
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

A COMBINED PROCEDURE FOR OPTIMIZATION VIA SIMULATION

Juta Pichitlamken

Department of Industrial Engineering
Kasetsart University

Bangkok, THAILAND

Barry L. Nelson

Department of Industrial Engineering
& Management Sciences
Northwestern University

Evanston, IL 60208-3119, U.S.A.

e
sti
ay
ur
, a
is

s-
or

ur
en
i-

n
al

s

n,
ts

ns
th

em
nt.

the
cts
e

of

e
d,

ion
rt

ped

he
re-
nds,
en

e
n-
ns
s,
tion
ve
eir
y"
ew
n.
by
e-
e

ps.
u-
d,
,

ABSTRACT

We propose an optimization-via-simulation algorithm for us
when the performance measure is estimated via a stocha
discrete-event simulation, and the decision variables m
be subject to deterministic linear integer constraints. O
approach—which consists of a global guidance system
selection-of-the-best procedure, and local improvement—
globally convergent under very mild conditions.

1 INTRODUCTION

We consider the following optimization problem:

max
x∈2 µ(x)

whereµ(x) is the scalar-valued performance measure a
sociated with a vector-valued, integer decision variable
solutionx = (x1, x2, . . . , xq). All solutionsx are contained
in a convex and finite feasible space2, defined by determin-
istic linear constraints. We assume the performance meas
µ(x) can only be estimated via a stochastic, discrete-ev
simulation by observing a simulation output random var
ableY (x), whereµ(x) = E[Y (x)], and that little or nothing
is known about the response surfaceµ(x).

A key feature that makes optimization via simulatio
difficult is balancing the tradeoff between the computation
effort used in estimatingµ(x) and that used for exploration
of 2 in search of better solutions. If too much effort i
spent on estimatingµ(x), an optimization algorithm may
not visit much of2 in the time available. As a result, it may
not discover an optimal solution, or even a good solutio
at all. On the other hand, unless the algorithm accoun
for variability in the estimator ofµ(x), the search can be
misled and not converge or even recognize good solutio
when they are encountered. Our goal is to achieve bo
provable convergenceandgood empirical performance.

Our search scheme consists of a global guidance syst
a selection-of-the-best procedure, and local improveme
c,

e
t

,

The global guidance system ensures the convergence of
search so that, given sufficient time, it reaches and sele
one of the optimal solutions. Specifically, we adopt th
philosophy of Shi and Ólafsson’s (2000)Nested Partition
(NP) method. NP is based on identifying a sequence
“most-promising” subregions of2. When better solutions
are foundinsidethe current most-promising region, then th
region is partitioned for finer exploration. On the other han
when better solutions are foundoutsidethe current most-
promising subregion, then NP backtracks to a superreg
of it. The idea is to concentrate the computational effo
where there appear to be good solutions but not be trap
locally.

The search, essentially the partitioning, is guided by t
estimated performance of solutions sampled from each
gion. Thus, the performance of an NP-based search depe
to a great extent, on making correct decisions about wh
to partition or backtrack. We incorporateSequential Selec-
tion with Memory(SSM)—a statistical procedure that w
have specifically designed for use within the optimizatio
via-simulation context—to help NP make such decisio
(Pichitlamken and Nelson 2001). Under certain condition
SSM guarantees to select the best, or a near-best, solu
with a user-specified probability when some solutions ha
previously been visited and their past observations (or th
summary statistics) are maintained. SSM utilizes “memor
of solutions it has seen to alleviate the need to obtain n
simulation outputs every time the search revisits a solutio
We further refine SSM for use in an NP-based search
allowing it to terminate as soon as the most-promising r
gion, rather than the single best solution, is identified. W
call this refinement SSM(REGION).

