
effectiveness of the proposed optimization approach.

2. Methodology

[9] The three steps involved within the proposed meth-
odology are outlined below.

2.1. Step 1: Shortest-Distance Tree

[10] A WDS can be described as a graph G, in which
vertices of the graph represent the nodes of the WDS, and
edges of the graph represent links between nodes. In graph
theory, a connected graph without any loops is referred as a
tree [Deo, 1974].

[11] For a looped WDS, a demand node i may have a
number of alternative paths to receive water from the source
node s. Of these paths between s and node i, the path with
the shortest total length of edges is denoted as the shortest
path for node i. If we take the shortest path from the source
node s to each of the other demand nodes, then the union of
these paths will be a tree T, rooted at source node s. Every
path in T from s is the shortest path in the original graph G.
Such a tree is called the shortest-distance tree [Deo, 1974].
The remaining edges of G that are not traversed by any
shortest paths are termed as chords.

[12] For a looped WDS, when a demand node has two or
more alternative paths receiving flow from a source node,
the assumption is that an effective way of delivering
demand (for the optimal design) is along the shortest path
[Kadu et al., 2008]. Thus, the shortest-distance tree is
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considered to be an optimal tree of the looped WDS, in that
each demand node has one and only one shortest path to
the source node. An example of a shortest-distance tree and
chord for a looped water network is given in Figure 1.

[13] The looped water network in Figure 1a consists of
five demand nodes labeled from 1 to 5, six links (with
lengths in meters), and one source node s. Each node has
one, or more than one, path to the source node s. The iden-
tification of the shortest-distance tree for such a simple
looped water network can be carried out by visual inspec-
tion. All of the paths from each demand node back to the
source node s in this simple looped network are given in
the third column of Table 1. As can be seen from Table 1,
node 1 to s has only one path, and hence this is the shortest
path from node 1 to s. For node 2, there are two alternative
paths including path 2-1-s and 2-4-3-s to s. The path 2-1-s
has the shorter length with value of 900 m. Thus, the path
of 2-1-s is the shortest path from node 2 to s. The shortest
path for each node is identified as shown in the fifth column
of Table 1. As a result, the shortest-distance tree is formed
with these shortest paths as shown in Figure 1b. The
remaining link, 5, is the chord of the shortest-distance tree.

[14] For this looped water network with limited alterna-
tive paths, a complete enumeration approach can be used to
compute the sum of lengths of each alternative path for a
node, thereby directly identifying the shortest path. How-
ever, the complete enumeration approach becomes intracta-
ble for larger water networks.
2.1.1. The Dijkstra Algorithm

[15] An efficient graph theory algorithm, called the Dijk-
stra algorithm [Deo, 1974], is employed to identify the
shortest-distance tree for complex water networks. The
Dijkstra algorithm works by iteratively assigning and
updating labels for each node indicating to the shortest path
found so far for that particular node. For the source, a per-
manent label 0 is assigned. A permanent label is given to a
vertex once the shortest path from this vertex to the source
vertex has been determined. The value of the permanent
label is made equal to the sum of the lengths of the shortest
path. In contrast, a temporary label is given to a vertex for
which the shortest path has not yet been identified. The
value of this temporary label is set to be equal to the sum
of the lengths of the shortest path in the current iteration
and this value is to be updated in later iterations. The Dijk-
stra algorithm is efficient in finding the shortest-distance
tree for a looped network, especially for large and complex
networks [Deo, 1974]. The computational complexity (a proxy
for execution time for the algorithm) for the Dijkstra algo-
rithm implementation on a general graph with V vertices
and E edges, is O(V2 þ E). The graph representing a WDS

is sparse, thus the Dijkstra algorithm can be implemented
more efficiently by storing the graph in the form of linked
lists. In this case, the computational complexity time is
O([E þ V]log[V]) [Deo, 1974].
2.1.2. An Extension of the Dijkstra Algorithm

[16] The Dijkstra algorithm is formulated for a single
source node graph. In this paper, a supersource approach is
used to extend the Dijkstra algorithm to handle systems with
multisource nodes. Variants of the supersource approach
have been previously used to generate a treed network on
the basis of a looped network [Walters and Lohbeck, 1993;
Walters and Smith, 1995]. The details on the extension of
the Dijkstra algorithm to deal with the multisource WDS are
given below.

[17] For a multisource WDS of k sources (reservoirs), an
artificial supersource node is created to connect all of the
source nodes. Note that the lengths of the artificial links are
set to be zero. The Dijkstra algorithm starts the search from
the supersource node which is given a permanent label of
zero (0). In the following step, each source of the WDS is
also given a permanent label of zero. In the third step, all
successors of the k sources are labeled as temporary with a
value equal to the length between the successor and its corre-
sponding source node. For each successor connected to more
than one source, all of the distances between this successor
and its connecting sources are evaluated and the smallest
value is given to this successor as the temporary label. Then,
the Dijkstra algorithm is implemented to determine only one
permanent label in the third step and the subsequent itera-
tions. With this method, a complex WDS with k sources is
decomposed into k different subnetworks connected via an
artificial supersource node and k artificial links.

2.2. Step 2: Nonlinear Programming Optimization

[18] In step 2, the objective is to find the lowest cost
design for the shortest-distance tree network determined in

Figure 1. An example of the shortest-distance tree and a chord for a looped water network ((a) A
looped water network (G), (b) Shortest-distance tree and chord).

Table 1. Determination of the Shortest-Distance Tree

Source Node Node Number Paths Lengths (m) Shortest Path

S 1 1-s 500a 1-s
2 2-1-s 900 2-1-s

2-4-3-s 1030
3 3-1-s 650 3-1-s

3-4-2-1-s 1280
4 4-2-1-s 1080 4-3-1-s

4-3-1-s 850

5 5-4-2-1-s 1380 5-4-3-1-s
5-4-3-1-s 1150

aBoldface entries indicate the shortest path.
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step 1, while satisfying the nodal head constraints. The
objective function F is given by

F ¼ a
X

n

i¼1

Db
i Li; ð1Þ

where Di ¼ the diameter of pipe i, L i ¼ the length of pipe
i, a, b ¼ the specified coefficients, and n ¼ the total number
of pipes in the network.

