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ABSTRACT
◥

Background: Evidence for aspirin’s chemopreventative proper-
ties on colorectal cancer (CRC) is substantial, but its mechanism of
action is not well-understood. We combined a proteomic approach
with Mendelian randomization (MR) to identify possible new
aspirin targets that decrease CRC risk.

Methods:Human colorectal adenoma cells (RG/C2)were treated
with aspirin (24 hours) and a stable isotope labeling with amino
acids in cell culture (SILAC) based proteomics approach identified
altered protein expression. Protein quantitative trait loci (pQTLs)
from INTERVAL (N ¼ 3,301) and expression QTLs (eQTLs) from
the eQTLGen Consortium (N ¼ 31,684) were used as genetic
proxies for protein and mRNA expression levels. Two-sample MR
of mRNA/protein expression on CRC risk was performed using
eQTL/pQTL data combined with CRC genetic summary data from
the Colon Cancer Family Registry (CCFR), Colorectal Transdisci-
plinary (CORECT), Genetics and Epidemiology of Colorectal Can-

cer (GECCO) consortia and UK Biobank (55,168 cases and 65,160
controls).

Results: Altered expression was detected for 125/5886 proteins.
Of these, aspirin decreasedMCM6, RRM2, and ARFIP2 expression,
and MR analysis showed that a standard deviation increase in
mRNA/protein expression was associated with increased CRC risk
(OR: 1.08, 95% CI, 1.03–1.13; OR: 3.33, 95% CI, 2.46–4.50; and OR:
1.15, 95% CI, 1.02–1.29, respectively).

Conclusions: MCM6 and RRM2 are involved in DNA repair
whereby reduced expression may lead to increased DNA aberra-
tions and ultimately cancer cell death, whereas ARFIP2 is involved
in actin cytoskeletal regulation, indicating a possible role in aspirin’s
reduction of metastasis.

Impact: Our approach has shown how laboratory experiments
and population-based approaches can combine to identify aspirin-
targeted proteins possibly affecting CRC risk.
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Introduction
Colorectal cancer is the fourthmost common cancer worldwide (1).

Observational studies as well as randomized controlled trials (RCT)
using aspirin for the prevention of vascular events have shown that
aspirin use is associated with a decrease in colorectal cancer incidence
and mortality (2–5). This was primarily thought to be through the
acetylation of the COX enzymes thereby inhibiting their action (6).
These enzymes are involved in the COX/prostaglandin E2(PGE2)
signaling pathway, which is frequently upregulated in colorectal
cancer, driving many of the hallmarks of cancer (7, 8).

Evidence for COX-independent mechanisms have also emerged,
such as the prevention of NFkB activation, inhibition of the extra-
cellular-signal–regulated kinase (ERK) signaling pathway, cell-cycle
progression inhibition, and possible induction of autophagy (7, 9). An
aspirin derivative that does not inhibit COX reduced themean number
of aberrant crypt foci (an early lesion in colorectal carcinogenesis) in a
mouse model of colorectal cancer more than aspirin itself (10).
Furthermore, aspirin was able to inhibit proliferation and induce
apoptosis inCOX-2–negative colon cancer cell lines aswell as reducing
angiogenesis in 3D assays where COX inhibitors showed no
effect (11–13). Clinically, aspirin has been shown to reduce tumor
recurrence in phosphatidylinositol-4,5-bisphosphate 3-kinase catalyt-
ic subunit alpha (PIK3CA)-mutant cancer, whereas rofecoxib (a

COX-2 selective inhibitor) showed no effect (14) and has also been
shown to improve survival in patients with human leukocyte antigen
(HLA) class I antigen expression, regardless of COX-2 expression (15).
There are now a significant number of studies that indicate the mech-
anism behind the action of aspirin on colorectal cancer risk is still not
fully understood and that multiple mechanisms are involved (16).