Our motivation for incorporating SSM is to intelligently
expend the simulation effort used in region-selection ste
The hope is that good selections made with minimal sim
lation effort, and the guidance provided by the NP metho
will result in moving toward better and better solutions
while still having adequate time to explore2 thoroughly.
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We further enhance the performance of our combin
scheme with local improvement. Because the NP meth
already provides adiversificationelement, local improve-
ment is intended to provide anintensificationcomponent.
The idea is to enhance performance on problems where|2|
is large, but good solutions are clustered, or where|2| is
large, but the response surface is smooth. When|2| is large,
relative to the time available for optimization, the searc
may miss some better solutions residing close to good
lutions that it has already visited. Once they are misse
the search may not encounter them again due to rand
sampling in a large space. Local improvement helps t
search explore2 more intensively near good solutions.

A hill-climbing (HC) algorithm constitutes our local-
improvement scheme. We chose HC because it is intuitive
simple: The current solution on hand is compared with som
(or all) of its neighboring solutions, and the winner becom
the next solution. This neighborhood selection of the be
is repeated until some stopping criterion is satisfied.
simplicity aside, HC is also appealing because it is read
applicable in our problem setting where a neighborhood
easy to define.

With the NP method acting as our global guidanc
system, SSM expediting the region selection, and HC p
forming local improvement, we call our combined schem
the NP+SSM+HC Algorithm. In addition to the use of
SSM and HC, our implementation of NP differs conside
ably from Shi and Ólafsson’s (2000) version, including th
criterion used to estimate the optimal solution, the gene
ality of the partitioning scheme and the solution-samplin
scheme. Similar to their NP method, NP+SSM+HC co
verges almost surely to a global optimum, but it does
under far less restrictive assumptions.

The paper is organized as follows: The next sectio
reviews literature relevant to our approach. We define o
problem more specifically in Section 3. We give an overvie
of NP+SSM+HC in Section 4, followed by descriptions o
each of its components. The global convergence proper
are stated in Section 5. We compare our algorithms
other schemes via a numerical example in Section 6. W
conclude with future research directions in Section 7. A
the proofs can be found in Pichitlamken (2002).

2 BACKGROUND

Many optimization-via-simulation algorithms are adapte
from methods designed for deterministic problems. Ty
ically, the search tries to move in a relatively improvin
direction while utilizing some form of randomization to
escape from local optimal solutions. Andradóttir’s (1998
tutorial discusses a number of such methods, including
stochastic ruler algorithm (Yan and Mukai 1992), varian
of simulated annealing altered to accommodate randomn
(e.g., Gelfand and Mitter 1989, Gutjahr and Pflug 199
-
,

s

andAlrefaei andAndradóttir 1999), andAndradóttir’s (199
1996) random search algorithms. The common charac
istic among these algorithms is that they move from t
current solution to one of its neighboring solutions. How
ever, they differ in their neighborhood structure, their ru
for comparing the current solution to the selected neighb
and their criterion for estimating the optimal solution at th
end of the search. Most of these algorithms can be sho
to converge globally as the sampling effort increases.

In contrast to such globally convergent methods, ma
heuristics are appealing because they work well in practi
To bridge the gap between research and practice, Boe
(1999) and Boesel, Nelson and Ishii (2002) suppleme
a genetic algorithm search with a ranking-and-selecti
procedure applied at the end of the search to allow t
combined algorithm to make a correct-selection guarant

3 FRAMEWORK

We now define our optimization-via-simulation problem
more precisely. Our goal is to solve

max
x∈2 µ(x) (1)

when2 is defined by the following constraints:

q∑
i=1

aij xi ≤ bj , j = 1,2, . . . , p

0 ≤ li ≤ xi ≤ ui < ∞, i = 1,2, . . . , q (2)

li , xi, ui ∈ Z+ ∪ {0}, i = 1,2, . . . , q

where the set of positive integers is denoted byZ+. Thus,
we assume that the feasible region2 is convex and finite.
To avoid triviality, we also assume that2 is nonempty.
The finiteness of2 allows us to index the solutionsx and
the corresponding performance measures as follows:2 =
{x1, x2, . . . , xv} wherev is the number of feasible solutions
in 2, andµi ≡ µ(xi ). Without loss of generality, we let
the set of optimal solutions be2∗ = {xv∗ , xv∗+1, . . . , xv}
where 1≤ v∗ ≤ v.

