
MATHEMATICS OF COMPUTATION, VOLUME 32, NUMBER 141

JANUARY 1978, PAGES 233-242

A Combined Remes-Differential

Correction Algorithm for Rational Approximation

By Edwin H. Kaufman, Jr., David J. Leeming* and G. D. Taylor**

Abstract.   In this paper a hybrid Remes-differential correction algorithm for computing

best uniform rational approximants on a compact subset of the real line is developed.

This algorithm differs from the classical multiple exchange Remes algorithm in two

crucial aspects.   First of all, the solving of a nonlinear system to find a best approxima-

tion on a given reference set in each iteration of the Remes algorithm is replaced with

the differential correction algorithm to compute the desired best approximation on the

reference set.   Secondly, the exchange procedure itself has been modified to eliminate

the possibility of cycling that can occur in the usual exchange procedure.   This second

modification is necessary to guarantee the convergence of this algorithm on a finite set

without the usual normal and sufficiently dense assumptions that exist in other studies.

1.   Introduction.   This paper is divided into two parts.   In the first part we con-

sider X a compact subset of the real line with card(Z) > n + 2.   Let C(X) denote the

class of all continuous real valued functions defined on X, normed with the uniform

norm, i.e., ||/|| = max{\f(x)\: x EX}.  Let « be a positive integer and set

R°„(X) = {r = lip: p E Xln,p(x) > 0 for all x E X],

where IIn denotes the set of all algebraic polynomials of degree < n.  Note that R^(X)

consists of only the positive elements of the set usually denoted by R^(X).  In this

setting we will give an algorithm for computing the best approximation for positive

/G C(X) from R^(X).  We believe this algorithm is the correct analog, for this setting,

of the standard multiple exchange Remes algorithm for polynomials.  We observe here

that if Y C X, Y is compact and cnxd(Y) > n + 2, then existence of a best approxi-

mant to positive fE C(Y) from R„\Y) is guaranteed by [6].

This algorithm contains some unique features including the incorporation of the

differential correction algorithm [1], [4] to obtain a best approximation at each stage.

This ensures that the denominator of the best approximation, pk, on the kth reference

set, Xk, will be positive on Xk.  If, however, pk(x) < 0 for some x EX ~ Xk, we

indicate two exchange procedures for selecting the next reference set.  Note that in

most studies this possibility is ignored by assuming (1)/is normal on some interval

[a, b] containing X; (2) X is sufficiently dense in [a, b] ; and, (3) Xk is sufficiently

close to an alternating set of the best approximation to / on X.  We shall also show

that using our exchange procedure, there exists a k0 > 0 such that for k> k0, pk
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must be positive on X.   From this point on, our exchange procedure will coincide with

the standard multiple exchange procedure; and we can, therefore, guarantee convergence

without the above assumptions.  Our procedure could also be used to overcome the

difficulty which Dunham [3] has pointed out in Williams' paper on interpolating

rationals [8].

It should be further emphasized that a modified exchange procedure is actually

necessary to guarantee the convergence of this algorithm without the assumptions (1)—

(3) of above.   Indeed, if one attempts to use the standard exchange procedure without

regard to the possibility that pk < 0 on X ~ Xk may occur (and hoping that pk(x) =

0 for x E X ~ Xk does not occur to give a divide fault), the usual proof that the error

of approximation on the successive reference sets is strictly increasing is false.  In fact,

examples exist for which the error does not increase strictly and for which the algorithm

actually cycles (i.e.vpk=pfc+2 =pfc+4 = ••• ;pk+x =pfc+3 = pk+s =••■ ;

xk = Xk+2 = Xk+4 = " " i xk+i = Xk+3 = xk+s = ' " ' i darting at some k).

Using either of the exchange procedures that we give, we are able to prove that the

error of approximation on successive reference sets is strictly increasing.