In conventional epidemiologic studies, it is often difficult to deter-
mine causality due to limitations of confounding and reverse causa-
tion. While RCTs can overcome these limitations, they are generally
limited to assessing the causal role of health interventions or phar-
maceutical agents on disease outcomes, rather than understanding
biological mechanisms. Furthermore, in the context of cancer, RCTs
for cancer primary prevention are not always feasible, as they require
long-term follow-up for the cancer to develop. Mendelian random-
ization (MR) is an epidemiologic method that applies a similar notion
of randomization as in the RCT to evaluate causality. In MR, genetic
variants (most commonly single-nucleotide polymorphisms; SNPs)
are used to proxy an exposure of interest (17). As genetic variants are
randomly assorted at conception, an individual’s genetic makeup is
unlikely to be influenced by exposures later on in life, thus reducing the
possibility of confounding and reverse causation (18). These SNPs
instrumenting exposure instruments can then be used to test for
association with an outcome of interest.
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More recently, the increase in genome-wide association studies for
molecular traits has identified SNPs that are associated with protein
and mRNA expression levels, thereby providing protein quantitative
trait loci (pQTL) and expression quantitative trait loci (eQTL;
refs. 19, 20), which may be used to investigate the causal mechanism
of drug targets on disease risk (21). Such methods can complement
laboratory experiments to better understand the mechanism of action
of drugs on cancer growth and progression.

Because of evidence showing that aspirin may prevent adenoma
formation (22) and adenomas being the precursors of most colorectal
cancers (23), we focused on a colorectal adenoma cell line (RG/C2) in
this study and identified altered protein expression in relation to
aspirin treatment. Findings were then taken forward into an MR
analysis to investigate which proteins targeted by aspirin may be
causally implicated in reducing risk of colorectal cancer incidence,
thereby providing insight into alternative mechanisms/pathways for
the action of aspirin.

Materials and Methods
Cell culture experiments

The S/RG/C2 (referred to as RG/C2 henceforth whereby the prefix
“S” denotes that they are from a sporadic tumor; RRID:CVCL_IQ11)
colorectal adenoma cell line was derived in the Colorectal Tumour
Biology group and is described in detail elsewhere (24). These cells
express WT full-length APC (25) as well as wild-type KRAS and
PIK3CA (26), but expressmutantTP53 (25–27). RG/C2swere cultured
in DMEM (Life Technologies) and supplemented with 20% FBS (Life
Technologies), L-glutamine (2 mmol/L; Life Technologies), penicillin
(100 U/mL; Life Technologies), streptomycin (100 mg/mL; Life
Technologies) and insulin (0.2 U/mL; Sigma-Aldrich). Cells were
Mycoplasma tested (Mycoalert PlusMycoplasmaDetection Kit; Lonza
Group) before generation of proteomic data and experiments were
performed within 10 passages. Aspirin (Sigma-Aldrich) was dissolved
in fresh growth medium and diluted to form concentrations of
2 mmol/L and 4 mmol/L. Concentrations of aspirin between
0.1–2 mmol/L are known to be typical therapeutic ranges
in vivo (13). While the 2 mmol/L dose is similar to clinically relevant
doses of aspirin, we also treated with 4 mmol/L to identify more
consistent and apparent effects of the drug.

Generation of proteomic data—SILAC approach
A stable isotope labeling with amino acids in cell culture (SILAC)

approach was carried out on RG/C2 cells treated with 0 mmol/L,
2 mmol/L and 4mmol/L aspirin for 24 hours. Control cells (0 mmol/L
aspirin) were cultured with an L-arginine and L-lysine (light labeling),
2mmol/L treated cells were culturedwith 2H4-lysine and 13C6-arginine
(medium labeling) and 4 mmol/L treated cells were cultured with
15N2

13C6-lysine and 15N4
13C6-arginine (heavy labeling; Cambridge

Isotope Laboratory). These methods were based on the SILAC-based
mass spectrometry approach by Trinkle-Mulcahy and colleagues
(2008; ref. 28).