Recall that we must estimateµi . The observed per-
formance measure of solutioni on replicationp of the
simulation is denoted byYip, so thatµi = E[Yip]. Let
σ 2
i = Var [Yip]. Both the performance measureµi and its

varianceσ 2
i are assumed finite for alli ∈ {1,2, . . . , v}. Fur-

ther, the observed performance measuresYip, p = 1,2, . . .,
are independent and identially distributed (i.i.d.), and ind
pendent ofYjs for i 6= j .
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Let a region, which we will generically denote asτ ,
be a finite, convex subset of2 characterized by:

q∑
i=1

aτij xi ≤ bτj , j = 1,2, . . . , pτ

0 ≤ lτi ≤ xi ≤ uτi < ∞, i = 1,2, . . . , q (3)

lτi , xi, u
τ
i ∈ Z+ ∪ {0}, i = 1,2, . . . , q.

The region isinfeasiblewhen there exists a constraintj ∈
{1,2, . . . , pτ } such that∑

i:aτij>0

aτij l
τ
i +

∑
i:aτij<0

aτij u
τ
i > bτj . (4)

4 NP+SSM+HC

We first give a high-level description of NP+SSM+HC, and
then present the particulars of each step—partitioning, sol
tion sampling, SSM, and HC—separately in the subseque
sections.

Algorithm NP+SSM+HC

1. Initialization: Set the iteration counterk = 1, the
current most-promising regionRk = 2, the number
of observations on theith solution ni(k) = 0 for
all i ∈ {1,2, . . . , v}, and the initial estimate of
the optimal solutionx

î∗k−1
to a user-provided initial

solution.
2. Search and selection:Repeat Steps 2a–2f until the

simulation effort (i.e., clock time or the number of
simulation replications allowed) is exhausted:

(a) Partitioning: If the current most-promising
region Rk is not a singleton, then partition
Rk into disjoint regionsRk1, Rk2, . . . , Rkω(Rk)
(see Section 4.1). LetMk = ω be the number
of subregions. Then, ifRk 6= 2, aggregate
the surrounding region; letMk = Mk + 1 and
RkMk

= 2 \ Rk.
(b) Sampling: For each region Rk`, ` =

1,2, . . . ,Mk, randomly sampleϑ solutions
from Rk`. (If x

î∗k−1
∈ Rk`, include it as one

of theseϑ sampled solutions fromRk`. See
Section 4.2.) Aggregateall the sampled so-
lutions xi into a set through their indicesi;
let Sk denote the set of indices of sampled
solutions.

(c) Selection of the best solution:Take 1nfree

observations ofYip from every solutionxi , i ∈
Sk. Use SSM or SSM(REGION) to select the
best solution overSk, which we denote as
x̂∗(Sk) (see Section 4.3). If the simulation
effort is exhausted, go toSearch termination
step.

(d) Algorithm Hill Climbing: If the criterion for
using HC is satisfied, perform Algorithm Hill
Climbing with x̂∗(Sk) as a starting solution
(see Section 4.4). Letx

î∗k
be the solution

deemed best by HC. If the simulation effort
is exhausted, go toSearch terminationstep.

(e) Updating the most-promising region:If x
î∗k
∈

Rk, thenRk` that containsx
î∗k

becomes the

next most-promising region,Rk+1; otherwise,
the search backtracks to the superregion ofRk,
which can be either2 or Rk−1. Increment
k = k + 1.

(f) Restart: Restart at iterationk if Rk−k0+1 =
Rk−k0+2 = · · · = Rk by letting Rk = 2 and
using a different partitioning criterion (see (7)
below).

