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A Combined Position and Stator-Resistance

Observer for Salient PMSM Drives: Design and

Stability Analysis
Marko Hinkkanen, Member, IEEE, Toni Tuovinen, Lennart Harnefors, Senior Member, IEEE, and

Jorma Luomi, Member, IEEE

Abstract—A reduced-order position observer with stator-
resistance adaptation is proposed for motion-sensorless
permanent-magnet synchronous motor drives. A general
analytical solution for the stabilizing observer gain and stability
conditions for the stator-resistance adaptation are derived.
Under these conditions, the local stability of the position and
stator-resistance estimation is guaranteed at every operating
point except the zero frequency, if other motor parameters are
known. Furthermore, the effect of inaccurate model parameters
on the local stability of the position estimation is studied, and
an observer gain design that makes the observer robust is
proposed. The proposed observer is experimentally tested using
a 2.2-kW motor drive; stable operation at very low speeds under
different loading conditions is demonstrated.

Index Terms—Interior magnet, observer, salient, sensorless,
stability conditions, stator-resistance estimation.

I. INTRODUCTION

Sensorless control of permanent-magnet synchronous mo-

tors (PMSMs) is today a mature topic, in research as well as

in application. The benefits of not having to rely on position

sensors, i.e., lower cost and volume, less cabling, and increased

reliability, are well known.

For salient PMSMs, signal-injection-based methods [1], [2],

[3] can be used. Such methods allow a very accurate position

estimate to be obtained at all speeds, including standstill.

Their drawbacks include increased acoustic noise, losses,

and vibration. Consequently, it is useful to, once out of the

very-low-speed region, make a smooth transition to a back-

electromotive-force (EMF)-based method [4]–[9]. To facilitate

this transition at as low a speed as possible, it is vital to use

a back-EMF-based method by which an asymptotically stable

system is obtained for all speeds but standstill.1

The stator resistance is the by far most sensitive parameter

at low speeds; an inaccurate model stator resistance will

often result in a large position error [10], [11], [12], and

possibly even instability. Among the many publications on

back-EMF-based methods for PMSMs [8], [10]–[30], only a

few have proposed circumvention of this problem. Most of

these proposed solutions involve on-line resistance estimation

[19], [21], [23]—in effect resulting in a combined position

The preliminary version of this paper was presented at the IEEE Inter-
national Symposium on Industrial Electronics (ISIE), Bari, Italy, July 4–7,
2010.

1Because the back EMF vanishes at zero rotor speed, a back-EMF-based
estimator by necessity becomes “blind,” and as a consequence marginally
stable, at standstill.

and stator-resistance observer—whereas [11] proposes usage

of the instantaneous reactive power.

Designing a combined position and stator-resistance ob-

server with the desired property, i.e., asymptotic stability for

all speeds but standstill, requires careful analysis. To the

best knowledge of the authors, this has so far only been

achieved for nonsalient PMSMs [21], [23]. The fundamental

contribution of this paper is the design of such an observer

for salient PMSMs. After a review of the model considered

in Section II, the main results of the paper are presented in

Section III. These are as follows:

1) A reduced-order position observer for salient PMSM

drives is proposed.

2) Analytical stability conditions for this observer are de-

rived and formulated as a general stabilizing gain. This

simplifies the tuning procedure.

3) The effects of the free design parameters of the stabi-

lizing gain on the robustness of the position estimation

are analyzed, and a robust gain design is proposed.

4) The observer is thereafter augmented with the stator-

resistance adaptation, and analytical stability conditions

are derived for the augmented observer.

The proposed design is comparatively simple, and it results in

a robust and well-damped closed-loop system. Though we for

brevity do not address this explicitly, the observer can easily

be augmented with a signal-injection method in the immediate

region of zero speed, for example in a fashion similar to [5],

[7]. Performance of the proposed observer design is evaluated

in Section IV using laboratory experiments with a 2.2-kW

PMSM drive.

