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With the expected continued increases in air transportation, the mitigation of the consequent delays and
environmental effects is becoming more and more important, requiring increasingly sophisticated
approaches for airside airport operations. Improved on-stand time predictions (for improved resource
allocation at the stands) and take-off time predictions (for improved airport-airspace coordination) both
require more accurate taxi time predictions, as do the increasingly sophisticated ground movement
models which are being developed. Calibrating such models requires historic data showing how long
aircraft will actually take to move around the airport, but recorded data usually includes significant
delays due to contention between aircraft. This research was motivated by the need to both predict taxi
times and to quantify and eliminate the effects of airport load from historic taxi time data, since delays
and re-routing are usually explicitly considered in ground movement models. A prediction model is
presented here that combines both airport layout and historic taxi time information within a multiple
linear regression analysis, identifying the most relevant factors affecting the variability of taxi times for
both arrivals and departures. The promising results for two different European hub airports are
compared against previous results for US airports.
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1. Introduction

Airlines and airports face several key challenges in the

near future. Firstly, the number of flights is predicted to

increase in the next few years (SESAR, 2006). Secondly,

there is an increasing focus upon environmental considera-

tions, and this is likely to increase in importance. Thirdly,

the use of computerised tools is enabling increased aircraft

utilisation, reduced idle times, and increased passenger

connection options, leading to ever more complex and

interlinked flight schedules. The on-time performance of

flights at each airport and the earlier visibility of any delays

(allowing corrective measures to be put into place) are

becoming increasingly important, since many downstream

flights can be affected by delays to single aircraft.

Consequently, the operations at busy hub airports are

experiencing an increased focus of attention, and this is

likely to increase in the face of future challenges.

Total taxi times from stand/gate to runway are needed if

advance predictions of take-off times are required, for use

by en-route controllers (or decision support systems to help

them) or for improving arrival time predictions for the

destination airports, allowing the effects of any predicted

delays to be mitigated. Taxi times are already needed

by several existing search algorithms for take-off time

prediction and take-off sequencing (Atkin et al, 2007;

Eurocontrol, 2010) and for allocating appropriate stand

holds to aircraft to absorb ground delay at the gate/

stand, decreasing the fuel burn and environmental effects

(Burgain et al, 2009; Atkin et al, 2010a). Although the

effects have been less well studied, taxi times are also

useful for arrivals, being necessary for predicting stand/

gate arrival times, to ensure that adequate resources are

available at the correct time (Eurocontrol, 2010). Taxi time

predictions will become even more important if the effi-

ciency of stand resource utilisation is to be improved in

future. Current common practice is to use standard mean

taxi times for each taxi source/destination pairs. A better

understanding of the influencing factors, and a model to

estimate such taxi times to a higher level of accuracy,
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would have positive effects for both the published

approaches and the systems which are currently in use.

The importance of the ground movement problem was

explained in Atkin et al (2010b), highlighting how it links

several other airport operations such as runway sequencing

and gate assignment. Improved ground movement can

increase on-time performance at airports, so ground

movement simulations and optimisers are extremely useful.

These usually explicitly model the interaction between

aircraft (modelling delays due to other aircraft and any

necessary re-routing on longer paths to avoid conflicts)

and, thus, require predictions for taxi times which do not

already include these elements (Gotteland and Durand,

2003; Smeltink et al, 2004; Balakrishnan and Jung, 2007;

Roling and Visser, 2008; Lesire, 2010). The use of historic

data would be preferable for calibrating models. However,

such recorded data usually includes significant delays due

to the interactions between aircraft. There are obvious

benefits from being able to quantify the effects of this

interaction and the model which is considered in this paper

aims to provide this facility. Although average speeds have

often had to be used in the past due to the lack of reliable

predictions, it is important to understand aircraft speed in

more detail if more realistic ground movement decision

support systems are desired.

The causes and effects of taxi time variability are

both often neglected. However, some elements have been

considered in the past. Rappaport et al (2009) analysed the

effect on taxi times of having to reduce speed for turns and

it was shown that aircraft travelling straight forward

reached higher average speeds than those with upcoming

turns. In addition, Idris et al (2002) performed a statistical

analysis of departing aircraft at Boston Logan Interna-

tional Airport with the conclusion that the taxi-out time

for each airline/runway configuration combination was

highly dependent upon the take-off queue size. However,

the analysis by Idris et al (2002) only covered taxi times

for departing aircraft. The problem also seems to differ

between North American and European airports, with

much shorter take-off queues usually being observed at

European hubs. More recently, two further estimation

approaches were published for North American airports.