[19] Typically, the constraints for the optimization of
water networks include flow continuity at each node,
energy conservation in each primary loop, and the mini-
mum allowable head requirement at each node. Since a tree
network is optimized in this step, the discharges for each
pipe of the tree network can be determined to satisfy conti-
nuity at each node. Two alternative methods are proposed
in this study to determine the discharges of the shortest-
distance tree for a WDS. The application of these two meth-
ods is dependent on the types of WDSs being optimized.
The description of these two methods is given as follows:

[20] Method 1: For the shortest-distance tree of the opti-
mization problem of a completely new WDS, the flows in
the chords of this WDS are assumed to be zero. Thus, the
discharges for the pipes in the shortest-distance tree net-
work are determined accordingly.

[21] Method 2: For the shortest-distance tree of an
expansion WDS optimization problem, an alternative
method is proposed where flows in the chords are taken to
be equal to that from the hydraulic analysis for the original
WDS. The flows in the treed network pipes are then deter-
mined as the flows in the chords have assumed values.

[22] In this study, for the expansion WDS optimization
problem, the two methods mentioned above are tested to
determine the most effective one. For the shortest-distance
tree, energy conservation does not need to be considered in
the formulation of the NLP as there are no loops involved
in a treed network. Thus, the number of constraints for
NLP in step 2 is reduced significantly for the optimization
of the shortest-distance tree produced in step 1.

[23] For the formulation of the NLP for optimizing the
shortest-distance tree, the remaining constraints are the
head constraint at each node and the diameter sizes that can
be used. Since each node has a path to the source node, the
head loss along this path should be less than a specified
value that is equal to the head provided at source node
minus the head required at this node. Two of the most fre-
quently used formulas for head-loss calculation in pipes are
the Hazen-Williams (H-W) and Darcy-Weisbach (D-W)
equations [Walski, 1984]. The constraint for each node (i)
and these two formulas are given by

X

m

k¼1

hfk � Hs � Hmin
i ; ð2Þ

Hazen-Williams : hf ¼ !
L

C�D�
Q�; ð3Þ

Darcy-Weisbach: hf ¼ f
L

D

V 2

2g
; ð4Þ

where, hfk ¼ the head loss in pipe k, Hs ¼ the head at source
node, Hmin

i ¼ the head requirement at node i, m ¼ the total

pipes involved from node i to source node, ! ¼ the numeri-
cal conversion constant which depends on the units, �, � ¼
the coefficients, L ¼ the length of pipe (m), C ¼ the
Hazen-Williams coefficient, D ¼ the diameter of the pipe
(m), and Q ¼ the pipe flow rates (m3 s�1). In this study,
� ¼ 1:852 and � ¼ 4:871 are used. For SI units, i.e., the
units of L, D, in meters, and Q in m3 s�1, ! ¼ 10:667 is
used. In equation (4), f ¼ the D-W friction factor for the
pipe (dimensionless) and V ¼ water velocity (m s�1).

[24] For the NLP formulated in this study, the diameters
of pipes are treated as continuous variables, and the con-
straint for the diameters are given by

Dmin � D � Dmax; ð5Þ

where Dmin and Dmax are the minimum and maximum
allowable pipe sizes, respectively.

[25] The continuous solution for the shortest-distance
tree network, complemented by the chords of the shortest-
distance tree set to the minimum allowable pipe diameters,
is an approximately optimal solution for the original looped
water network. For the final step, this approximately opti-
mal solution needs to be replaced using commercially avail-
able discrete pipe sizes, and cannot be guaranteed to be the
global optimal solution on the basis of the assumption that
was made in step 1. To obtain the global optimal solution
using commercially available pipe diameters on the basis of
the current solution achieved in step 2, a DE algorithm is
applied and the optimization is moved to step 3.

2.3. Step 3: The Differential Evolution Algorithm

[26] The differential evolution (DE) algorithm, intro-
duced by Storn and Price [1995], is found to be a relatively
simple but powerful EA for global optimization. There are
three important operators involved in the DE algorithm
including the mutation, crossover, and selection operators,
which is quite similar to the GAs. Several parameters that
need to be determined in the use of the DE include popula-
tion size (N), mutation weighting factor (F), and crossover
rate (CR). A DE differs significantly compared to a GA in
the mutation process such that the mutant solution is gener-
ated by adding the weighted difference (F) between two
random population members to third member. The process
of DE is given as follows.
2.3.1. Initialization

[27] The DE is a population-based stochastic search
technique. Thus, a set of members of the initial population
is required to initialize the DE search. Normally, each ini-

tial population Xi;0 ¼ x1
i;0; x2

i;0; . . . . . . . . . x
D
i;0

n o

is generated

by randomizing individuals from a uniform distribution
within the search space, that is

x
j
i;0 ¼ x

j
min þ randð0; 1Þðxj

max � x
j
minÞ i ¼ 1; 2; . . . ;N ;

j ¼ 1; 2; . . . ;D;
ð6Þ

where x
j
i;0 ¼ the initial value of the j-th parameter for the

i-th individual in the initial population, x
j
min and xj

max ¼ the
minimum and maximum bounds of the j-th parameter,
respectively, rand(0, 1) represents a uniform distributed
random variable in the range [0, 1], while N and D ¼ the
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population size and dimension of the vector, respectively.
The population size is not changed during the DE evolution
process.
2.3.2. Mutation

[28] The DE is mainly driven by its mutation strategy
compared with the GAs. A mutant vector Vi,G, with respect
to each individual Xi,G, is produced by adding the weighted
difference (F) between two random population members to
a third member from the current population. Each individ-
ual Xi,G associated with a mutant vector is denoted as the
target vector. A frequently used mutation strategy in DE is
given as follows:

Vi;G ¼ Xri
1
;G þ FðXri

2
;G � Xri

3
;GÞ; ð7Þ

where Vi,G ¼ the mutant vector with respect to the target
vector of Xi,G at generation G, Xri

1
;G, Xri

2
;G, Xri

3
;G are three

vectors randomly selected from the current population
(ri

1 6¼ ri
2 6¼ ri

3). These three indexes are randomly generated
for each mutant vector. F is the mutation weighting factor.
2.3.3. Crossover

[29] After the mutation, a trial vector Ui,G is generated
though selecting solution component values either from
Xi,G or Vi,G. In the basic DE version [Storn and Price,
1995], uniform crossover is employed as

u
j
i;G ¼

v
j
i;G; if randð0; 1Þj � CR

x
j
i;G; otherwise

(

; ð8Þ

where u
j
i;G, v

j
i;G, x

j
i;G ¼ the j-th parameter for the i-th trial,

mutant, and target vectors, respectively, CR is the crossover
rate within the range of [0, 1], rand(0, 1)j is a random num-
ber between 0 and 1 generated for each parameter j. If
rand(0, 1)j is smaller than CR, the parameter v

j
i;G in the mu-

tant vector is copied to the trial vector, otherwise, the pa-
rameter x

j
i;G in the target vector is copied to the trial vector.