II. PMSM MODEL

Real space vectors will be used throughout the paper. For

example, the stator-current vector is is = [id, iq]
T, where

id and iq are the components of the vector and the matrix

transpose is marked with the superscript T. The identity matrix

and the orthogonal rotation matrix are defined as

I =

[
1 0
0 1

]

, J =

[
0 −1
1 0

]

respectively.2

2The notation is very similar to that obtained for complex space vectors:
the rotation matrix J corresponds to the imaginary unit j and the coordinate
transformation matrices can be expressed using matrix exponentials, i.e.
eϑJ = cosϑI+ sinϑJ.
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The electrical angular position of the permanent-magnet

flux is denoted by ϑm. The position depends on the electrical

angular rotor speed ωm according to

dϑm
dt

= ωm (1)

To simplify the analysis in the following sections, the machine

model will be expressed in the estimated rotor reference frame,

whose d axis is aligned at ϑ̂m with respect to the stator

reference frame. The inductance matrix and the permanent-

magnet-flux vector are

L = e−ϑ̃mJ

[
Ld 0
0 Lq

]

eϑ̃mJ, ψpm = e−ϑ̃mJ

[
ψpm

0

]

(2)

respectively, where ϑ̃m = ϑ̂m − ϑm is the estimation error

in the rotor position, Ld the direct-axis inductance, Lq the

quadrature-axis inductance, and ψpm the permanent-magnet

flux. The voltage equation is

dψs

dt
= us −Rsis − ω̂mJψs (3a)

where ψs is the stator-flux vector, us the stator-voltage vector,

Rs the stator resistance, and ω̂m = dϑ̂m/dt is the angular

speed of the coordinate system. The stator current is a non-

linear function

is = L
−1(ψs −ψpm) (3b)

of the stator-flux vector and the position error ϑ̃m.

III. ROTOR-POSITION OBSERVER

A typical rotor-oriented control system is depicted in Fig. 1.

The rotor-position observer in estimated rotor coordinates is

considered. The current reference is,ref is used for controlling

the electromagnetic torque (and the flux linkage). The stator

currents and the dc-link voltage udc are measured, and the

reference voltage us,ref obtained from the current controller

is used for the observer. In the following analysis, it will

be assumed that the effect of the inverter nonlinearities are

perfectly compensated, i.e. us = us,ref . Estimates and model

parameters will be marked by hats.

Since the rotor-position estimation error is unknown, the

model inductance matrix and the model permanent-magnet-

flux vector are

L̂ =

[
L̂d 0

0 L̂q

]

, ψ̂pm =

[

ψ̂pm

0

]

(4)

respectively. The actual inductance matrix L and the

permanent-magnet flux vector ψpm given in (2) are not gener-

ally equal to L̂ and ψ̂pm, respectively; the position-estimation

error ϑ̃m appearing in (2) can be nonzero in transient states,

even if accurate model parameters in (4) were assumed.

A. Speed-Adaptive Observer

A conventional method for estimating the rotor position is

to apply an observer [8], [16]

dψ̂s

dt
= us − R̂sis − ω̂mJψ̂s +K(îs − is) (5a)

îs = L̂
−1

(ψ̂s − ψ̂pm) (5b)

R̂s

M

PWM

i
s

s

udc

is,ref

us,ref

Current

controller e
ϑ̂mJ

ω̂m

ϑ̂m

is

e
−ϑ̂mJ

Reduced-

order

observer

Fig. 1. Motion-sensorless rotor-oriented controller. The observer is imple-
mented in estimated rotor coordinates. The superscript s refers to stator
coordinates. The pulse-width modulator (PWM) applies the current feedback
for compensation of inverter nonlinearities.

where ψ̂s = [ψ̂d, ψ̂q]
T and K is a 2×2 observer gain matrix.

The dynamics of the rotor-position estimate are described by

dϑ̂m
dt

= ω̂m (6)

In order to estimate the rotor speed, the observer is augmented

with a speed-adaptation law. Typically, the estimation error

îq − iq is fed to the PI mechanism whose output is the speed

estimate

ω̂m = kp(̂iq − iq) + ki

∫

(̂iq − iq)dt (7)

where kp and ki are adaptation gains. The speed-adaptive

observer consisting of (5), (6), and (7) is of the fourth order,

and there are four parameters to tune (assuming that K is

skew-symmetric). This observer will be used as a starting point

in the following.