Simaiakis and Balakrishnan (2009) presented a queuing

model and potential impact on emissions reduction. The

statistical analysis exclusively used the size of the take-off

queue to estimate the taxi-out time. Balakrishna et al

(2009) presented a model for taxi-out time prediction based

on reinforcement learning algorithms. In other work, Tu et

al (2008) analysed push-back delays at Denver Interna-

tional Airport with seasonal trends and daily propagation

patterns.

The aim of this paper is to extensively study the

variation of taxi times not only for departing aircraft, but

also for arriving aircraft. In contrast to earlier studies, we

focus on European hub airports in this paper where the

taxi process is less dominated by queuing and hence other

factors have a proportionately greater effect upon taxi

times. The use of the airport layout is essential for this

research and was not considered in the past. The outcomes

will enable researchers to make increasingly accurate taxi

time predictions and to develop more realistic decision

support systems for ground movement, potentially result-

ing in smoother airport operations, emission reductions

for the taxi process and better on-time performance at

airports.

The remainder of this paper is structured as follows:

Section 2 provides a description of the problem and the

available data. The statistical taxi time prediction method

is then detailed in Section 3, where the influence of the

ground movement model will be observed. The results

and their applications are discussed in Sections 4 and 5,

respectively, and the paper ends by drawing important

conclusions from this work in Section 6.

2. Problem description

The problem considered in this paper involves the

identification of a function to estimate taxi times for both

arriving and departing aircraft, which can then be used in

an airport decision support system. The problem descrip-

tion in this section has two parts. Firstly, we summarise

the airport ground movement problem, explaining why

accurate taxi times are very important. Secondly, we

discuss the data which we can expect to be available from

an airport for use in calibrating ground speed models.

2.1. The airport ground movement problem

This research was motivated by our work on the airport

ground movement problem (Atkin et al, 2011a; Ravizza

and Atkin, 2011), which is basically a routing and

scheduling problem. It involves directing aircraft on the

surface of an airport to their destinations in a timely

manner, with the aim usually being to reduce the overall

travel time, to meet some target time windows and/or to

absorb the delay at a preferred time, such as when the

engines are not running. It is crucial, for reasons of safety,

that two aircraft never conflict with each other throughout

the ground movement.

For larger airports, especially during peak hours,

decision support systems are advantageous to deal with

the complexity of the problem (Gotteland and Durand,

2003; Smeltink et al, 2004; Balakrishnan and Jung, 2007;

Roling and Visser, 2008; Lesire, 2010). Sophisticated

algorithms are needed to route and schedule all the aircraft

simultaneously on the surface. In doing so, some aircraft

might be allocated to a longer route and/or waiting times

might need to be added to some schedules to handle

conflicts, aiming for a globally better solution.

1348 Journal of the Operational Research Society Vol. 64, No. 9



A detailed survey was recently published showing the

state-of-the-art in this research area (Atkin et al, 2010b).

For the purpose of this paper, the important feature of this

problem is that decision support systems need taxi time

predictions for aircraft in isolation, ignoring the presence

of other aircraft, but historic data is rarely able to provide

this information. However, it is clear that the use of

historic data is vital in order to ensure that results are

realistic and can be compared with the status quo at an

airport, in order to quantify any potential improvements

from new airport ground movement decision support

systems, without running expensive trials.

2.2. Available airport data

This analysis utilised data from two hub airports in

Europe: Stockholm-Arlanda Airport (ARN), the largest

airport in Sweden and Zurich Airport (ZRH), the largest

airport in Switzerland. Both airports have a main hub

carrier, Scandinavian Airlines at Stockholm-Arlanda and

Swiss International Air Lines at Zurich. Sketches of the

two airport layouts are provided in Figure 1.

In collaboration with colleagues at both of the airports,

we had access to the data for an entire day’s operation:

for the 7th of September 2010 at Stockholm-Arlanda

(661 movements) and the 19th of October 2007 at Zurich

(679 movements). Both data sets represent days with no

extraordinary occurrences to be taken into account. The

main elements of the supplied data consisted of informa-

tion about each aircraft, detailing the stand, the runway,

the start and end time of taxiing, the aircraft type and

whether the aircraft was an arrival or a departure.

In visually analysing the average taxi speeds, it was

obvious that there were major differences between different

groups of aircraft. A boxplot is presented in Figure 2,

showing the general variability in the average speed of the

aircraft for two stand groups at Stockholm-Arlanda

Airport. Major differences are apparent between arriving

and departing aircraft as well as between low, medium and

high traffic situations at the airport.