2.3.4. Selection
[30] After crossover, all the trial vectors are evaluated

using the objective function f(Ui,G) and are compared with
their corresponding trial vector objective function f(Xi,G).
The vector with a lower objective function value (given a
minimization problem) survives for the next generation.
That is

X i;Gþ1 ¼
U i;G; if f ðU i;GÞ � f ðX i;GÞ

X i;G; otherwise

�

; ð9Þ

where Xi,Gþ1 is the i-th individual at the generation G þ 1.
[31] Mutation, crossover, and selection are repeatedly

applied generation by generation until the stopping crite-
rion is satisfied. It is observed that the basic DE is a contin-
uous global optimization search algorithm. As a result, DE
should be modified to solve discrete WDS optimization
problems. A new approach to deal with the truncation of
the continuous variables to the available discrete pipe sizes
is proposed. The continuous pipe sizes are rounded to the
nearest commercially available pipe diameter after applica-
tion of the mutation operator given in equation (7). Each
vector element is checked after application of the mutation
operator. If its value is smaller or larger than the minimum
or maximum allowable pipe size, then the minimum or

maximum allowable pipe size is assigned. If its value is
between two sequentially discrete pipe diameters, the dis-
crete pipe diameter that is closest is assigned. In addition,
constraint tournament selection is used in the DE to handle
head constraints [Deb, 2000].

[32] The NLP continuous pipe diameter solution
obtained in step 2 is used to initialize or seed the population
for DE optimization. In this study, the initial population of
the DE was generated by randomly selecting pipe diame-
ters for each decision variable from a set of limited options
on the basis of the NLP optimal solution instead of all
available pipe diameters. The set of limited pipe diameter
options is referred to as a seeding table for its correspond-
ing pipe. Two different initial seeding tables are created for
the continuous pipe-size solution of the shortest-distance
tree network. One seeding table consists of two adjacent
pipe diameters, one having a discrete diameter that is im-
mediately larger than the NLP continuous pipe size and the
other having a discrete diameter that is immediately
smaller. The other seeding table is composed of four adja-
cent pipe diameters, two having discrete diameters that are
larger than the NLP continuous pipe size and the other two
having discrete diameters that are smaller. The DE that is
seeded with two pipe diameters is denoted as NLP-DE1,
while the DE that is seeded with four pipe diameters is
denoted as NLP-DE2. These two DEs that are seeded with
different sizes from initial tables are applied to the four
case studies. For the initial DE population, pipe diameters
in the range of initial seeding tables are randomly selected.
For each chord of the shortest-distance tree, the two and
four adjacent minimum permissible pipe sizes are ran-
domly selected for the NLP-DE1 and -DE2 initial popula-
tion, respectively. It is noted that, with this approach, each
decision variable has only two or four tailored optional
pipe sizes to be randomly selected for starting the DE ex-
ploration. Thus, the initial solutions that need to be evolved
are scattered in the region around the approximate-optimal
solution produced in step 2, rather than randomly distrib-
uted throughout the entire search space. It should be high-
lighted that the tailored seeding table obtained in step 2 is
used only to initialize the DE’s search, and it does not nec-
essarily specify a limited search space for the DE explora-
tion. That is, in step 3 the DE is not limited to only explore
the interior region of the search space defined by the initial
seeding table, but the search can expand to the region that
is outside the initial seeding table. Hence, the finally
selected pipe diameters for some pipes may be outside
those contained in the initial seeding table.

3. Case Study Results and Discussion

[33] The Dijkstra algorithm that is used in step 1 and the
DE that is used in step 3 has been coded in Cþþ. The NLP
formulated in step 2 is solved by software Lingo12 [LINDO
Systems Inc., 2009]. The DE application in step 3 combines
the EPANET2.0 solver [Rossman, 2000]. Four case studies
are used to verify the effectiveness of the proposed optimi-
zation approach including the New York Tunnels problem
(NYTP), the Hanoi problem (HP), the Zhi Jiang network
(ZJ), and the Balerma network (BN). The Hazen-Williams
formula is used to calculate the head loss for the NYTP,
HP, and ZJ case studies and the Darcy-Weisbach formula is
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used for the BN case study. Storn and Price [1995] recom-
mended the parameter ranges for the DE of ID � N � 10D,
0.3 � F � 0.9, 0.5 � CR � 1.0 as the DE with these parame-
ter ranges showed generally favorable performance in terms
of convergence properties. For each case study in this paper,
a preliminary sensitivity analysis was performed to deter-
mine the effective N, F, and CR values on the basis of the
range given by Storn and Price [1995] for each parameter.

3.1. Case Study 1: New York Tunnels Problem
(NYTP)

[34] A schematic of the NYTP system is given as Figure 2.
The network has 21 existing tunnels and 20 nodes fed by
a fixed-head reservoir. The details of this network, includ-
ing the head constraints, pipe costs, and water demands
are given by Dandy et al. [1996]. The objective is to
determine which pipe should be installed in parallel with
the existing pipes such that the cost is minimized while
satisfying the minimum head requirement at all nodes.

There are 15 pipe diameters that can be selected for the
NYTP. In addition, a zero pipe size provides a total of
16 options (15 actual pipe diameters plus a zero pipe
size) for each link. Thus, the total search space is 1621

(�1.934 � 1025).
[35] In step 1, the Dijkstra algorithm is applied for the

NYTP network to identify the shortest-distance tree. The
identified shortest-distance tree is given in Figure 3. As
shown in Figure 3, pipes 10 and 20 are identified as the
chords and all of the other pipes form the shortest-distance
tree. Since the NYTP is an existing water network and the
diameters of chords (pipes 10 and 20) are known, the two
proposed methods (see section 2.2) are used to determine
the flow distribution for the shortest-distance tree. The flow
results for the shortest-distance tree determined by methods
1 and 2 described in section 2.2 are given in the second and
third columns of Table 2.