B. Proposed Reduced-Order Observer

1) Observer Structure: The observer order can be reduced

by estimating only the d component ψ̂d while the q component

is evaluated based on the measured current. The stator-flux

estimate is redefined as

ψ̂s =

[
ψ̂d

ψ̂q

]

=

[
L̂dîd + ψ̂pm

L̂qiq

]

(8)

Since the q component of the current-estimation error is not

available, the observer gain reduces to

K =

[
L̂dk1 0

L̂dk2 0

]

(9)

where the two gain components k1 and k2 are scaled with

L̂d for convenience. Using the definitions (8) and (9) in (5),

the componentwise presentation of the proposed reduced-order

observer becomes

dψ̂d

dt
= ud − R̂sid + ω̂mL̂qiq + k1(ψ̂d−ψ̂pm−L̂did) (10a)

dϑ̂m
dt

=
uq − R̂siq − L̂q

diq
dt

+ k2(ψ̂d − ψ̂pm − L̂did)

ψ̂d

= ω̂m

(10b)
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It can be seen that the rotor speed estimate is obtained directly

from (10b). The speed-adaptation law is avoided and the

implementation becomes easier. The proposed observer is of

the second order and there are only two gains. The digital

implementation of (10) can be formed as

ω̂k
m =

1

ψ̂k
d

[

ukq − R̂si
k
q − L̂q

ikq − ik−1
q

Ts

+ k2(ψ̂
k
d − ψ̂pm − L̂di

k
d)

] (11a)

ψ̂k+1
d = ψ̂k

d + Ts
[
ukd − R̂si

k
d + ω̂k

mL̂qi
k
q

+ k1(ψ̂
k
d − ψ̂pm − L̂di

k
d)
] (11b)

ϑ̂k+1
m = ϑ̂km + Tsω̂

k
m (11c)

where Ts is the sampling period and k is the sampling index

representing the time instant t = kTs.
2) Nonlinear Estimation-Error Dynamics: From (3) and

(5), the nonlinear dynamics of the estimation error become

dψ̃s

dt
= (KL̂

−1 − ω̂mJ)ψ̃s −KL̂
−1
ψ̃pm

+K(L̂
−1
L− I)is − R̃sis

(12a)

dϑ̃m
dt

= ω̃m (12b)

where ψ̃s = ψ̂s − ψs, ψ̃pm = ψ̂pm − ψpm, R̃s = R̂s −
Rs, and ω̃m = ω̂m − ωm. The estimation-error dynamics of

the proposed observer (10) are described by (12) with the

condition given in (8) and the observer gain given in (9).
3) Stabilizing Observer Gain: The gains k1 and k2 in (10)

determine the stability (and other properties) of the observer.

To avoid forbiddingly complicated equations, which would

prevent analytical results from being derived, accurate model

parameters R̂s, L̂d, L̂q, and ψ̂pm are first assumed. As shown

in Appendix A, the closed-loop system consisting of (3) and

(10) is locally stable in every operating point if (and only if)

the gains are given by3

k1 = −b+ β(c/ω̂m − ω̂m)

β2 + 1
, k2 =

βb− c/ω̂m + ω̂m

β2 + 1
(13)

where the design parameters b > 0 and c > 0 may depend on

the operating point and

β =
(L̂d − L̂q)iq

ψ̂pm + (L̂d − L̂q)id
(14)

As two special cases, (14) reduces to β = 0 for non-salient

PMSMs and β = iq/id for synchronous reluctance machines.

The observer gain design problem is reduced to the selection

of the two positive parameters b and c, which are actually the

coefficients of the characteristic polynomial of the linearized

closed-loop system, cf. Appendix A. Hence, (13) can be

used to place the poles of the linearized closed-loop system

arbitrarily.

3For ω̂m = 0, c = 0 has to be selected to avoid division by zero, giving
only marginal stability for zero speed (i.e., there is one pole in the origin and
the other pole at −b). A practical consequence is that the observer should be
augmented with a signal-injection method if persistent zero-speed operation
under load torque is required.

TABLE I
RATING AND PARAMETERS OF A SIX-POLE 2.2-KW PMSM

Rated speed 1500 r/min

Rated frequency 75 Hz

Rated line-to-line rms voltage 370 V

Rated rms current 4.3 A

Rated torque 14 Nm

Stator resistance Rs 0.067 p.u.

Direct-axis inductance Ld 0.35 p.u.

Quadrature-axis inductance Lq 0.53 p.u.

Permanent-magnet flux ψpm 0.895 p.u.

4) Robust Gain Parameters: The stability with accurate

model parameters is necessary but not a sufficient design

goal. The actual parameters are rarely known accurately,

and in practice, they are not constant. The stator resistance

and permanent-magnet flux vary with temperature during the

operation of the motor. The inductances vary due to magnetic

saturation. Hence, the system should be robust against param-

eter errors.