3. Search termination:The best solution selected by
NP+SSM+HC is the one with the maximum cu-
mulative sample average; i.e., the selected solutio
is x

î∗ where

î∗ ≡ arg max
1≤i≤v

{
Ȳi (ni(k)) : ni(k) > 0

}
(5)

Ȳi (r) ≡
r∑

p=1

Yip/r. (6)

We further describe each component of NP+SSM+HC in
the following sections (see Pichitlamken 2002 for complete
details).

4.1 Partitioning Scheme

Our proposed partitioning scheme is motivated by the Branc
and Bound Method. The goal is to partition a convex
feasible regionτ of the form defined in (3) into disjoint
subregions, each of which remains convex. We branchτ in
one dimension per partitioning: First, we select the variabl
to branch upon, sayxi′ , using one of the following three
criteria:

i′ ≡


argmax1≤i≤q {uτi − lτi } if criterion = BIGGEST RANGE

argmin1≤i≤q {uτi − lτi } if criterion = SMALLEST RANGE

i with probability 1/q for i ∈ {1,2, . . . , q}
if criterion = RANDOM.

(7)

Next, we further divide the range of feasible values o
xi′ , {lτi′ , lτi′ + 1, . . . , uτ

i′ − 1, uτ
i′ }, into subintervals. Based

on these subintervals, we form the subregions from th
constraints that defineτ and a tighter constraint onxi′ .



Pichitlamken and Nelson

ted
rib

the

e
a

r

ain

nd

o

rn
it

-
lly

-
er-
al

-
es

e

es
lso

od
ed
at
h
ol
lin

i
at
al-

for

in
d

-

t
of
are

re

d

a

n:
On iteration k, after the most-promising regionRk
is partitioned, and the surrounding region is aggrega
solutions are sampled from each subregion. We desc
the solution sampling scheme next.

4.2 Solution Sampling Scheme

NP+SSM+HC requires sampling within the subsets of
most-promising regionRk, which are convex, and within
the surrounding region, which is not convex. We develop
Algorithm MIX-D to sample an integer solution from
convex region of the form (3) (we will denote it asτ for
simplicity), and Algorithm MIX-DS to sample an intege
solution from2 \ Rk. Algorithm MIX-DS is essentially
Algorithm MIX-D, sampling over2, but with extra calcu-
lations to ensure that the generated Markov chain rem
outsideRk at all times.

Our discrete-variable sampling algorithms exte
Smith’s (1984) Mixing Algorithm, which is for continu-
ous spaces. From a starting solution insideτ , Algorithm
MIX-D generates the next solution (i.e., the next state
the Markov chain) that is also insideτ . This process is
repeated for several steps, and the sampled solution retu
by MIX-D is the current state of the Markov chain when
stops. If the feasible regions2 andτ are of the form (3),
and they are nonempty and of full-dimension, both MIX
D and MIX-DS generate solutions that are asymptotica
uniformly distributed over the feasible spaceτ and2 \Rk,
respectively (see Pichitlamken 2002 for details).

Although the uniformity property of the solution sam
pling algorithms is not required to attain the global conv
gence of NP+SSM+HC, it is desirable in practice: Rec
that we assume no knowledge of the response surfaceµ(x).
Therefore, we count on the MIX-D and MIX-DS algo
rithms to insure diversity, while the NP method focus
NP+SSM+HC on promising solutions.

After we sample solutions from all subregions, w
use either SSM or SSM(REGION) to select the best. To
make this paper self-contained, we briefly describe th
procedures in the next section (see Pichitlamken and Ne
2001 and Pichitlamken 2002 for complete details).

4.3 Sequential Selection with Memory

SSM was designed to provide a highly efficient meth
for selecting the best—maximum of minimum expect
performance—from among a small number of candid
solutions. SSM is fully sequential with elimination, whic
means that it takes observations one at a time from the s
tions under consideration and eliminates (ceases samp
solutions as soon they are shown to be inferior. SSM
specially designed for use in optimization algorithms th
revisit solutions because it exploits whatever data have
ready been obtained. In NP+SSM+HC, we use SSM
,
e

d

s

f

ed

l

e
n

e
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s

the selection of a new most-promising region for NP, and
determining when the HC algorithm has found an improve
solution.