Cells were cultured with aspirin and the isotopes for 24 hours before
extracting protein lysates. This experiment was carried out in dupli-
cate. Lysates from the three conditions were pooled in a 1:1:1 ratio,
separated by SDS-PAGE and then subjected to in-gel tryptic digestion.
The resulting peptides were analyzed by LC-MS using an LTQ Orbi-
trap Velos mass spectrometer (Thermo Fisher Scientific) and the mass
spectral data analyzed using Proteome Discoverer software v1.4
(Thermo Fisher Scientific). Details of SILAC labeling and proteomics
have been published previously (29) and are mentioned in the Sup-

plementary Methods. To determine proteins whose expression is
altered due to aspirin treatment, we applied a threshold of a 1.4-fold
change between 4mmol/L/control and 2mmol/L/control, as suggested
previously (30). Results were also limited to a variability of <100% and
a peptide count of at least 2.

Statistical analyses
Two-sample MR

To assess the effect of protein/mRNA expression of aspirin targets
on risk of colorectal cancer, we used a two-sampleMR approach. First,
SNPs were identified to instrument/proxy for protein/mRNA expres-
sion of the proteins shown to be altered in cell culture. SNP associa-
tions were then obtained for CRC risk before two-sample MR was
carried out to identify how increases in protein/mRNA expression
(pQTLs/eQTLs) (sample 1) affected risk of colorectal cancer (sample
2) using the statistical methods described below.

Genetic predictors for protein and gene expression
Protein quantitative trait loci (pQTL) were obtained from the

INTERVAL study (19). The original study is comprised of about
50,000 individuals within a randomized trial conducted to evaluate
the effect of varying intervals between blood donations and how this
affects outcomes such as quality of life (31). Relative protein
measurements were taken using SOMAscan assays for 3,622 plasma
proteins in a subset of 3,301 participants, randomly chosen. All
participants provided consent before joining the study and ethics
were approved by the Research Ethics Service (11/EE/0538; ref. 19).
Genotyping and imputation (using a combined 1000 Genomes
Phase 3-UK10K as the reference panel) of these individuals pro-
vided measures for 10,572,814 variants that passed quality control
and were taken forward in a GWAS analysis to identify pQTLs for
the measured proteins (details of quality control are mentioned
elsewhere; ref. 19). pQTLs were extracted from summary level data
and used to instrument/proxy a SD change in protein expres-
sion (19). To adjust for multiple testing, a Bonferroni correction
(0.05/10,572,814 ¼ 4.72 � 10�9) was applied and pQTLs below this
P value threshold were used to proxy for protein expression in our
analysis (32).

In the absence of a relevant pQTL for the protein of interest, an
equivalent mRNA expression GWASwas used instead. Summary level
data for expression quantitative trait loci (eQTL) were extracted from
the eQTLGEN consortium consisting of 31,684 individuals from 37
datasets, of which 26,886 samples were from whole blood and 4,798
from peripheral blood mononuclear cells (PBMC). Because of the
differingmethods for genotyping between the studies, variants for each
transcript ranged between 2,337–31,684 variants (20). For this reason,
a Bonferroni correction threshold was adjusted depending on the
number of variants measured for each transcript (0.05/number of
variants; ref. 32). eQTLs were standardized and meta-analyzed
through a Z-transformation, therefore eQTL effect sizes are reported
as SD changes (20).

Although cis (within 1 Mb of the gene transcription start sit)
associations are more likely to play a role in regulating gene/protein
expression due to their close proximity to the gene start site and
influencing binding affinity of regulatory proteins (33), we used both
cis- and trans-QTLs in this analysis to instrument/proxy for expres-
sion. Once suitable pQTLs/eQTLs were identified, linkage disequili-
biurm (LD) clumping at anR2 of 0.001 was carried out to remove SNPs
that are inherited together and so that only the SNP most strongly
associated with the mRNA/protein expression within a 10,000 kb
window was used.
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Genetic association for colorectal cancer
Genetic association summary statistics for colorectal cancer, com-

prising 55,168 colorectal cancer cases and 65,160 controls, were
obtained from the Colon Cancer Family Registry (CCFR), Colorectal
Transdisciplinary (CORECT) and Genetics and Epidemiology of
Colorectal Cancer (GECCO) consortia and UK Biobank (34–36).
Quality control procedures have been described elsewhere (34). Writ-
ten informed consent was provided by all participants and ethics for
each study were approved by research ethics committee or respective
institutional review boards (34).