The second part of the paper is devoted to the description of the Remes-Difcor

algorithm (the name of our algorithm) for obtaining the best approximation to fE C(X),

X a finite subset of the real line of at least n + m + 2 points, by elements of Rm(X),

m > 0, n > 0, where

Rm(X) = [r = p/q: p E Xlm, q E n„, q(x) > e for all x E X},

and the e is some small positive number.  A proof of the convergence of this algorithm

is given, along with a flow chart.  Finally, a brief discussion of some numerical results

will be given.   A complete discussion of the numerical results and comparison with

both the Remes algorithm and the differential correction algorithm is planned for in a

separate paper.

2.   Approximating with R°(X).  Let / E C(X) ~ R°(X), with / > 0 on X.   We

first consider the case where X is a finite subset of the real line, with card(X) > n + 2.

For each k, k = 1,2, . . . , Xk C X shall denote a reference set of n + 2 or n + 3

points and rk = l/pk E R„(Xk) will denote the best approximation to /on Xk from

R^(Xk).  This best approximation, rk, is obtained by using the differential correction

algorithm applied to the point set Xk.  There are three advantages to finding rk via the

differential correction algorithm rather than via solving a nonlinear system of equations:

a solution is guaranteed, we are assured that pk > 0 on Xk, and no extra complications

will arise if Xk has n + 3 points.  After computing rk, if Xk has n + 3 points we delete

one point of Xk to get a new set Yk of n + 2 points, taking care that f~rk alternates

on Yk.  If Xk consists of n + 2 points, then we set Yk = Xk.  Set ek =

max {I/O) - rk(x)\: x E Yk], Zk = [x E X: pk(x) > 0} and consider the following two

exchange procedures for constructing the next reference set Xk+X :

Exchange I:   (The positive exchange).  If rk is not the best approximation to /

on Zk from Z?°(Zfc), Xk+X is constructed from Yk by doing an ordinary Remes multi-

ple exchange on the points of Zk.  If rfc is the best approximation to /on Zk from
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COMBINED REMES-DIFFERENTIAL CORRECTION ALGORITHM 235

R°(Zk), then the algorithm terminates if Zk = X.   If Zk =£ X, then y EX satisfying

pk(y) = xnin{pk(x): x E X} is found and Xk+X is defined to be Xk+X = {y} u i^fc)-

Note that in this case we have that pk(y) < 0 and Xk+, consists of « -I- 3 distinct

points of X.

Exchange II:   (77ze negative exchange).  In this exchange procedure, the algorithm

first does a standard Remes multiple exchange on the point set Zk with respect to

f-rk and Yk getting Wk C Zk, where Wk consists of n + 2 points on which /- rk

alternates in sign, l/TV) - rk(w)\ > ek for all w E Wk and max{|/TV) - rk(w)\: w E Wk}

= max {I/O) - rk(x)\: xEZk}.  If Wk = Yk and Zk = X, then the algorithm termi-

nates as rk is the desired best approximation to / on X.   If this does not happen, then

Xk+ j is defined to be Wk U {y} if Zk =£ X where y satisfies pk(y) = min{pkO): x£i)

< 0 and Wk if Zk = AT.

Note that this exchange procedure differs from the first one in that whenever

Zk J= X an additional point where pk takes on its minimum is added to the reference

set.  In the first exchange procedure this additional point is added only when rk is the

best approximation to / on Zk from R°n(Zk).  Also, note that whenever Zk= X both

of these procedures coincide with the standard Remes multiple exchange procedure..

For both of these exchange procedures the following theorem holds.  (The set Xx C X

is chosen so that it has n + 2 points and ex > 0.)

Theorem I. If X is finite and the algorithm described above using either of the

two exchange procedures is applied, then {ek} is strictly increasing. Furthermore, the

algorithm eventually terminates at a best approximation to fon X from R^(X).