With parameter errors included, the stability is not guar-

anteed for all positive values of the design parameters b
and c in (13). In the following, it is numerically studied

how these design parameters should be chosen in order to

reduce sensitivity to parameter errors and variations. The data

of a 2.2-kW PMSM given in Table I are used. The base

values for angular speed, voltage, and current are defined as

2π · 75 rad/s,
√

2/3 · 370 V, and
√
2 · 4.3 A, respectively.

The same relative uncertainty is assumed for all four model

parameters R̂s, L̂d, L̂q, and ψ̂pm. Hence, 16 different worst-

case combinations, consisting of minimum and maximum

values of the model parameters, can be formed. For example, if

the relative uncertainty is defined to be 40%, one of the worst-

case combinations is R̂s = 0.6Rs, L̂d = 0.6Ld, L̂q = 1.4Lq,

and ψ̂pm = 1.4ψpm.

At each studied operating point, the local stability of the

observer was analyzed for all 16 worst-case combinations of

erroneous model parameters. First, the estimation error of the

rotor position was numerically searched using (8) and (12)

in steady state, i.e., d/dt = 0. If a real-valued solution for

the position error (having absolute value less than 45◦) was

found, the small-signal stability of this operating point was

analyzed by means of a linearized model obtained from (12).

If the steady-state operating point exists and the corresponding

small-signal model is stable, the operating point is considered

to be stable.

Using the method described above, the stability of the

estimation-error dynamics with erroneous model parameters

was analyzed for different values of the design parameters

b and c. Fig. 2(a) shows the stability map in the design-

parameter space for the parameter uncertainties of 20% and

40% in medium-speed operation. In the figure, the vertical

axis is scaled with the inverse rotor speed in order to help the

comparison of different speeds. The operating point in Fig.

2(a) is defined by ω̂m = 0.5 p.u., id = 0, and iq = 0.9
p.u., where the current components are defined in estimated
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Fig. 2. Stability maps in the design parameter space. All b > 0 and c > 0
guarantee stable operation for accurate model parameters. (a) The operating
point corresponds to ω̂m = 0.5 p.u., id = 0, and iq = 0.9 p.u. The worst-
case stability boundaries corresponding to the parameter uncertainties of 20%
and 40% are shown by solid lines. (b) The operating point corresponds to
ω̂m = 0.05 p.u., id = 0, iq = −0.9 p.u. The worst-case stability boundaries
corresponding to the parameter uncertainties of 10% and 20% are shown by
solid lines. The dashed lines show (15) with κ = 2 and the circles correspond
to the selection b = 3 p.u. (which is applied in the experiments).

rotor coordinates. The torque estimate corresponds to the rated

motoring torque. It can be seen that the region of b and c
yielding the stable operation is large even in the case of the

parameter uncertainty of 40%.

Fig. 2(b) shows the stability map for parameter uncertainties

of 10% and 20% in low-speed operation. The operating point

is defined by ω̂m = 0.05 p.u., id = 0 and iq = −0.9 p.u., i.e.

the torque estimate corresponds to the rated generating torque.

It can be seen that the shape of the regions is similar to Fig.

2(a) even if the speed is much lower and the torque is reversed.

The stable regions would increase if the absolute torque were

smaller (and they would shrink if the absolute torque were

larger) while the shape of the regions remains similar.

The dashed lines in Fig. 2 correspond to

c = κb|ω̂m|+ ω̂2
m (15)

where the slope of the line is κ = 2. It can be seen that

the lines in Fig. 2 pass approximately through the centers of

the stable regions. Similar analysis was carried out in several

other operating points, and it was found out that the value

of κ can be kept constant. Hence, from the point of view of

the robustness, it seems reasonable to fix the ratio of b and c
according to (15), yielding the gains

k1 = −b1 + βκ sign(ω̂m)

β2 + 1
, k2 = b

β − κ sign(ωm)

β2 + 1
(16)

These gains are independent of the rotor speed estimate (ex-

cept for its sign). Similar gains were applied in a preliminary

study [31], but κ = 1 was fixed for simplicity, indicating a

less robust design.

5) Stator-Resistance Adaptation: At low speeds, the accu-

racy of the model permanent-magnet flux has a comparatively

small influence on the robustness. The effects of the magnetic

saturation on the inductances can be taken into account in

the model inductances.4 The temperature-dependent stator

resistance, however, is difficult to model. The robustness at

low speeds can be improved by augmenting the observer with

a stator-resistance adaptation law.