Without loss of generality, let the finite number of so
lutions under consideration be denoted by{x1, x2, . . . , xκ}.
SSM assumes the observations taken fromxi , Yip, to be
i.i.d. normally distributed with finite meanµi and variance
σ 2
i (the convergence properties of NP+SSM+HC do no

depend on the normality assumption). For convenience
exposition, assume that the true means of the solutions
indexed such thatµ1 ≤ µ2 ≤ · · · ≤ µκ . The best solution is
defined as the one with the largest mean, which is therefo
µκ .

Our procedure guarantees to selectxκ with probability
at least 1−α whenever the difference between the best an
the next best solution is worth detecting:

Pr{selectxκ} ≥ 1− α wheneverµκ − µκ−1 ≥ δ. (8)

The indifference-zone parameter is denoted byδ > 0. Even
when the indifference-zone condition is not satisfied (µκ −
µκ−1 < δ), SSM still selects a “good” solution (one whose
mean is withinδ of µκ ) with probability at least 1− α.

In SSM, we sequentially take one observation at
time from surviving solutions, immediately followed by
screening. To make this precise, we define some notatio
Let i ∈ {1,2, . . . , κ}.

V = set of solutions we have “visited" before;

ni ≥ n0 for i ∈ V
V c = set of solutions we see for the first time;

ni < n0 for i ∈ V c = {1,2, . . . , κ} \ V
Nij =

⌊aij
λ

⌋
Ni = max

j 6=i {Nij }
N = max

1≤i≤κ Ni (9)

σ 2
ij = Var (Yip − Yjp)
n0 = minimum initial number of observations

from any solution

S2
ij = estimator ofσ 2

ij

= 1

n0 − 1

n0∑
p=1

(
Yip − Yjp − [Ȳi (n0)− Ȳj (n0)]

)2
f = n0 − 1.

Note thatNi+1 is the maximum number of observations
taken fromxi .
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Procedure SSM

1. Initialization: For eachxi , i ∈ V c, take n0 − ni
observations(n0 ≥ 2), and setni = n0. Compute
S2
ij ,∀i 6= j .

2. Procedure parameters:We chooseλ and aij as
follows:

λ = δ

2
and aij =

f S2
ij

4(δ − λ)

[(
κ − 1

2α

)2/f

− 1

]
.

If n0 > N (as defined in (9)), stop and select th
solution with the largest̄Yi(ni) (as defined in (6))
as the best. Otherwise, letI = {1,2, . . . , κ} be the
set of surviving solutions, setr = n0, and proceed
to Screening. From here onV represents the set of
solutions on which we have obtained more thanr
observations, whileV c is the set of solutions with
exactly r observations.

3. Screening:Set Iold = I where

I =
{
i : i ∈ Iold and

Yi ≥ max
j∈Iold,j 6=i

(Yj − aij )+ rλ}

Yj =
{ ∑r

p=1 Yjp for j ∈ V c
rȲj (nj ) for j ∈ V.

In essence, forxi with ni > r, we substituterȲi(ni)
for

∑r
p=1 Yip.

4. Stopping rule: If |I | = 1, then stop and report
the only survivor as the best; otherwise, for eac
i ∈ (I ∩V c), take one additional observation from
xi and setr = r + 1. If r = N + 1, terminate
the procedure and select the solution inI with the
largest sample average as the best; otherwise,
eachi ∈ (I ∩ V ) with ni = r, updateV andV c:
V c = V c ∪{i}, andV = V \ {i}. Go toScreening.

SSM(REGION) intends to save simulation effort by
terminating SSM when all surviving solutions belong to th
samesubregion. This is useful in an NP step where all w
need to do is to identify the subregion that contains the b
sampled solution, not necessarily the best solution itsel

Let S∗k be the set of solution indices of the surviving
solutions when SSM(REGION) terminates on iterationk.
The best solution selected by SSM(REGION) is:

x̂∗(Sk) =
{
xi : i = argmaxi∈S∗k Ȳi (ni)

}
. (10)
of
n

r

t

After SSM selects the best solution from the set o
sampled solution, we attempt to improve it further with hil
climbing, as described below.