Proof.   Assume the algorithm does not terminate at stage k.   To show that

ek <ck+x one must consider two cases.  The first is when Xk+X is constructed only

from points of Zk.  In this case pk and pk+x are both positive on Xk+X and a standard

de la Vallée-Poussin type of argument (zero counting) shows that ek <ek+x since

Pk^Pk+i-  m tne case U13* Xk+i = **fc u {y} where Wk = Yk or Wk is the result

of a standard Remes multiple exchange in the points Zk with respect to / - rk and Yk,

and y EX satisfies pk(y) - min{pfcO): x E X} < 0 we first note that both pk and

pk+x are positive on Wk.  Also, 1/- rk+, | < ek+, on Wk and f-rk alternates in

sign on Wk with \f— rk\ > ek on Wk.  Thus, by zero counting we must once again

have that maxflXz) - rk+xiz)\: z E Wk} > min{|/îz) - rk(z)\: z E Wk) since pk ^

pk+ , implying that ek < ek+ x.  (For a more careful treatment of the de la Vallée-

Poussin type of argument see the proof of Lemma 2 later in the paper.)  The rest of

the theorem now follows since X is finite, and no reference set can occur more than

once.

Although in actual computation one only encounters finite sets, it is of interest

to consider the behavior of this algorithm if X is only required to be compact.   In the

remainder of this section we shall only consider Exchange I (the positive exchange).

It can be shown that similar results are true for Exchange II.  We first note that in this

case the set Zk = [x E X: pk(x) > 0} may fail to be compact.  If this happens, then

it may not be possible to carry out the Remes multiple exchange on Zk with respect to

f-rk and Yk.  Thus, the algorithm must be modified by choosing some e > 0 and
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236 EDWIN H. KAUFMAN, JR., DAVID J. LEEMING AND G. D. TAYLOR

setting Zk= {xE X: pk(x) >e}.  The elements of the set Gk = {x E X: pk(x) < e]

will be called g-poles (generalized poles) of rk.  The number e should be chosen so that

pk has no g-poles on Xk.  Since

UIPkWxk < U-rk\\Xk + \\f\\Xk < 2||/||^ < 211/11,

it suffices to choose any e with 0 < e < 1/(2||/||). For such a choice of e, the algorithm

is defined as above with either of the two exchanges. We now prove that this modified

algorithm converges globally and at least linearly.

Theorem 2.  For X a compact subset of [a, b],andO<e< 1/(2||/1|), and fE

C(X) ~ R^(X), the rational functions rk generated by the modified algorithm described

above have no g-poles on X for k> k0 (say) and converge uniformly to the best ap-

proximation r* to f on X according to an inequality of the form \\rk - r*\\x < A9k,

0<9< l,fork>k0.

Proof.   Since the conclusion follows trivially if the algorithm terminates, we

assume that this is not the case.  The method of proof is to show that {ek}k-x is

increasing and to actually estimate this rate of increase.   To prove that ek < ek+x

holds for all k, one simply uses the arguments of Theorem 1.   Also, note that {ek}k=x

is bounded (otherwise r = 1 would be a better approximation than rk on Xk for some

k).   Hence, there exists e* such that ek t e*.  The remainder of this proof is broken

into seven lemmas; the first of these, which proves that the points in Yk cannot cluster

is proved by arguments similar to Wendroff [7, p. 65].  Complete proofs of all the

lemmas are available in [5].

Lemma 1.   There exists 5 > 0 such that for every k,ifYk= [x^, . . . , xk+,},

then xk <xk+x - 8 for i = 0, 1, . . . , n.

Lemma 2.   Let X be a compact set of real numbers containing at least m + n +

2 points, and let fE C(X). Suppose r* = p*lq* E R^(X) has defect d =

min(m - dp*, n - bq*) and let N = m + n + 2 - d.   Suppose that f - r* alternates

in sign on {xi}^=1 C X where xx < x2 < ■ • • < xN, and that flx¡) - r*ix¡) =£ 0, for

i = 1, . . . , N.   Then if r = p/qER™(X), r^r* on X we have

max   I/O,.) - rO,.)| >   min   \f<X.)-r*(x,)\.
Ki<N Ki<N ' '

Proof.   Suppose

max  I/O,.) - r(xt)\ <   min  \f(x,)-r*(x,)\.
Ki<N Ki<N

Let AO) = rix) - r*ix) = (Jx) - r*(x)) - ifix) - r(x)), for all xEX   Assume (with-

out loss of generality) that flxx) - r*ixx) > 0; then we have (-l)'AO,.) < 0, i = 1,

. . . , iV.   Now for all x E X,

A(x) = ?&1 _ ¡5M    P(x)q*(x)-P*(x)q(x) S(x)

q(x)    Q*(x) q(x)q*(x) ~ q(x)q*ix)

so that (-ly'SO,.) < 0, i = 1,. . . , N.   But 95 < m + n - d = N - 2 so S = 0.