As already mentioned, an accurate model stator resistance

R̂s was assumed in the derivation of (13), but this assumption

will be lifted here. The following stator-resistance adaptation

law is proposed:

dR̂s

dt
= kR(ψ̂d − ψ̂pm − L̂did) (17)

where kR is the adaptation gain. As shown in Appendix B, the

general stability conditions for the observer augmented with

(17) are

kR(iq + βid)ω̂m > 0 (18a)

kR[(id − βiq)b− (iq + βid)ω̂m] + bc > 0 (18b)

where b and c are the positive design parameters in (13).

The stability conditions will be applied in the following.

Based on the condition (18a), the sign of the gain kR has to

depend on the operating mode. Furthermore, the magnitude of

kR has to be limited according to (18b). It can be shown that

the conditions in (18) are fulfilled by choosing

kR =







min{k′R, L}, if x > 0 and L > 0

max{−k′R, L}, if x < 0 and L < 0

k′R sign(x), otherwise

(19)

where k′R is a positive design parameter. The sign of the gain

kR is determined by x = (iq + βid)ω̂m. The limiting value is

L = −r bc

(id − βiq)b− (iq + βid)ω̂m

(20)

where the parameter 0 < r < 1 affects the stability margin of

the system; choosing r = 1 would lead to a marginally stable

system (in the operating points where kR is determined by L).

In practice, the adaptation should be disabled in the vicinity

of no-load operation and at higher stator frequencies due to

poor signal-to-noise ratio (which is a fundamental property

common to all stator-resistance adaptation methods based only

4Constant model inductances were used in this paper.
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Fig. 3. Experimental setup. The stator currents and the dc-link voltage are
used as feedback signals. Mechanical load is provided by a servo drive. The
rotor speed ωm is measured for monitoring purposes. Three-phase switch S
is in the closed position, except in the experiment shown in Fig. 6.

on the fundamental-wave excitation). Hence, parameter k′R in

(19) can be selected as

k′R =

{

k′′R

(

1− |ω̂m|
ω∆

)

is, if is > i∆ and |ω̂m| < ω∆

0, otherwise
(21)

where k′′R, ω∆, and i∆ are positive constants, and is is the

magnitude of the stator-current vector.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup and Parameters

The operation of the proposed observer and stator-resistance

adaptation was investigated experimentally using the setup

shown in Fig. 3. The motion-sensorless control system was

implemented in a dSPACE DS1103 PPC/DSP board. A 2.2-

kW six-pole salient PMSM is fed by a frequency converter

that is controlled by the DS1103 board. The rated values and

the parameters of the PMSM are given in Table I.

A servo PMSM is used as a loading machine. The rotor

speed ωm and position ϑm are measured using an incremental

encoder for monitoring purposes. The total moment of inertia

of the experimental setup is 0.015 kgm2 (2.2 times the inertia

of the 2.2-kW PMSM rotor).

The stator resistance of the 2.2-kW PMSM is approximately

3.3 Ω at room temperature. Additional 1-Ω resistors were

added between the frequency converter and the PMSM. The

resistance can be changed stepwise by opening or closing a

manually operated three-phase switch (S) connected in parallel

with the resistors. Unless otherwise noted, switch S is in the

closed position.

The block diagram of the speed-sensorless control system

implemented in the DS1103 board is shown in Fig. 1. For

simplicity, the components of the current reference vector were

evaluated as id,ref = 0 and iq,ref = Te,ref/ψ̂pm. The control

system is augmented with a speed controller, whose feedback

signal is the speed estimate ω̂m obtained from the proposed

observer. The bandwidth of this PI controller, including active

damping [32], is 0.08 p.u. The estimate of the per-unit electro-

magnetic torque is evaluated as T̂e = ψ̂pmiq+(L̂d− L̂q)idiq.