4.4 Local Improvement

Algorithm Hill Climbing (HC) is essentially a greedy heuris-
tic that iteratively moves from the current solution to one
of its neighboring solutions until some stopping criterion
is satisfied. In our algorithm, the available options for em
ploying HC are: (a) do not perform HC at all, (b) perform
HC onall iterations, or (c) perform HC if theimprovement
is “big enough," i.e.,∣∣∣Ȳî∗k (nî∗k )− Ȳî∗k−1

(n
î∗k−1
)

∣∣∣ > 2δ, (11)

whereδ is an indifference-zone parameter of SSM (see (8)

Procedure Hill Climbing

1. Initialization: Set t = 0 and X0 to a starting
solution.

2. Search: Repeat Steps 2a–2d until the stopping
criterion is satisfied (see Remark below):

(a) Neighborhood construction: For Xt =
(X1t , X2t , . . . , Xqt ), construct a hypercube:
B(Xt ) ≡ 5qi=1[Xit − ξ,Xit + ξ ], whereξ ∈
Z+. UpdateB(Xt ) so thatB(Xt ) ⊆ 2.

(b) Solution sampling: Use MIX-D (see Sec-
tion 4.2) to sample$ solutions fromB(Xt ).
Aggregate the indices of the sampled solution
into a setS loc

t .

(c) Selection of the best:Use SSM (see Sec-
tion 4.3) to select the best solution whose
index is î∗loc

t from S loc
t .

(d) Update the best solution:Xt+1 = x
î∗loc
t

and
t = t + 1.

3. Termination: ReturnXt .

Remark: The options for the stopping criterion are: (a) to
perform HC once, (b) to perform HC untilî∗loc

t = î∗loc
t−1, or

(c) to perform HC until∣∣∣Ȳî∗loc
t
(n
î∗loc
t
)− Ȳ

î∗loc
t−1
(n
î∗loc
t−1
)

∣∣∣ < δ, (12)

whereδ is an indifference-zone parameter. The motivatio
for (12) is similar to the rationale behind (11); with (12),
however, HC stops if the perceived progress is too smal

Thus far, we have fully described how NP+SSM+HC
works. In the next section, we establish its global con
vergence properties, which are not just an aggregation
the attributes of each component—partitioning, solutio
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sampling, SSM, HC, and updating of the most-promisi
region—but also a result of their interactions.

5 PROPERTIES OF NP+SSM+HC

In Lemma 1, we establish that every solution in2 is
sampled infinitely often in the limit. The Strong Law o
Large Numbers then leads us to almost-sure converge
of NP+SSM+HC.
Lemma 1 For all i ∈ {1,2, . . . , v},

lim
k→∞ ni(k) = ∞.

Theorem 1 NP+SSM+HC converges almost surely t
one of the global optimal solutions ask → ∞; i.e., a
solution x

î∗ , where î∗ as defined in (5) belongs to the se
of optimal solutions almost surely ask→∞.

Theorem 1 guarantees that our algorithm converges
a global optimal solution in the limit. In Theorem 2, An
dradóttir (1999) provides us with anO(k−1/2) convergence
rate for the case of a unique optimum (v∗ = v). Note that
Theorem 1 holds when there are multiple optimal solutio
but in such cases we were unable to extend Andradót
results to our algorithm. Theorem 2 also allows us to form
confidence interval for the maximum performance meas
µv.
Theorem 2 If the optimal solution is unique, and̂i∗
satisfies (5), then√

1nfreek
(
Ȳ
î∗
(
n
î∗(k)

)− µv) ⇒ N(0, σ 2
v ),

where⇒ denotes convergence in distribution.