Therefore, r = r* on X; and this contradiction proves the lemma.    D

The next lemma is proved by showing that in the contrary case pk has too many

relative extrema for some k.
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Lemma 3.   There exists a constant c such that for every k, if pkix) = p% + pkx

+ ■ ■ ■ + pkxn, then \pk\ < c for i = 0, 1, . . . , «.

Corollary.   There exists a constant c* > 0 such that \pkix)\ < c* for k =

1,2,... and allx EX.

Before proceeding to Lemma 4, we introduce some new notation and make a

few remarks.  We shall call the exchange from Yk to Xk+ x an augmented exchange if

Xk+ j = Yk U {y} (recall that Yk C Xk is a set of n + 2 points on which f~rk alter-

nates with error ek).  Also, in this case the point y EX satisfies pkiy) =

min{pkO): x E X] < e. Writing Xk+X = {yk0, . . . , yk+2}, we have that Xk+X

contains exactly one g-pole of rk.  Call this point yk.  As stated earlier, we let rk+,

denote the best approximation to /from R„(Xk+x) on Xk+X (found via the differential

correction algorithm) and we define Yk+, to be a subset of Xk+ x on which /- rk+ x

alternates in sign with modulus ek+1.  Note that yk E Yk+X. This follows from Lem-

ma 2.   For ek < X < ek+x construct rx - l/px by requiring that

f(yk) - r-x(yk) = Vi\      i = 0,1,...,«,

where Xk+X = Yk+1~ {yk} = {£*, . . . , y^} and r>,. = sgn[/Ó7) " 'fc+iG'?)] ■

Observe that for t>,. = -1, fiyf) - t?,.X = fiyk) + X > 0 and for n,. = +1,

fOf) "■ VX - f(yf) - X > A3?) - ek+ x = rk+,(yk) > -1 > 0.
c*

Thus, px is well defined by these equations and for all x E X, px(x) is a continuous

function of X.   Finally, let A = inf{||/- r||: r ER^X)}.  Note that A > 0 since

fEC(X)~R°n(X).  Then,

Lemma 4.   If at the kth exchange, an augmented exchange occurs and

sgn[/(5?) - rk(yk)] = sgn[/(y*) - rk+, (yk)],      i = 0,l,...,n,

then ek+1 - ek > Í2(||/|| - A), where Í2 is a constant independent of k.

Now let us assume there exists a subsequence of positive integers {km}°m = \

satisfying the following:

1. An augmented exchange occurs between Yk    and Xk   ...

2. ek   +x - ek    < Í2(||/|| - A) (since ek    t e* < A, where A is the error of

best approximation to / from R°(X)).

By our assumption 2, we see that the sign condition of Lemma 4 cannot hold,

hence we have for each km, the additional condition:

3. sgn[/T>7m)-^m + iÓ7m)]^s^[/0^m)-^mÓ7m)] for some i, 0<

i<n

Recall that for an augmented exchange between Yk    and Xk   +,, that Yk   +,

denotes a subset of Xk   +x consisting of n + 2 points on which f~rk   +x alternates

with error ek   +1.  Define yk&™ by {ykm} = Yk    ~ Yk   +1.  That is, y*.™ is the

point of Xk   + j which is deleted in forming Yk   +x.  Since we are considering

Exchange Procedure I, we have that Wk    may be taken to be Yk    whenever an augment-

ed exchange is performed. Under these assumptions we prove the following two lemmas.

Lemma 5.   If p   (y^) < e/(l + e), then ek+ x - ek> Í2" where Í2" is a constant

independent of k
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Lemma 6.   An augmented exchange can occur only a finite number of times.