[36] In step 2, two separate NLPs are formulated for
the shortest-distance tree with two sets of different flow

Figure 2. The layout of the New York Tunnels.
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distributions and solved. The two NLP continuous solutions
as shown in the fourth and fifth columns of Table 2 comple-
mented by chords of the shortest-distance tree with mini-
mum pipe sizes (0 in. for the NYTP case study) produced
optimal solutions with a cost of $55.12 and $34.78M,
respectively. Thus, the optimal solution produced by the
assumption that flows in the chords are taken to be equal to
that from the hydraulic analysis for the original water net-
work (method 2 in section 2.2), and is better than that pro-
duced on the basis of the assumption that no flows exist in
these chords (method 1 in section 2.2). This indicates that
method 2 is more effective for a WDS optimization that
includes existing pipes. The NLP solution on basis of the
method 2 (mentioned in section 2.2) is adopted for further
analysis in this study. The final best solution obtained by
the combined NLP-DE approach for the NYTP case study
is given in the last column of Table 2. It is observed that
the design of the solution obtained in step 2 (in the fifth

column) is close to the final best solution as it has 15 pipes
with the same diameter of zero.

[37] On the basis of the continuous pipe diameter solu-
tion obtained in step 2, two different initial seeding tables
are created including seeding tables for both NLP-DE1 and
-DE2 as shown in Table 2 (columns 6 and 7).

[38] Both DE applications were assumed to have identi-
cal parameters including population size (N), maximum
allowable number of evaluations (MAE), mutation weight-
ing factor (F), and crossover rate (CR), while seeded with
different initial pipe diameters. For the NYTP case study,
N ¼ 50, MAE ¼ 20,000, F ¼ 0.7, and CR ¼ 0.8 were used.
A total of 100 different DE runs using different starting
random number seeds were performed for each of these
two DE applications.

[39] The statistics of the results for the NYTP case study
are given in Table 3. These include the best solution found,
percentage of trials for which the current best solution was

Figure 3. The layout of the shortest-distance tree of the New York Tunnels problem (NYTP) network.
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found, the average cost solution, the worst solution found,
and the average number of evaluations to find the best cost
solution on the basis of the different runs. For comparison,
Table 3 also lists the results of other optimization techni-
ques that have previously been used to optimize the NYTP
case study.

[40] The best known solution for the NYTP case study is
$38.64M first found by Maier et al. [2003] with the ant col-
ony optimization technique. This best known solution was
also found by the proposed combined NLP-DE optimiza-
tion technique. As shown in Table 3, NLP-DE1 and -DE2
exhibited similar performance in terms of percentage of the
best known solutions found. NLP-DE1 was only slightly
better than NLP-DE2 in terms of convergence speed. For
the NYTP case study, the proposed optimization algorithm

variants located the current best solution with a frequency
of 99%, which is higher than that of other optimization
techniques including HD-DDS [Tolson et al., 2009], DE
[Dandy et al., 2010], MMAS-ACO [Zecchin et al., 2006],
GA [Zheng et al., 2010], PSO [Dandy et al., 2010], and the
PSO variant [Tolson et al., 2009] as shown in Table 3.

[41] In terms of efficiency, the proposed new algorithm
exhibited the best performance on the NYTP case study as
it was able to locate the best known solution faster than
other algorithms as shown in Table 3. The maximum allow-
able evaluations for the NYTP case study was 20,000 and
the average number of evaluations required to find the best
solution for the NYTP case study were 8,277 for NLP-DE1
and 10,631 for NLP-DE2. Both values are far less than
those of other optimization techniques.

Table 2. Initial Seeding Tables for the NYTP Case Study and the Combined NLP-DE Results

Links

Flows in the
Shortest-Distance

Treea (m3 s�1)

Flows in the
Shortest-Distance

Treeb (m3 s�1)

Pipe Diameters ( in.)

The NLP Solution
Produced in Step 2a

The NLP Solution
Produced in Step 2b

Initial Seeding Table
for NLP-DE1

Initial Seeding Table
for NLP-DE2

Combined NLP-DE
Final Solution (in.)

1 29.00 24.48 157.16 0.00 0, 36 0, 36, 48, 60 0
2 26.39 21.86 138.78 0.00 0, 36 0, 36, 48, 60 0
3 23.77 19.24 0.00 0.00 0, 36 0, 36, 48, 60 0
4 21.27 16.75 0.00 0.00 0, 36 0, 36, 48, 60 0
5 18.77 14.25 0.00 0.00 0, 36 0, 36, 48, 60 0
6 16.28 11.75 0.00 0.00 0, 36 0, 36, 48, 60 0
7 13.78 9.25 144.93 111.31 108, 120 96, 108, 120, 144 144
8 11.28 6.76 124.58 0.00 0, 36 0, 36, 48, 60 0
9 1.65 1.66 0.00 0.00 0, 36 0, 36, 48, 60 0

10c 0.00 4.86 0.00 0.00 0, 36 0, 36, 48, 60 0
11 9.63 14.16 0.00 0.00 0, 36 0, 36, 48, 60 0
12 19.58 24.10 0.00 0.00 0, 36 0, 36, 48, 60 0
13 22.89 27.42 0.00 0.00 0, 36 0, 36, 48, 60 0
14 25.51 30.04 0.00 0.00 0, 36 0, 36, 48, 60 0
15 28.12 32.65 0.00 0.00 0, 36 0, 36, 48, 60 0
16 1.63 1.63 67.13 72.94 72, 84 60, 72, 84,96 96
17 6.63 6.63 91.50 100.39 96, 108 84, 96, 108,120 96
18 3.31 3.32 72.53 80.01 72, 84 60, 72, 84, 96 84
19 4.81 4.48 53.68 59.31 48, 60 36, 48, 60, 72 72
20c 0.00 0.33 0.00 0.00 0, 36 0, 36, 48, 60 0
21 4.81 5.15 71.55 76.03 72, 84 60, 72, 84, 96 72

Cost ($M) - - 55.12 34.78 - - 38.64

aFlows and NLP solution are determined on basis of the assumption that there are no flows in chords (pipes 10 and 20).
bFlows and NLP solution are determined on basis of the assumption that flows in chords (pipes 10 and 20) are the same with that of performing the

hydraulic analysis for the original water network.
cThe chords of the NYTP network.