Evaluating the association of mRNA/protein expression on colo-
rectal cancer

Analyses were carried out in R version 3.2.3 using the MR-Base
TwoSampleMR R package (github.com/MRCIEU/TwoSampleMR;
ref. 37), which allows the formatting, harmonization, and analysis of
summary statistics. The package reassigns alleles so that the effect allele
has a positive association with the exposure and so represents an
increase in protein/mRNA expression. In turn, allele harmonization
ensures that the same allele (that predicts increased expression) is the
effect allele in the outcome dataset as well. In the case of palindromic
SNPs (represented by either A/T or G/C on both the forward and
reverse alleles) these were also harmonized where possible based on
allele frequencies. If allele frequencies for the effect allele and the other
allele were similar, thus making harmonization difficult, these SNPs
were dropped from the analysis (37).

SeparateMR analyses were carried for cis and trans pQTLs as well as
cis- and trans-eQTLs. For proteins with just one pQTL or eQTL,Wald
ratios (SNP–outcome estimate SNP–exposure estimate) were calcu-
lated to give a causal estimate for risk of colorectal cancer per SD
increase inmRNA/protein expression.Wheremore than oneQTLwas
available as an instrument/proxy for the exposure (mRNA/protein
levels), a weighted mean of the ratio estimates weighted by the inverse
variance of the ratio estimates [inverse-variance weighted (IVW)
method] was used (38).

When one genetic variant used to proxy for an exposure is invalid,
for example, due to horizontal pleiotropy (where a genetic variant
affects the outcome through an alternative exposure/pathway of
interest; ref. 17), then the estimator from the IVW method becomes
biased (39). As a sensitivity analysis, alternative MR methods were
usedwhenmore than 2 SNPswere available as instruments formRNA/
protein expression (MR Egger, simple mode, weighted mode, and
weighted median; refs. 37, 40, 41). Unlike the IVW method, the MR
Egger method is not constrained to pass through an effect size of 0,
thereby allowing the assessment of horizontal pleiotropy through the
y-intercept (39, 42). The weighted median approach is useful as it
allows a consistent estimate even if 50% of the SNPs proxying protein/
mRNA expression are invalid instruments (41) and the mode estimate
also provides a consistent causal–effect estimate even if the majority of
the instruments are invalid, as the estimate depends on the largest
number of similar instruments (40).

Results
Mendelian randomization of gene/protein expression and risk
of colorectal cancer identified in aspirin-treated human
adenoma cells

To investigate the early changes that could reduce cancer risk, we
investigated the proteome of aspirin-treated adenoma-derived cells to
identify new targets of aspirin that may alter the risk of colorectal
cancer by combining these proteomic results with an MR analysis.

After applying a filtering threshold based on fold change and vari-
ability in expression, we identified 125 proteins whose expression
appeared to be regulated by aspirin treatment (Fig. 1; Supplementary
Table S1), although 5 were uncharacterized from mass spectrometry
and therefore excluded from the analysis.

Of the 120 proteins, expression of 28 proteins was measured in the
INTERVAL study, of which 12 proteins had pQTLs that were below
the Bonferroni significance threshold (0.05/10,572,814 ¼ 4.73 �
10�9). From these 12 proteins, cis pQTLs were available for 3 proteins
and trans pQTLs for 10 proteins (Supplementary Table S2). In the
absence of available pQTLs, eQTLs for the transcripts of the identified
proteins were used instead. Of the 108 proteins with no pQTLs
available, expression of 89 mRNAs were measured in the eQTLGen
consortium, of which 77 proteins had eQTLs that were below the
Bonferroni significance threshold. From these 77 proteins, cis eQTLs
were available for 71 proteins and trans eQTLs were available for 37
proteins (Supplementary Table S3). In total, there were 318 unique
SNPs proxying for protein and mRNA expression, of which outcome
summary statistics were available for 305 SNPs to test for association
between 99 mRNA/proteins against risk of colorectal cancer.