6 NUMERICAL EXPERIMENTS

We consider the performance of NP+SSM+HC relative
other optimization schemes on a three-stage buffer alloca
problem. We will first describe the competing optimiza
tion schemes, then characterize a test problem, and fin
report the corresponding performance of each scheme
addition to NP+SSM+HC, the optimization approaches th
we consider are:
NP: NP does not use SSM or HC. It takes1nfixed obser-
vations ofYip from xi that has never been visited befor
otherwise, it takes1nfree observations. NP selects the be
solution over the setSk, x̂∗(Sk), as the one with the larges
cumulative sample average, and NP usesx̂∗(Sk) to determine
the next most-promising region.
Pure random search (RS)(Andradóttir 1996): RS is a
modified hill-climbing algorithm. LetCi(k) denote the
ge
of
e

o

,

n

y
n
t

number of timesxi becomes the current solution up t
iterationk. RS proceeds as follows:

1. Use MIX-D to uniformly sample a candidate so
lution xI ′k over2 \ {Ik}, whereIk is the index of
the current solution.

2. Take1nfixed > 0 observations ofYIkp and YI ′kp,
and compute the sample averages over these
servations:ȲI ′k (1nfixed) and ȲIk (1nfixed).

3. UpdateIk andCi(k):

Ik+1 =
{
I ′k, if ȲI ′

k
(1nfixed)>ȲIk (1nfixed)

Ik,otherwise
(13)

Ci(k + 1) = Ci(k)+ I{Ik+1 = i}
k = k + 1,

whereI{ν} = 1 if ν is true and 0 otherwise. The selecte
solution isx

î∗ where

î∗ = argmax1≤i≤vCi(k). (14)

Simulated annealing (SA)(Andradóttir 1999): SA is al-
most identical to RS, but occasional downhill moves a
allowed. Let the neighborhood structure be such that ev
solution is a neighbor of every other solution. The anneali
temperatureT is fixed. Equation (13) is replaced by

Ik+1←
{
I ′k, if Uk ≤ exp

{−1Y+k /T }
Ik,otherwise.

(15)

where1Y+k = max
(
ȲIk (1nfixed)− ȲI ′k (1nfixed),0

)
, and

Uk ∼ uniform(0,1). The selected solution isx
î∗ where

î∗ = argmax1≤i≤v{Ȳi (ni(k)) : ni(k) > 0}. (16)

Remark: The past observations are accumulated in RS a
SA for the purpose of estimating the optimal solution upo
search termination (in (14) and (16)), but they are not us
for the local comparison (in (13) or (15)).

We consider RS and SA because they are globa
convergent (Our problem setting is such that the requir
conditions specified in Andradóttir (1996, 1999) are sa
isfied.). We compare NP+SSM+HC to NP to study th
role of local selection-of-the-best schemes and HC. Ea
optimization scheme is repeated for some number of tim
and the results shown below are theaveragedvalues across
different searches.

6.1 Three-Stage Buffer Allocation Problem

We consider a three-stage flow line with finite buffer stora
space in front of stations 2 and 3 and an infinite number
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jobs in front of station 1. There is a single server at ea
station, and the service time at stationh is exponentially
distributed with rateµh, h = 1,2,3. If the buffer of station
h is full, then stationh − 1 is blocked and a finished job
cannot be released from stationh − 1. The total buffer
space and the service rates are limited. The goal is to fin
buffer allocation and service rates such that the through
(average output of the flow line per unit time) is maximized
We obtain the balance equations of the underlying Mark
chain from Buzacott and Shantikumar (1993).

Let bh be the number of buffer space at stationh, h =
1,2,3. The constraints (in the form of (2)) are:

µ1+ µ2+ µ3 ≤ 20

b2+ b3 ≤ 20

−b2− b3 ≤ −20

1 ≤ µh ≤ 20, h = 1,2,3

1 ≤ bh ≤ 20, h = 1,2

µh, bh ∈ Z+.

The number of feasible solution is 21,660. The optim
solutions are(µ1, µ2, µ3, b2, b3) = (6, 7, 7, 12, 8) and
(7, 7, 6, 8, 12) with an expected throughput of 5.776.
the simulation, the throughput is estimated after the fir
2000 units have been produced, and it is averaged over
subsequent 50 units released.