Table 3. Algorithm Performance for the NYTP Case Study

Algorithm
Number of

Different Runs

Best Solution
Found
($M)

Percentage of Trials
With Best Solution Found

(%)

Average Cost
Solution

($M)
Worst Solution

($M)

Maximum Number
of Allowable
Evaluations

Average Number of
Evaluations to Find

Best Solutions

NLP-DE1a 100 38.64 99 38.64 38.80 20,000 8277
NLP-DE2b 100 38.64 99 38.64 38.80 20,000 10,631
HD-DDSc 50 38.64 86 38.65 38.77 50,000 47,000

DE-Dandyd 30 38.64 70 40.33 51.16 100,000 -
MMAS-ACOe 20 38.64 60 - - 50,000 30,711
Standard GAf 1000 38.64 45 39.00 - 100,000 49,950

PSOd 30 38.64 33 38.93 - 100,000 -
PSO variantc 2000 38.64 30 38.83 - 80,000 -

aNLP-DE1: DE seeded with two tailored pipe diameters on the basis of the NLP solution obtained in step 2.
bNLP-DE2: DE seeded with four tailored pipe diameters on the basis of the NLP solution obtained in step 2.
cTolson et al. [2009].
dDandy et al. [2010].
eZecchin et al. [2006].
fZheng et al. [2010].
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3.2. Case Study 2: Hanoi Problem (HP)

[42] The Hanoi Problem (HP) is a network design where
all new pipes are to be selected. The layout of the HP net-
work is given in Figure 4. The network is composed of 34
pipes and 32 nodes which are fed by a single reservoir with
a head of 100 m. The minimum head requirement of the
other nodes is 30 m. A total of six pipe diameters of 12, 16,
20, 24, 30, and 40 in. can be selected for each new pipe.
The total search space is 634 � 2.8651 � 1026. The Hazen-
Williams coefficient for each new pipe is 130. Details of
this network and the formulation of the cost for pipes are
given in Fujiwara and Khang [1990].

[43] In step 1, the shortest-distance tree for the HP net-
work is shown in Figure 5 on the basis of the Dijkstra algo-
rithm. As can be seen from Figure 5, pipes 13, 26, and 31
are identified to be the chords. All of the discharges in the
links can be determined on the bais of method 2 described
in section 2.2 for this shortest-distance tree as shown in the
second column of Table 4.

[44] An NLP is formulated for the shortest-distance tree
of the HP network and solved in step 2. The continuous
pipe diameters solution is given in the third column of
Table 4. This solution, complemented by chords with mini-
mum pipe sizes (12 in. for the HP case study), produced an
approximately optimal solution with a cost of $5.924M.

The final best solution produced by the combined NLP-DE
approach, for the HP case study applied in step 3, is given
in the last column of Table 4. It is observed that the NLP
continuous pipe diameters solution is close to the final best
solution design as many continuous pipes diameters fall in
the proximity of pipe diameters of the final best solution.
On the basis of the continuous pipe diameters solution
achieved in step 2, the tailored seeding tables that were cre-
ated for each pipe for NLP-DE1 and -DE2 are given in the
fourth and fifth columns of Table 4, respectively.

[45] For the HP case study, the parameters including
N ¼ 80, MAE ¼ 80,000, F ¼ 0.7, and CR ¼ 0.8 were used
for NLP-DE1 and -DE2. A total of 100 DE runs with differ-
ent starting random number seeds have been implemented
for each DE application. Table 5 gives the results of the
proposed method applied to the HP case study. The results
obtained by other optimization techniques for the HP case
study are also included in Table 5 to enable performance
comparison. The current best known solution for the HP
case study with value of $6.081M was first found by Reca
and Mart�ınez [2006] using a GA variant (GENOME). This
solution has been also found by the proposed optimization
approach.

[46] As can be seen from Table 5, NLP-DE1 and -DE2
show a similar performance in finding the best known

Figure 4. The layout of the Hanoi Problem network.
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solution, while NLP-DE1 was found to show slightly better
performance than NLP-DE2 in terms of convergence speed.
The proposed new optimization models achieved the best
performance in terms of percentage of trials with which the
best solution was found among all the algorithms mentioned
in Table 5. As shown in Table 5, NLP-DE1 and -DE2
located the best known solution for the HP case study in
97% and 98% of the optimization trials compared to 80%
of the DE used in Suribabu [2010], 10% of GENOME GA
proposed by Reca and Mart�ınez [2006], 8% of HD-DDS
proposed by Tolson et al. [2009], and 5% of the PSO variant
used in Tolson et al. [2009]. The worst solutions produced
NLP-DE1 and -DE2 in the 100 different optimization trials
were $6.108 and $6.100M, respectively, which deviates
only 0.444% and 0.312% from the current best known solu-
tion. The standard GA [Dandy et al., 2010], MMAS-ACO
[Zecchin et al., 2006], and PSO [Dandy et al., 2010] were
unable to locate the current best solution for the HP case
study. The average number of evaluations required by NLP-
DE1 and -DE2 were 34,609 and 42,782, respectively, which
are less than those reported for any other algorithm.

3.3. Case Study 3: ZJ Network

[47] The ZJ network, taken from the eastern province of
China, is an actual water network with a single reservoir.
The reservoir has a fixed head of 45 m. There are 164
pipes, 113 demand nodes, and 50 primary loops (as shown
in Figure 6). At each demand node, a minimum pressure of

22 m is required for the design of this water network. All of
the pipes are assumed to have an identical Hazen-Williams
coefficient of 130. The objective is to determine the least
cost design of this water network, while satisfying the pres-
sure constraints. A total of 14 commercial available pipe
diameters ranging from 150 up to 1000 mm can be selected
for each pipe. Thus, the total search space is 14164 �
9.2257 � 10187.

[48] The shortest-distance tree of the ZJ network deter-
mined in step 1 is shown in Figure 7. The NLP continuous
pipe diameters solution obtained in step 2, plus the chords
with minimum allowable pipe sizes (150 mm for the ZJ
network case study) provide an approximately optimal so-
lution with a cost of $6.970M. Since this is a new case
study that has not been investigated previously, a DE algo-
rithm is applied to optimize this water network directly in
order to enable a comparison of results. A total of three DE
applications have been performed for the ZJ network opti-
mization including a DE seeded with two tailored pipe
diameters for each pipe (NLP-DE1), a DE seeded with four
tailored pipe diameters for each pipe (NLP-DE2), and a DE
seeded with all 14 available pipe diameters. For each DE
application, the parameters including, N ¼ 500, MAE ¼
2,000,000, F ¼ 0.3, and CR ¼ 0.8 were used. A total of 10
DE runs with different starting random number seeds have
been implemented for each DE application.

[49] The solutions obtained by the three DE variants and
statistics of the results are given in Figure 8 and Table 6,

Figure 5. The layout of the shortest-distance tree of the HP network.
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respectively. It is clearly seen from Figure 8 that NLP-DE1
converged the fastest and the DE3 converged the slowest.
Although NLP-DE2 converged slower than NLP-DE1,
NLP-DE2 was able to produce lower cost solutions. It is
noted that the solutions obtained by NLP-DE1 and -DE2
are less scattered than those found by DE3. This shows that

the solutions of NLP-DE1 and -DE2 are less dependent on
the starting random number seeds.