Using the datasets summarized inTable 1, two-sampleMR analysis
using theWald ratio or IVWmethodwas conducted to test the effect of
increased mRNA/protein expression on the risk of colorectal cancer
incidence using cis and trans pQTLs (Supplementary Table S4) as well
as cis and trans eQTLs (Supplementary Table S5). In total, 99 proteins
were tested for association with colorectal cancer incidence. To correct
for multiple testing, a Bonferroni-adjusted threshold of significance
was applied (0.05/99 ¼ 5.05 � 10�4), but we also considered associa-
tions of a nominal significance (P < 0.05) to identify possible pathways
and mechanisms of aspirin’s action. Overall, 1 protein with cis eQTLs
and 2 with trans eQTLs were associated with colorectal cancer
incidence at P < 5.05 � 10�4 and a further 3 proteins with cis eQTLs,
1 with a trans eQTL and 1 instrumented by a trans pQTL were
associated with colorectal cancer incidence at a P < 0.05.

Increased mRNA expression of Human Leukocyte Antigen A
(HLA-A) and mini chromosome maintenance 6 (MCM6) instrumen-
ted by cis eQTLs were found to be associated with an increased risk of
colorectal cancer incidence (OR 1.28; 95% CI, 1.04–1.58; P: 0.02 and
OR 1.08; 95% CI, 1.03–1.13; P: 9.23� 10�4 per SD increase in mRNA
expression, respectively). An SD increase in mRNA expression of fatty
acid desaturase 2 (FADS2) and DNA polymerase delta subunit 2
(POLD2) instrumented by cis eQTLs was associated with a decrease
in risk of colorectal cancer incidence (OR 0.94; 95% CI, 0.90–0.97; P:
2.50 � 10�4 and OR 0.84; 95% CI, 0.75–0.94; P: 1.17 � 10�3,
respectively; Fig. 2; Table 2). For FADS2 and POLD2, results were
consistent using other MR methods (weighted median, weighted
mode, and simple mode) and the MR Egger test shows no evidence
of pleiotropy (Supplementary Table S6; Supplementary Fig. S1). From
the cis eQTL analysis, only results for FADS2 survived the Bonferroni
significance threshold.

Proteins instrumented by trans eQTLs include ribonucleoside-
diphosphate reductase subunit M2 (RRM2), stathmin-1 (STMN1)
and lipin 1 (LPIN1). An increase in RRM2 was estimated to increase
the risk of cancer incidence (OR 3.33; 95% CI, 2.46–4.50; P: 6.25 �
10�15 per SD increase in mRNA expression), whereas an increase in
STMN1 and LPIN1 was associated with decreases in the risk of
colorectal cancer incidence (OR 0.72; 95% CI, 0.54–0.97; P: 0.03 and
OR 0.40; 95% CI, 0.32–0.50; P: 5.50 � 10�16 per SD increase in
mRNA expression, respectively). From the trans eQTL analysis,
results for RRM2 and LPIN1 both survived the Bonferroni signif-
icance threshold.
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Figure 1.

Flow diagram of SNP selection. A total of 5,886 proteins were identified using the SILAC proteomic approach. After applying a threshold, 125 proteins appear to be
regulated by aspirin treatment, of which 5were uncharacterized proteins andwere therefore excluded from the analysis. In total, 12 proteins and 77mRNAs had been
quantified andhadpQTLs/eQTLs below theBonferroni significance threshold.Overall, summary statistics for 353pQTLs andeQTLswere available, ofwhich summary
statistics for 305 of the SNPs were also present in the CCFR, CORECT, and GECCO consortia.
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For proteins instrumented by pQTLs, ADP ribosylation factor
interacting protein 2 (ARFIP2) proxied using a trans pQTL conferred
an increased risk of colorectal cancer incidence (OR 1.15; 95% CI,
1.01–1.29; P: 0.03 per SD increase in protein expression).