We now turn our attention to the case that the exchange from Yk to Xk+ x is

not an augmented exchange.  In this case, rk is not the best approximation to / on Zk

from R°iZk) and Xk+, = Yk+1 = {xk+1, . . . , xkn%}} with no ¿-pole of rk in Xk+,.

Setting

yk+x=     min     I/O*+1) - rk(xf+l)\
0<i<n + l

and

ßk+x=     max    \fixk+1)-rkixk+1)\,
0<i<n+l

we observe that yk+ x > ek and ßk+, > ek+,.

Lemma 7.   There exists a constant Í2 > 0 (independent of k) such that if Xk+X

is not obtained, by an augmented exchange, then ek+ x - yk+ x > S2(j8fc+, - ek+ x).

3. Approximation from Rm(X). We now turn to the second objective of this

paper.  Here our approximating family is taken to be

R%iX)= {r = p/q-:  pEX\m,qEXln,q>0  on X},

and we require card(.Y) > m + n + 2 im > 0, n > 0). g-poles are defined as before,

i.e., x E X is said to be a ¿?-pole of r = p/q if C7O) < e where e > 0.  This concept is

useful even when X is finite, since it enables us to avoid division by very small positive

numbers.  We have used e = 10-16 on a UNIVAC 1106, which has roughly 18-digit

accuracy in double precision.   Unfortunately, we can no longer be sure that rk will be

g-pole free on its reference set, although this condition can be enforced by inserting

additional constraints into the linear programming part of the differential correction

algorithm (we will return to this point later).  The algorithm we used (with czxdiX) =

NUMGR < °°) is described by the Flowcharts 1 and 2.

4. Convergence of the Remes-Difcor Algorithm.   In this section we prove that if

the 20-step stopping criterion is deleted from the Remes-Difcor flow chart, then under

certain existence assumptions the algorithm will terminate at a best approximation to /

from RmiX).

Theorem 3.  Let X be a finite set of real numbers containing at least m + n + 2

points, and let f E CiX).  Suppose that for each subset Y C X containing exactly m +

n + 2orm+n + 3 points, a best approximation r = p/q E R^iY) exists for / for

this approximation we have q > e on Y and that the differential correction algorithm

will produce r when applied to Y.   Then the Remes-Difcor algorithm will terminate at

a best approximation r* to f on X.

Proof.   Let X0 be the initial reference set and let Xk be the reference set at the

fcth stage.   Let rk be the best approximation to / on Xk with

ek = max{| fix) - rk(x)\: x E Xk}.

If the algorithm terminates at stage k, then there are no g-poles and the maximum

error occurs in Xk; thus, ek = \\f- rk\\ and rk is the best approximation to /on X

from RmiX).
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Now suppose the algorithm does not terminate at the kth stage (k > 1).  If rk_ x

has g-poles in X, then at least one of these is included in Xk by construction, so that

rk ^ rk_ j.  Also, if rk_ x has no g-poles in X, then rk ^ rk_ 1 ; since otherwise the

maximum error for rk in X would occur at the same point as the maximum error for

rk_ j, and thus would be included in Xk.  This would contradict the fact that the al-

gorithm does not terminate at the fcth stage.

Now/-/-£_, must alternate on some set {xx, x2, . . . , xm+n+2_d      } C

Xk_x, where dk_ x is the defect of rk_ x, and so by construction f~rk_x must alter-

nate in sign on some set {x\, x'2, . . . , x'm + n + 2_d      } C Xk with I/O)) - rk_xix'¡)\

>ekx,i=l,2, ...,m+n+2- dk_,.   So by Lemma 2 we have

ek =  max I/O) - rkix)\ > max I/O)) - rk(x'¡)\ > min I/O)) - rk_x(x'¡)\ >ek_x.
x^Xk i i

Therefore, {ek} is strictly increasing, so since there are only a finite number of possible

reference sets contained in X the algorithm must terminate.    D

5.  Examples and Conclusions.  In order to get a time comparison of the Remes-

Difcor algorithm with the ordinary differential correction algorithm alone, we ran the

following digital filter design problem:

Let

X = [0, 0.2tt] U [0.4tt, it] ,

( 1, 0<x<0.2rr,
/0)= {

I 0.0123,      0.47T<x<7r.