[50] As observed from Table 6, different NLP-DE1 runs
are significantly more computationally efficient than DE3.
This is evidenced by the fact that NLP-DE1 only required a
total of 8.44% of the computation overhead required by

Table 4. Initial Seeding Tables for the HP Case Study and the Combined NLP-DE Results

Links

Flows in the
Shortest-Distance

Tree (m3 s�1)

Pipe Diameters (in.)

The NLP Solution
Produced in Step 2

Initial Seeding Table
for NLP-DE1

Initial Seeding Table
for NLP-DE2

Combined NLP-DE
Final Solution (in.)

1 5.54 40.00 30, 40 20, 24, 30, 40 40
2 5.29 40.00 30, 40 20, 24, 30, 40 40
3 1.89 39.81 30, 40 20, 24, 30, 40 40
4 1.86 39.59 30, 40 20, 24, 30, 40 40
5 1.65 38.29 30, 40 20, 24, 30, 40 40
6 1.38 36.29 30, 40 20, 24, 30, 40 40
7 1.00 33.08 30, 40 20, 24, 30, 40 40
8 0.85 31.52 30, 40 20, 24, 30, 40 40
9 0.70 29.84 24, 30 20, 24, 30, 40 40
10 0.56 27.88 24, 30 20, 24, 30, 40 30
11 0.42 25.65 24, 30 20, 24, 30, 40 24
12 0.26 19.28 16, 20 12, 16, 20, 24 24
13a 0.00 12.00 12, 16 12, 16, 20, 24 20
14 0.17 15.70 12, 16 12, 16, 20, 24 16
15 0.25 17.51 16, 20 12, 16, 20, 24 12
16 0.69 26.79 24, 30 20, 24, 30, 40 12
17 0.93 29.22 24, 30 20, 24, 30, 40 16
18 1.30 32.24 30, 40 20, 24, 30, 40 24
19 1.32 32.36 30, 40 20, 24, 30, 40 20
20 1.85 39.11 30, 40 20, 24, 30, 40 40
21 0.39 17.37 16, 20 12, 16, 20, 30 20
22 0.13 12.72 12, 16 12, 16, 20, 30 12
23 1.10 33.08 30, 40 20, 24, 30, 40 40
24 0.63 26.66 24, 30 20, 24, 30, 40 30
25 0.40 23.38 20, 24 16, 20, 24, 30 30
26a 0.00 12.00 12, 16 12, 16, 20, 24 20
27 0.25 18.23 16, 20 12, 16, 20, 24 12
28 0.35 20.15 20, 24 16, 20, 24, 30 12
29 0.18 16.10 16, 20 12, 16, 20, 24 16
30 0.10 13.56 12, 16 12, 16, 20, 24 12
31a 0.00 12.00 12, 16 12, 16, 20, 24 12
32 0.10 15.63 12, 16 12, 16, 20, 24 16
33 0.13 16.84 16, 20 12, 16, 20, 24 16
34 0.35 22.54 20, 24 16, 20, 24, 30 24

Cost ($M) 5.924 - - 6.081

aThe chords of the HP network.

Table 5. Algorithm Performance for the HP Case Study

Algorithm
Number of

Different Runs
Best Solution
Found ($M)

Percentage of
Trials With Best

Solution Found (%)
Average Cost
Solution ($M)

Worst Solution
($M)

Maximum Number
of Allowable
Evaluations

Average Number of
Evaluations to

Find Best Solutions

NLP-DE1 100 6.081 97 6.082 6.108 80,000 34,609
NLP-DE2 100 6.081 98 6.081 6.100 80,000 42,782

DE-Surbabua 50 6.081 80 - - 100,000 48,724
GENOMEb 10 6.081 10 6.248 6.450 150,000 -
HD-DDSc 50 6.081 8 6.252 6.408 100,000 100,000

PSO variantc 2000 6.081 5 6.310 6.550 80,000 -
Standard GAd 30 6.126 0 6.214 6.368 500,000 -
MMAS-ACOe 20 6.134 0 6.394 6.635 100,000 85,571

PSOd 30 6.373 0 6.483 6.801 500,000 -

aSuribabu [2010].
bReca and Mart�ınez [2006].
cTolson et al. [2009].
dDandy et al. [2010].
eZecchin et al. [2006].
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Figure 6. The layout of the ZJ network.

Figure 7. The layout of the shortest-distance tree of the ZJ network.
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that of DE3. This shows that the DE seeded with two tai-
lored pipe diameters derived from the approximately opti-
mal solution obtained from NLP in step 2 is able to find
optimal solutions with significantly enhanced computa-
tional efficiency.

[51] As can be seen from Table 6, the NLP-DE2 found
the current best solution for this case study with a cost of
$7.082M, 0.42% cheaper than the best solution found by
DE3. Additionally, the worst solution found by the 10
NLP-DE2 runs was lower than the best solution found by
DE3. It is noted that NLP-DE2 converged quicker than
DE3 as the average number of evaluations required to con-
verge by 10 different NLP-DE2 runs is only 48.84% of that
required by DE3.

3.4. Case Study 4: Balerma Network (BN)

[52] The Balerma network (BN), an irrigation water distri-
bution network located in the province of Almeria (Spain),
was first investigated by Reca and Mart�ınez [2006]. It con-
sists of four reservoirs, eight loops, 454 pipes, and 443
demand nodes as shown in Figure 9. A total of 10 PVC com-
mercial pipes with nominal diameters from 125 to 600 mm
are to be selected for this network. Thus, the search space is
10454, which is significantly larger than the previous three
case studies in this paper. All of the pipes are assumed to
have an absolute roughness height of k ¼ 0.0025 mm and
the minimum required pressure at each node is 20 m. Pipe
costs are given in Reca and Mart�ınez [2006].