The phase currents are measured using LEM LA 55-P/SP1

transducers. The sampling is synchronized to the modulation,

and both the switching frequency and the sampling frequency

are 5 kHz (i.e., the sampling period Ts = 200 µs). The dc-link

voltage is measured, and the reference voltage obtained from

the current controller is used for the observer. The effect of

inverter nonlinearities on the stator voltage is substantial at low

speeds. Therefore, the most significant inverter nonlinearities,

i.e. the dead-time effect and power device voltage drops, have

to be compensated for [33], [34]. Using phase a as an example,

a compensated duty cycle was evaluated as [35]

da = da,ref +
2dδ
π

arctan

(
ia
iδ

)

(22)

where da,ref is the ideal duty cycle obtained from the cur-

rent controller and ia is the phase current. The parameter

dδ = 0.011 p.u. takes into account both the dead-time effect

and the threshold voltage of the power devices, while the on-

state slope resistance of the power devices is included in the

model stator resistance. The shape of the arctan function is

determined by the parameter iδ = 0.21 p.u. The current-

feedforward compensation method in (22) corresponds to the

method in [33], [34], except that the signum functions were

replaced with the arctan functions in order to improve the

performance in the vicinity of current zero crossings.

The proposed observer was implemented in estimated rotor

coordinates using (11), (16), (17), (19), and (21). The adapta-

tion law (17) was discretized as R̂k+1
s = R̂k

s + TskR(ψ̂
k
d −

ψ̂pm − L̂di
k
d). The per-unit model parameters used in the

experiments are: L̂d = 0.35 p.u.; L̂q = 0.53 p.u.; and

ψ̂pm = 0.895 p.u. The observer gain (16) is determined by

the constants b = 3 p.u. and κ = 2. The parameters needed

for the stator-resistance adaptation are: r = 0.1 in (20) and

k′′R = 0.02 p.u., ω∆ = 0.25 p.u., and i∆ = 0.2 p.u. in (21).

B. Results

Fig. 4 shows results of medium-speed no-load operation.

The speed reference was stepped from 0 to 1200 rpm, then to

−1200 rpm and finally back to 0. According to (21), the stator-

resistance adaptation was only active in the beginning of the

acceleration and at the end of the deceleration. Even though

there is an initial error of approximately 14 electrical degrees

in the rotor position estimate, it can be seen that the position

estimate converges close to the actual position in the beginning

of the acceleration. The position error increases slightly at the

end of the deceleration (t > 2.5 s) since the stator current,

voltage and frequency approach zero and, therefore, there is

no information available on the position. However, it is worth

noticing that the position estimate remains stable at zero speed

and the drive could be accelerated again.

Fig. 5 shows the effect of parameter errors on the position

estimation error at the speed of 750 rpm under the rated

load torque. The data was captured by varying each model

parameter slowly (in six seconds) from 60% up to 140% of

the actual value. It can be seen that the system remains stable

in accordance with Fig. 2(a). The model parameters R̂s and

L̂d have marginal effect on the position error. The errors in L̂q

and ψ̂pm cause position error while the stability is not affected.
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Fig. 4. Experimental results showing speed-reference steps (0 → 1200 rpm
→ −1200 rpm → 0) at no load.

Fig. 6 shows the stepwise change in the stator resistance (as

seen by the frequency converter). Initially, three-phase switch

S, cf. Fig. 3, was in the closed position. The speed reference

was kept at 45 rpm. A rated-load torque step was applied at

t = 2 s. Switch S was opened at t = 5 s, causing a 0.02-p.u.

increase (corresponding to 30%) in the actual stator resistance.

Switch S was closed at t = 15 s. It can be seen that the

stator-resistance estimate tracks the change in the actual stator

resistance.

Fig. 7 shows load-torque steps when the speed reference

was kept at 30 rpm. The load torque was stepped to the

rated value at t = 1 s, reversed at t = 3 s, and removed

at t = 5 s. It can be seen that the proposed observer

behaves well in torque transients. The ripple appearing in the

measured waveforms originates mainly from the spatial flux

and inductance harmonics that are comparatively strong in the

studied PMSM [36]. They were not compensated in this study.

Results of slow speed reversals are shown in Fig. 8. A

rated-load torque step was applied at t = 2 s. The speed

reference was slowly ramped from 150 rpm to −150 rpm and

back to 150 rpm. During the sequence, the drive operates in

the motoring and regenerating modes. In the vicinity of zero

frequency, the rotor-position estimate begins to deviate from

the actual position but the system remains stable. Without the

stabilizing observer gain, this kind of speed reversals would

not be possible. Furthermore, without the stator-resistance

adaptation, a very accurate model stator resistance would be

needed since the frequency remains in the vicinity of zero for

a long time.
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Fig. 5. Measured steady-state errors in the position estimate at the speed of
750 rpm under rated load torque. The data is captured by varying each model
parameter slowly (in six seconds) from 60% up to 140% of the actual value.