All of the searches start from (2, 2, 2, 2, 18). Othe
parameter values for NP+SSM+HC are as follows: whe
NP backtracks it is to the entire feasible region2; the
partitioning criterion for NP isBIGGEST RANGE; the most-
promising region is partitioned intoω = 2 subregions; the
number of solutions sampled from each subregion and
surrounding region isϑ = 5; each time a solution is visited
it gets at least1nfree = 1 additional observations; the
minimum number of observations needed to run SSM
n0 = 4; the indifference-zone parameter of SSM isδ = 0.5;
the confidence level for SSM is 1− α = 0.9; the number
of iterations without progress that triggers restart isk0 = 6;
the number of Markov-chain transitions in each applicatio
of MIX-D or MIX-DS is 10; and the annealing temperatur
is T = 3 (see (15)). When HC is used, it is performe
on all iterations and stops when progress is too small (s
(12)); the number of candidate solutions on each HC st
is $ = 3; and the neighborhood step size isξ = 1. For
NP, RS and SA the number of observations per visit
1nfixed = 4. Finally, the results we report are the averag
over 50 independent searches.

Figure 1 shows the expected throughput of thecurrent
optimal-solution estimateµ

î∗ (î∗ is defined in (5)) averaged
over 50 searches at each point in time. Initially, the perfo
mance of NP+SSM(REGION)+HC and NP are comparable
and better than other optimization methods. However,
the simulation effort increases, NP+SSM(REGION)+HC and
a
t

e

NP+SSM+HC outperform the rest despite their small num
ber of solutions seen relative to other optimization schem
(see Figure 2). This illustrates the dilemma of local selecti
versus global exploration. When the simulation effort
small, both NP+SSM(REGION)+HC and NP+SSM+HC are
unable to see much of2 because they use more simulatio
effort per search iteration than other schemes do (as t
use SSM to select the best). However, as the optimizat
progresses further, the benefit of successively making go
selections on every iteration finally pays off, and the pe
formance of NP+SSM(REGION)+HC and NP+SSM+HC
surpasses that of other optimization schemes.

The benefit of HC is manifested through the favorab
performance of NP+SSM(REGION)+HC compared to that
of NP+SSM(REGION). This result confirms our conjecture
that HC is advantageous for problems with large|2| and
clustered good solutions; this three-stage buffer allocat
problem has|2| = 21,660 with 5 decision variables, and
good solutions are in close proximity.

Next, we examine the value of optionREGION.
NP+SSM(REGION)+HC noticably outperforms
NP+SSM+HC in the initial phase of the search. Optio
REGIONis helpful when the simulation budget is limited
because SSM(REGION) consumes less simulation effort pe
search iteration than SSM does (recall that SSM(REGION)
stops when all surviving solutions belong to the sam
subregion). This savings allows NP+SSM(REGION)+HC
to explore2 more extensively than NP+SSM+HC doe
(see Figure 2), and thus the search with optionREGION
is more likely to discover good solutions.

7 THE FUTURE

We have proposed an optimization-via-simulation algorith
with the goal of establishing both provable convergen
and good empirical performance. NP+SSM+HC consis
of a global guidance system, selection of the best, and lo
improvement. We use the NP method as our global guidan
system to ensure that the search not only advances tow
optimal solutions, but it also reaches one of them, if the
is enough simulation effort. While the NP method gives u
the convergence guarantee, SSM enhances the perform
of the NP method by controlling the local-selection erro
and HC improves it further by intensifying the search ne
good solutions.

Our motivation behind NP+SSM+HC is essentially t
make optimization-via-simulation algorithms adapt to var
ability and to characteristics of the response surface. O
algorithms show promise in numerical tests (see the ext
sive study in Pichitlamken 2002). Still, we need to fin
methods for adapting effectively if we are to reap the fu
benefits of the NP+SSM+HC Algorithm.
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