Overall, the directions of effects between HLA-A, MCM6, RRM2,
and ARFIP2 and colorectal cancer risk obtained from ourMR analysis
concur with those anticipated given the protective role of aspirin on
colorectal cancer and the effect of aspirin treatment on expression of
these proteins. Aspirin reduces the protein expression of HLA-A,
MCM6, RRM2, and ARFIP2 (fold change in protein expression with 4
mmol/L aspirin treatment compared with control: 0.55, 0.65, 0.36, and
0.69, respectively; Table 2) and aspirin intake is associated with a
decreased risk of colorectal cancer (2–4). Our MR analysis shows that
increased expression of these proteins is associated with an increased
risk of colorectal cancer incidence. Taken together, our results indicate

that a possible mechanism through which aspirin decreases the risk of
colorectal cancer incidence is through the downregulation of HLA-A,
MCM6, RRM2, andARFIP2. The direction of effect was less consistent
for the other 4 proteins (FADS2, POLD2, STMN1, and LPIN1)
showing opposite results to what we would expect based on the
proteomic results (Table 2).

Discussion
Evidence for the use of aspirin in the prevention of colorectal cancer

is increasing (2–5). However, the mechanism through which it func-
tions is still not fully understood. By combining both a proteomic-
based approach as well as an MR analysis, our results provide
mechanistic insights into how aspirin could decrease the risk of
colorectal cancer.

Table 1. Datasets used in the Mendelian randomization analysis.

Exposure/outcome Trait Consortia N Source Ref

Exposure Protein levels INTERVAL 3,301 Plasma 19
Exposure mRNA levels eQTLGEN 31,684 Whole blood (N ¼ 28,886)

and PBMCs (N ¼ 4,798)
20

Outcome CRC incidence GECCOa 55,168 cases and
65,160 controls

Whole blood 34–36

Note: The table shows the exposure and outcome datasets used in the two-sample MR analysis.
Abbreviations: CRC, colorectal cancer; PBMC, peripheral blood mononuclear cell.
aGECCO summary data consist of the Colon Cancer Family Registry (CCFR), Colorectal Transdisciplinary (CORECT), and Genetics and Epidemiology of Colorectal
Cancer (GECCO) consortia and UK Biobank.

Figure 2.

Forest plot of mRNA/protein associations with colorectal cancer incidence at P < 0.05. The upper box presents results using cis eQTLs, followed by trans eQTLs, and
finally trans pQTLs. Each dot on the plot represents the change in OR of colorectal cancer incidence per SD increase in mRNA/protein expression, and the horizontal
lines on either side of the dot represent the 95% CIs. The dotted line represents a null association between expression and cancer incidence. The number of SNPs
used as instruments as well as the OR, the method, and P value of association are also reported. Abbreviations: N SNP, number of SNPs; IVW, inverse-variance
weighted; WR, Wald ratio.

Aspirin-Targeted Proteins and Risk of Colorectal Cancer

AACRJournals.org Cancer Epidemiol Biomarkers Prev; 30(3) March 2021 569

D
ow

nloaded from
 http://aacrjournals.org/cebp/article-pdf/30/3/564/2289443/564.pdf by guest on 27 August 2022



Using a SILAC-based proteomics approach, 120 proteins appear to
be regulated at 24 hours by 4mmol/L and 2mmol/L aspirin treatment.
Genetic variants (pQTLs and eQTLs)were identified and used to proxy
for protein and mRNA expression levels of the identified proteins to
test for evidence of a causal effect on colorectal cancer incidence.When
no pQTL was available for a protein, eQTLs were used instead.

Overall, 4 cis eQTLs, 3 trans eQTLs, and 1 trans pQTL were
associated with cancer incidence at a P < 0.05. Increased expression
of HLA-A and MCM6 proxied by cis eQTLs were associated with an
increase in the risk of colorectal cancer incidence and an increase in
RRM2 and ARFIP2 (proxied by a trans eQTL and trans pQTL,
respectively) also conferred an increased risk. Therefore, suppressing
the expression of these four proteins could decrease the risk of CRC. As
the proteomic results showed that aspirin treatment decreases the
expression of these proteins, this could be a potential mechanism by
which aspirin reduces the risk of colorectal cancer. However, only
results for RRM2 survive the Bonferroni significance threshold, indi-
cating that further studies are required to verify these results.

The proteinsMCM6 and RRM2 are both involved in repair of DNA
damage. MCM6 is part of a helicase complex involved in unwinding
DNA and is involved in repair of double stranded breaks (DSB) in
homologous recombination through interaction with RAD51. This
interaction is required for chromatin localisation and formation of foci
for DNA damage recovery (43). Likewise, RRM2 is part of a protein
complex called ribonucleotide reductase, that catalyzes the biosynthe-
sis of dNTPs and is therefore required for DNA replication and
damage repair (44).