V. CONCLUSIONS

In this paper, a reduced-order position observer with stator-

resistance adaptation was proposed for motion-sensorless

PMSM drives. A general analytical solution for the stabilizing

observer gain and stability conditions for the stator-resistance

adaptation were derived. Under these conditions, the local

stability of the position and stator-resistance estimation is

guaranteed at every operating point except the zero frequency,

if other motor parameters are known. In the parametrization of

the observer gains, sensitivity to the erroneous model param-

eters was taken into account. The proposed observer design

is simple, and it results in a comparatively robust and well-

damped closed-loop system. The observer was experimentally

tested using a 2.2-kW PMSM drive; stable operation at low

speeds under different loading conditions is demonstrated.

Furthermore, it was experimentally verified that the stator-

resistance estimate can track stepwise changes in the actual

resistance.

APPENDIX A

DERIVATION OF A STABILIZING OBSERVER GAIN

The local stability of the system (12) can be studied

via small-signal linearization in the synchronous coordinates.

Accurate model parameters R̂s, L̂d, L̂q, and ψ̂pm are assumed
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Fig. 6. Experimental results showing the stepwise increase of 1 Ω in the actual
stator resistance at t = 5 s and the decrease at t = 15 s. Speed reference is
kept at 45 rpm and rated load torque is applied at t = 2 s. TL shown in the
second subplot is the torque reference of the loading drive.

in the following. When the definition (8) and the observer gain

(9) are applied in (12), linearization results in

d

dt

[
ψ̃d

ψ̃q

]

=

[
k10 −k10β0 + ωm0

k20 − ωm0 −k20β0

]

︸ ︷︷ ︸

A

[
ψ̃d

ψ̃q

]

(23)

where the operating-point quantities are marked by the sub-

script 0. It is worth noticing that ϑ̃m and ψ̃q of the linearized

system are linearly dependent, i.e. ψ̃q = [ψpm + (Ld −
Lq)id0]ϑ̃m holds.

Since accurate model parameters are assumed, ψ̃d0 = 0
and ϑ̃m0 = 0 hold in the operating point. Therefore, the

linearization is valid even if the gain scheduling is used for the

observer gain. The characteristic polynomial is det(sI−A) =
s2 + b0s+ c0, where

b0 = k20β0 − k10, c0 = ω2
m0 − (k20 + k10β0)ωm0 (24)

The nonlinear system (12) is locally stable if the coefficients of

the characteristic polynomial are positive: b0 > 0 and c0 > 0.
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Fig. 7. Experimental results showing load-torque steps (0 → rated → negative
rated → 0) when the speed reference is kept at 30 rpm.

From (24), the general stabilizing gain can be solved:

k10 = −b0 + β0(c0/ωm0 − ωm0)

β2
0 + 1

(25a)

k20 =
β0b0 − c0/ωm0 + ωm0

β2
0 + 1

(25b)

This gain is related to the closed-loop poles according to

s1,2 =
−b0 ±

√

b20 − 4c0
2

. (26)

and to the damping ratio and undamped natural frequency

according to

ζ =
b0

2
√
c0
, ωn =

√
c0 (27)

respectively.

APPENDIX B

STABILITY OF STATOR-RESISTANCE ADAPTATION

Accurate model parameters L̂d, L̂q, and ψ̂pm are assumed in

the following. Assuming constant actual resistance Rs and the

stator-resistance adaptation law (17), the nonlinear dynamics

of the stator-resistance estimation error become

dR̃s

dt
= kR(ψ̂d − ψpm − Ldid) (28)
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Fig. 8. Experimental results showing slow speed reversals (150 rpm → −150
rpm → 150 rpm) when the rated load torque is applied.

The closed-loop system consisting of (12) and (28) can be

linearized:

d

dt





ψ̃d

ψ̃q

R̃s



 =





k10 −k10β0+ωm0 −id0
k20−ωm0 −k20β0 −iq0
kR0 −kR0β0 0









ψ̃d

ψ̃q

R̃s



 (29)

where the definition (8) and the observer gain (9) are applied.

Using the Routh–Hurwitz stability criterion, the stability con-

ditions are

b0 > 0 (30a)

kR0(iq0 + β0id0)ωm0 > 0 (30b)

kR0[(id0 − β0iq0)b0 − (iq0 + βid0)ωm0] + b0c0 > 0 (30c)
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