[53] Since there are four reservoirs involved in the
Balerma network, the proposed extension to the Dijkstra
algorithm described in section 2.1.2 is employed to find the
shortest-distance tree for this multisource WDS. The short-
est-distance tree for the Balerma network identified, on the
basis of the proposed extension of the Dijkstra algorithm, is
given in Figure 10. It is seen from Figure 10 that the origi-
nal Balerma network has been decomposed into four sub-
networks connected via an artificial node and four artificial
links. An NLP is formulated for this tree network and
solved in step 2, producing an approximately optimal solu-
tion with a cost of €2.114M (all of the chords are assumed
to be the smallest pipe size). Note that the artificial node
and artificial links are not included in the NLP. For the BN
case study, like the ZJ case study, a total of three DE appli-
cations are carried out. These include a DE seeded with
two tailored pipe diameters for each pipe (NLP-DE1), a DE
seeded with four tailored pipe diameters for each pipe
(NLP-DE2), and a DE seeded with all 10 available pipe
diameters. For each DE application, the parameters used
were N ¼ 500, MAE ¼ 10,000,000, F ¼ 0.3, and CR ¼ 0.8.
A total of 10 DE runs with different starting random num-
ber seeds have been implemented for each DE application.
The solution distribution and a summary of results are
given in Figure 11 and Table 7, respectively.

[54] As can be seen from Figure 11, the NLP-DE1 and
-DE2 runs located overall lower cost solutions for the BN
case study compared to the DE3 runs with significantly less

Figure 8. The solution distributions for the ZJ case study.

Table 6. Algorithm Performance for the ZJ Case Study

Algorithm
Number of

Different Runs
Best Solution
Found ($M)

Percentage of
Trials With Best

Solution Found (%)
Average Cost
Solution ($M)

Worst Solution
Found ($M)

Maximum Number
of Allowable
Evaluations

Average Number of
Evaluations to Find

Best Solutions

NLP-DE1 10 7.167 0 7.170 7.175 2000,000 69,300
NLP-DE2 10 7.082a 10 7.093 7.105 2000,000 400,853

DE3 10 7.112 0 7.136 7.220 2000,000 820,657

aThe current best solution for the ZJ case study.
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Figure 9. The layout of the Balerma network.

Figure 10. The layout of the shortest-distance tree of the Balerma network.
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computational effort. NLP-DE2 converged slightly slower
than NLP-DE1, while being able to find better quality solu-
tions as shown in Figure 11. It is seen from Table 7, the av-
erage number of evaluations required to find the better
quality solutions for NLP-DE1 and -DE2 are only 4.47%
and 15.50% of that required by DE3. This shows that a DE
with initial estimates provided by an NLP run in the pro-
posed optimization approach is able to locate better quality
solutions with a significantly faster convergence speed than
a DE without initial estimates. In addition, the solutions
produced by NLP-DE1 and -DE2 are less scattered than
those of DE3 for the BN case study. The NLP-DE2 pro-
duced a new, currently lowest cost solution with a value of
€1.923M for the BN case study.

[55] On comparing the algorithmic performance with
other optimization techniques, the proposed new optimiza-
tion approach (NLP-DE1 and -DE2) performed the best in
terms of quality of the best solution found and efficiency as
shown in Table 7. NLP-DE1 found the same best cost solu-
tion with a value of €1.956M as that found by HD-DDS
[Tolson et al., 2009] in a total of 10 different runs. How-
ever, it is noted that the computational budget for the

NLP-DE1 was only 10% of that for HD-DDS-2 [Tolson
et al., 2009]. The HD-DDS-1 [Tolson et al., 2009] found the
previous best solution with a value of €1.941M using 30M
evaluations, while the NLP-DE2 located a new lower cost
solution with a cost of €1.923M using only 2M evaluations
(6.67% of the computational budget required by HD-DDS-1).
In addition, the worst solution produced by 10 different
NLP-DE2 runs was €1.934M, which is still lower that the
best solution found by HD-DDS [Tolson et al., 2009],
GHEST [Bolognesi et al., 2010], and GENOME GA [Reca
and Mart�ınez, 2006]. This implies that the proposed optimi-
zation approach is able to locate better quality solutions with
significantly improved computational efficiency when deal-
ing with such large-scale water networks.

3.5. Summary of Results

[56] It has been shown that the new proposed NLP-DE
algorithm has outperformed all the other optimization algo-
rithms in terms of efficiently finding optimal solutions for
the four case studies. The dominance of the proposed
method is more clearly shown for the larger networks
including the ZJ and BN case studies. In terms of solution

Figure 11. The solution distributions for the Balerma network (BN) case study.

Table 7. Algorithm Performance for the BN Case Study

Algorithm
Number of

Different Runs
Best Solution
Found ($M)

Percentage of
Trials With Best

Solution Found (%)
Average Cost
Solution ($M)

Worst Solution
Found ($M)

Maximum Number
of Allowable
Evaluations

Average Number
of Evaluations to

Find Best Solutions

NLP-DE1 10 1.956 0 1.957 1.959 1000,000 412,000
NLP-DE2 10 1.923a 10 1.927 1.934 2000,000 1427,850

DE3 10 1.982 0 1.986 1.989 10,000,000 9210,143
HD-DDS-1b 1 1.941 0 - - 30,000,000 -
HD-DDS-2b 10 1.956 0 - - 10,000,000 -

GHESTc - 2.002 2.055 - 10,000,000 254,400
GENOME GAd 10 2.302 0 2.334 2.350 10,000,000 -

aA new current best solution for the BN case study. HD-DDS-1 and HD-DDS-2 are HD-DDS approach with maximum number of allowable evaluations
of 30,000,000 and 10,000,000, respectively.

bTolson et al. [2009].
cReca and Mart�ınez [2006].
dBolognesi et al. [2010].
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quality, NLP-DE1 yielded a similar performance to NLP-
DE2 for relatively small water networks (such as the NYTP
and HP case studies). However, for relatively larger water
networks (such as the ZJ and BN cases studies), NLP-DE1
was able to converge faster than NLP-DE2, while NLP-
DE2 found lower cost solutions than NLP-DE1. This is
explained by the fact that NLP-DE2 was seeded with an
initial seeding table with four different pipe diameters,
while NLP-DE1 was initialized with a seeding table con-
sisting of only two different pipe diameters. Consequently,
NLP-DE2 explored a relatively larger search space than
NLP-DE1, and hence resulted in a greater search time but
with better quality solutions being found. Based on the ob-
servation of this study, a DE seeded with two tailored pipe
diameters on the basis of the NLP solution (NLP-DE1) is
recommended for relatively small water network optimiza-
tion. For relatively large WDS case studies, DE seeded
with four tailored pipe diameters on the basis of the NLP
solution (NLP-DE2) is recommended. For a WDS case
study with a larger number of pipes and loops, the continu-
ous diameter solution obtained in step 2 with the NLP may
be more of an approximation to the actually global opti-
mum as more pipes are removed than chords. In such a
case, the initial seeding table on the basis of this continuous
diameter solution can be further increased in size (for
example, to say six successive pipes diameters to be
included in the seeding table for each pipe). As a result,
this should lead to a more effective seeding of the DE
exploration.