Cancer cells commonly lose the DNA damage response, which
results in the accumulation of mutations that may be oncogenic (45).
Because of this, tumor cells end up relying on a reduced number of
repair pathways and are therefore more sensitive to inhibition of DNA
damage repair pathways when compared with normal cells which have
full capability of DNA repair (46). Drugs that target these other
pathways have been shown to selectively kill the cancer cells which
is known as synthetic lethality (47, 48). It may be that by reducing the
expression of DNA repair proteins, which combined with DNA
damage response proteins that are already mutated during tumor
progression, aspirin can induce cell death in the developing tumor cells
reducing the risk of developing cancer.

The MR results for the proteins ARFIP2 and HLA-A also concur
with our SILAC proteomic results. ARFIP2 is a protein previously
shown to play a role in membrane ruffling and actin polymerization,
therefore regulating the actin cytoskeleton (49). The remodeling of the
actin cytoskeleton is known to be involved in cancer metastasis (50).
This is of particular interest as aspirin reduces the odds of colorectal
adenocarcinoma metastasis by 64% (OR, 0.36; 95% CI, 0.18–0.74;
ref. 51) and this may be through the reduction in ARFIP2 expression.
With regards to HLA-A expression and cancer risk, results from a
cohort study showed that aspirin was more chemopreventative in
tumors that expressed HLA class I antigen [which includes HLA-A,
HLA-B, and HLA-C; rate ratio (RR) 0.53; 95% CI, 0.38–0.74] and this
association was no longer apparent in tumors that lacked expression of
this protein (15). Our MR analysis showed that an increase in HLA-A
was associated with increased colorectal cancer risk, and that aspirin
may reduce this risk through a reduction in HLA-A expression;
however, further investigation is required before any conclusions can
be drawn.

Our MR analysis results also showed that increased mRNA expres-
sion of FADS2, POLD2, LPIN1, and STMN1 all decreased the risk of
colorectal cancer, indicating that decreased expression increases the
risk of cancer. Our proteomic results showed that aspirin decreases the
expression of these proteins and aspirin is known to decrease cancer
risk. The exact meaning behind the inconsistencies in direction of
effect is unclear, but may be related to the dosage used in this study. A
randomized trial of aspirin to prevent adenomas showed that lower
doses reduced adenoma risk more than higher doses, suggesting that
lower doses of aspirinmay affectmRNA/protein expression differently
than higher doses (52, 53). Furthermore, the genetic instruments used
to proxy for 1SD in POLD2, LPIN1, and STMN1 expression explain
little of the variance in mRNA expression (0.05%, 0.08%, and 0.04%,
respectively) indicating that SNPs that explainmore of the variance are
required before any conclusions can be made.

Further limitations also exist in our analysis. First, the exact
correlation between eQTLs and pQTLs has not been fully determined.
Second, it is difficult to interpret results using trans eQTLs and pQTLs
without clear confirmation that these SNPs directly influence the gene/
protein expression. It may be that they indirectly influence expression,
for example, trans eQTLs may regulate gene expression by affecting

Table 2. MR results of the 8 proteins associated with colorectal cancer incidence.

Association of predicted
expression with CRC risk

Fold change of protein expression
in response to aspirin

Gene Instrument N SNP

Variance
explained R2

(%) Method OR LCI UCI P
Effect on
CRC risk

2 mmol/L
vs. Control

4 mmol/L
vs. Control

Effect on
protein
expression

FADS2 cis eQTL 6 2.29 IVW 0.94 0.90 0.97 2.5 � 10�4 # 0.61 0.26 #
MCM6 cis eQTL 2 3.85 IVW 1.08 1.03 1.13 9.23 � 10�4 " 0.59 0.65 #
POLD2 cis eQTL 3 0.05 IVW 0.84 0.75 0.94 1.73 � 10�3 # 0.54 0.35 #
HLA-A cis eQTL 1 5.95 WR 1.28 1.04 1.58 0.02 " 0.55 0.64 #
LPIN1 trans eQTL 1 0.08 WR 0.40 0.32 0.50 5.50 � 10�16 # 0.65 0.64 #
RRM2 trans eQTL 1 0.19 WR 3.33 2.46 4.50 6.52 � 10�15 " 0.33 0.36 #
STMN1 trans eQTL 1 0.04 WR 0.72 0.54 0.97 0.03 # 0.47 0.61 #
ARFIP2 trans pQTL 1 0.09 WR 1.15 1.01 1.29 0.03 " 0.67 0.69 #