We approximate from

R*iX) = | ^ = (a0 + ax cos x + • • • + a9 cos 9x)/ib0 + bx cos x + b2 cos 2x):
{ q(x)

q>0onX\.

We also want q > 0 on [0, n] and p/q > 0 on [0,7r], but in this example it is not

necessary to do anything extra to force this.   Although we are not using ordinary

algebraic rational functions, we do have the alternating theory in this situation, and

that is all that is required.  To run this example we replaced X with an equally-spaced

mesh (spacing 7r/256) containing 206 points.  Using as our initial reference set five

(roughly) equally spaced points in [0, 0.2tt] and eight (roughly) equally spaced points

in [0.47T, 7r], we obtained convergence after four exchanges and 60.0 seconds; ||/- r*||

was 1.83914 x 10-4 (where r* is best).  (Note.   The final alternating set does have

five points in [0, 0.27r] and eight points in [0.47T, n], but they are not equally spaced.)

Starting with eight equally spaced points in [0, 0.27r] and five in [0.47T, n], eight ex-

changes and 1 minute 11.7 seconds were required; starting with all reference points

pushed to the extreme right of [0.47T, 7r] (which is one of the worst possible starting

reference sets), fifteen exchanges and 2 minutes 0.5 seconds were required.  On the

other hand, running this problem with differential correction alone required 5 minutes
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45.5 seconds.   One would expect the time difference to increase if a finer mesh were

used.

We also ran the Remes-Difcor program on an example for which best approxima-

tions did not exist on some reference sets, although a best approximation did exist on

X.   Here convergence depended on the choice of initial reference set, although we were

able to obtain convergence even with a bad initial reference set if we "helped the pro-

gram over the bad spots" by forcing q > e on the reference set; this (as opposed to

forcing q > e on all of X) did not require much additional work.

In general, the relative merits of Remes, Remes-Difcor, and Difcor for finite X

can be summarized as follows.  When Remes works, so does Remes-Difcor, and with

comparable speed.  Remes-Difcor will usually still work when Remes fails due to prob-

lems in finding a new approximation on a reference set, and is much faster than Difcor

if zaxd(X) is large.  Difcor is theoretically more robust than Remes-Difcor since it does

not require an alternating theory, and 11/- rfc|| will converge to infr||/- r|| even if there

is no best approximation, but round-off and storage problems may be prohibitive if

Qzxd(X) is too large.

Remes-Difcor Flowchart #1 (excluding input-output), for a

fixed number (NUMGR) of grid points

("start )

Pick initial reference set

compute approximation on

reference set (Diff. Cor.)

compute errors, denominators,

maximum error on entire grid

find a new

reference set

(see next

flowchart)

( STOP )
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Flowchart #2.  Finding a new reference set

(N = n + m + 2, NUMGR = number of grid points)

( START )

Reduce the old reference set T to a maximal subset T

on which the error function alternates in sign

yes

<^
Does T have fewer than 2 points?

Shift all points of

T 10 spaces right

modulo NUMGR

)

((wi

Return

(with reference set T)

Does T have N t 1 points?

J
yes

Drop one point of T , preserving a

maximal number of alternations

(sign and absolute value)

J

Let T = {tr , t„}, t = left-most grid point, t   -  right-most grid point.
" U M+l

for i = 1, ..., H replace (recursively) t. by the grid point between t.

and t. , at which the error has maximum absolute
l+l

value and the same sign

as att., considering only points which are not g-poles

{ Are there any g-poles?)-
yes

KM < N?>

Put the point where max lerrorl

is achieved into T, with a Remes

single point exchange. (If M < N

and the new point will be an

endpoint of T., set M = M + 1

and do not drop any points.)

Nx = N

M < N?V

no

yes

t^ = N
yes

N + 1

Fill in T. with the N - M points
outside T where the denominator

is smallest_     _

viü
Return

ith reference set Eii)
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