[57] It has also been found from this study that, for the
optimization problem of designing a completely new WDS,
the flows in the shortest-distance tree determined by the
assumption that there is no discharge in the chords (method
1 in section 2.2) is effective. For the expansion of an exist-
ing WDS optimization problem (such as the NYTP case
study), the flows in the shortest-distance tree determined by
the assumption that the discharges in the chords are set to
be equal to that from the hydraulic calculation for the origi-
nal existing WDS (method 2 in section 2.2) is the most
effective.

[58] In the proposed method, the shortest path is used as
a surrogate indicator of the main flow paths within the net-
work (the network tree). It is considered that the accuracy
of this assumption will be reduced in situations where there
are significant differences in nodal elevations. However,
the NLP solution based on the assumed tree is simply used
to identify an initial seeding table for seeding the DE opti-
mization. Minor changes in the NLP solution may not

necessarily vary the initial seeding table components as the
two or four adjacent discrete pipe sizes based on the contin-
uous diameter pipe solution from the NLP are included in
the seeding table for each pipe. In addition, our experi-
ments have shown that a moderate change to the initial
seeding table components does not influence the perform-
ance of DE significantly, as the DE is able to progress the
search outside of the bounds of the seeding table. The BN
case study involved in this study is a network having signif-
icant nodal elevation differences, however, the proposed
method was observed to exhibit satisfactory performance
on this case study in terms of solution quality and effi-
ciency (see Table 7).

[59] An analysis of the computational effort required in
steps 1 and 2 in the proposed optimization approach has
been undertaken. The computational time required to find
the shortest-distance tree and to run the NLP solver for
each case study is converted to an equivalent number of
case study evaluations, respectively. Note that all of these
tests were performed on the same computer (Pentium PC at
3.0 GHz). The results are given in Table 8. It can be seen
from Table 8 that the computational effort required to find
the shortest-distance tree in step 1 and to run the NLP
solver in step 2 is negligible compared to that required in
step 3. Thus, the computational effort in running the Dijk-
stra algorithm and NLP for each case study has not been
included in the total computational overhead. For example,
the computational overhead of running the Dijkstra algo-
rithm and NLP for the ZJ case study is only 0.19%,
0.033%, and 0.014% of that required by the NLP-DE1,
-DE2, and -DE3, respectively. This implies that it is com-
putationally efficient to find the shortest-distance tree and
solve the NLP for the shortest-distance tree for a given
WDS. This further improves the attractiveness of the pro-
posed approach for optimization of WDSs.

4. Conclusions

[60] A new optimization approach aimed at optimizing
the design of WDSs has been presented in this paper. This
new approach divides the optimization process into three
steps. These include:

[61] 1. Find the shortest-distance tree for the looped
WDS that is being optimized;

[62] 2. Carry out an NLP optimization of the shortest-
distance tree; and

[63] 3. Optimize the original water network using the DE
seeded on the basis of pipe sizes in the proximity of those
found in step 2.

Table 8. Computational Effort Analysis for Finding the Shortest-Distance Tree and Running the NLP Solver for Each Case Studya

Case Study
Number of

Decision Variables

Computational Effort
Required to Find the

Shortest-Distance
Tree (Step 1)

Computational Effort
Required to Solve the

NLP for the
Shortest-Distance

Tree (Step 2)

Average Number of
Evaluations Required
by NLP-DE1 (Step 3)

Average Number of
Evaluations Required
by NLP-DE2 (Step 3)

NYTP 21 11 10 8277 10,631
HP 34 10 26 34,609 42,782
ZJ 164 6 125 69,300 400,853
BN 454 8 2133 412,000 1427,850

aNote computational effort in steps 1 and 2 have been converted to an equation number of evaluations for its corresponding case study. One simulation
for the NYTP, HP, ZJ, and BN case study on Pentium PC at 3.0 GHz was 0.001, 0.001, 0.016, and 0.015 s, respectively.
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[64] The shortest-distance tree is identified in step 1
using the Dijkstra algorithm. The shortest-distance tree is
viewed as an optimal tree based on the assumption that
delivering demand along the shortest path for each node is
the most effective mode. A NLP is then formulated for
optimizing the design of the shortest-distance tree in step 2
and has been solved by an NLP solver in this study. For
each case study, a range of different initial starting points
have been used for solving the NLP applied to the optimi-
zation of the shortest-distance tree. It was found that the
final solution is identical for all of the different initial start-
ing points. The continuous pipe diameter solution produced
in step 2 complemented by the shortest-distance tree chords
with the minimum allowable pipe sizes are used to create
the initial seeding tables for the differential evolution (DE)
optimization process. The DE optimization for finding the
optimal discrete pipe-size solution in step 3 is seeded with
the tailored pipe diameters-seeding tables created in step 2.

[65] Results for four cases studies show that the proposed
new combined NLP-DE optimization approach has superior
convergence properties. For the NYTP and HP case studies,
the proposed optimization technique reached the current best
known solution for each network more frequently and more
efficiently compared with other optimization techniques. For
the ZJ and BN case studies, the proposed new optimization
approach found the new lowest cost solutions with a cost of
$7.082 and €1.923M, respectively. In addition, the new
method produced optimal solutions with an extremely fast
convergence speed. The consistent superior performance of
the proposed optimization approach on four case studies
illustrates that the proposed methodology is well suited for
the least cost design of WDSs.

[66] The utility of the proposed method is that it provides
an efficient and effective approach for seeding the optimi-
zation of the full combinatorial problem using near optimal
solutions (achieved by solving an approximated continuous
problem with NLP). A natural extension of this method to
find an approximate Pareto front for multiobjective prob-
lems (to seed a full multiobjective combinatorial search)
could be achieved by incorporating one of the many
approaches to map multiobjective problems to a series of
single objective problems [Konak et al., 2006]. This ap-
proximate front would then be used to seed a multiobjec-
tive combinatorial optimizer (i.e., NSGA2, Deb et al.
[2002]) to determine the actual front. This extension should
be the focus of future research. Another issue that needs to
be addressed is that the decision variables in this paper are
only pipe diameters for the case studies, whereas the real
WDS design problems may be more complex. Since the
proposed methodology has shown to be effective for the
pipes-only WDS design problems, future work should be
focus on applying the proposed methodology to deal with
the real-world WDS problems that may include pumps,
valves, storage facilities, and pipes.
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