Note: The table shows the inverse-variance weighted (IVW) or Wald ratio (WR) results for the 7 proteins associated with CRC incidence. The results indicate the
change in OR of CRC incidence per unit increase in mRNA or protein expression (z-score or SD, respectively). Results that are consistent with aspirins’ effect on
protein expression (i.e., aspirin decreases protein expression and increasing levels of protein are associated with increased risk of colorectal cancer) are in bold font.
Abbreviations: N SNP, number of SNPs; LCI, lower confidence interval; UCI, upper confidence interval; SE, standard error; IVW, inverse-variance weighted;WR,Wald
ratio.
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expression of a nearby cis gene, which is in fact a transcription factor
that is regulating the expression of the trans gene (54). Third, both the
pQTL and eQTL associations were carried out using blood plasma,
whole blood samples or PBMCs (19, 20); therefore, these SNPs
estimate changes in gene and protein expression in circulating
immune cells or plasma proteins, respectively. Our SILAC approach
identified cellular proteins affected by aspirin treatment; however, the
pQTLs used in this analysis proxied levels of plasma proteins. We
believe that if the expression of cellular proteins is affected by aspirin,
then this in turn will affect the amount of protein secreted into the
plasma.We acknowledge that pQTLs for cellular proteins in colorectal
tissue would be more appropriate for this analysis; however, studies
that have measured cellular pQTLs are small and involve lympho-
blastoid cell lines, rather than primary tissues of interest (55, 56). Also,
the specificity of eQTLs/pQTLs for specific tissues is unclear. As found
by the Genotype-Tissue Expression (GTEx) study, cis eQTLs are either
shared across tissues or are specific to a small number of tissues (57).
Therefore, the use of these eQTLs and pQTLs measured in the blood
may not be fully suitable as proxies for mRNA and protein expression
in the epithelium of the colon and rectum.

Furthermore, the units for the eQTLs and pQTLs represent SD
changes in expression, making interpretation of the results difficult.
However, we can interpret the direction of effect as well as the
statistical significance of the association (P values) for these analyses.
Moreover, pQTLs and eQTLs could not be identified for 20 of the
proteins found to be regulated by aspirin in our proteomic approach,
therefore we could not test the association of their expression with
colorectal cancer risk. Finally, apart from the association of FADS2
with colorectal cancer incidence, the other associations proxied by cis
eQTLs found by our study are not below the Bonferroni threshold of
significance (P ≤ 4.63 � 10�4).

MR is commonly used to proxy for a drug’s effect on risk of various
outcomes after identification of its target. Genetic variants that predict
lower function of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-
CoA) reductase are commonly used to investigate the effect of lowering
LDL cholesterol via the use of statins on outcomes such as ovarian
cancer, Alzheimer disease, or coronary heart disease (58–60). These
studies involve investigation of a drug’s effect via a known target on an
outcome. However, this approach would be difficult to apply in the
case of drugs with pleiotropic targets such as aspirin. Therefore, to
identify all possible targets of aspirin, a proteomic approach was first
applied and targets that may affect risk of cancer were identified
through using MR. To our knowledge, this is the first study that
combines basic science and MR to generate hypotheses of a drug’s
mechanism of action in cancer.

Further experiments need to be conducted to confirm the effect of
aspirin on gene and protein expression and the consequent effect this
may have on hypothesized pathways such as DNA repair before
definitive conclusions can be made. However, the potential of this
unbiased approach to gain mechanistic insight is clear, allowing
hypothesis driven research will better inform the clinical use of aspirin
for the prevention of colorectal cancer.
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