3. Approach for estimating taxi speed

The aim of this research is to estimate a function which can

more accurately predict taxi times for aircraft or,

equivalently, better predict their average speeds. It is not

obvious which factors are important for calculating such

taxi times and which factors can be ignored. Discussions

with practitioners can help in understanding the problem

and identifying potential factors but this has its limits for

mathematically determining the importance of factors.

Multiple linear regression was able not only to answer this

question, but also to estimate a function that could predict

the taxi speed and was easy to interpret. Of course, the

accuracy of the estimation has to be verified, but given such

a function, the aim is to eliminate the effects of factors that

represent the actual amount of traffic at the airport, by

setting the respective variables to 0. Our aim is to be able to

predict the taxi times for independent aircraft, for use in a

more advanced ground movement decision support system.

This would provide the opportunity to compare scenarios

with the way in which an airport is currently operating.

3.1. Summary of multiple linear regression

A brief summary of multiple linear regression is given here

for reasons of completeness, before providing the details of

how it has been applied to the problem of estimating taxi

times by incorporating details of the airport layout. The

interested reader is directed to the book by Montgomery

et al (2001) for more in-depth coverage.

Figure 1 Sketch of airport layouts where both airports operate
with three runways: (a) Stockholm-Arlanda Airport; (b) Zurich
Airport.
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Multiple linear regression is a statistical approach

that attempts to model the ith dependent variable yi as a

linear weighted function of other explanatory variables

xi1, . . . ,xip and an error term ei. The random error terms

e1, . . . , en are assumed to be uncorrelated and to have a

normal distribution with mean zero and constant variance

s
2. The regression coefficients can be estimated using

least squares regression, yielding estimated coefficients

b̂1; . . . ;b̂p. The predicted y value for the ith observation is

then given by

ŷi ¼ b̂0 þb̂1xi1 þ � � � þb̂pxip: ð1Þ

The difference between yi and ŷi is called the residual,

ei ¼ yi � ŷi.

The adjusted coefficient of determination RAdj
2 can be

used to measure how well the model fits the data. It is

defined as follows:

R2
Adj ¼ 1�

P

i

ðyi � ŷiÞ
2=ðn� p� 1Þ

P

i

ðyi � �yÞ2=ðn� 1Þ
; ð2Þ

where �y is the mean of y1, . . . , yn. RAdj
2

takes values

between 0 and 1, with values closer to 1 indicating a better

fit. The measure incorporates a trade-off between goodness

of fit and the complexity of the model, favouring simpler

models when possible.

3.2. Analysis of the dependent variable

It was discovered that estimations of taxi speeds (in m/s)

better fit the linear requirements of the models than direct

estimates of the taxi times of aircraft. Furthermore, it was

also discovered that a logarithmic transformation of the

dependent variable (Equation (3)) was required in order to

fulfil the stated assumptions of multiple linear regression

and such a transformation is used throughout the

following sections:

y :¼ log10ðSpeedÞ: ð3Þ

A good estimate for log10(Speed) can then be

used for the calculation of a good estimate of the taxi

time.

3.3. Analysis with only one explanatory factor

Different individual factors are analysed in this section.

The analysed factors were derived from a combination

of previously published work in this area, discussions

with practitioners and data-driven transformations. The

factors that appeared to be statistically relevant were

then included together in a combined model. For reasons

of simplicity, we focus within this section only on the

settings for Stockholm-Arlanda Airport, although many

results are similar for both airports, as can be observed in

Section 3.4.

3.3.1. Distances. The first factor that was analysed

considered the distance (in meters) that an aircraft was

taxiing. To determine such distances, it was useful to

model the airport ground layout as a graph, where the

arcs represented the taxiways and the nodes represented

the junctions or intermediate points (see Figure 3). Based

on this underlying graph, it was then assumed that

aircraft were travelling on their shortest path and

Dijkstra’s algorithm (see Cormen et al (2001) for more

details) was used to determine, for each aircraft, the taxi

distance from the stand to the runway or back again. The

incorporation of the actual airport layout was essential

for the approach as will be seen later. We note that further

improvements may be possible from using the actual

route taken, but that information was not available at the

time. Further research will consider this.

Regressing log10(Speed) on ‘Distance’ yielded an

adjusted coefficient of determination RAdj
2 ¼ 0.473, with

a p-value smaller than 2.2e-16 (the p-value comes from

the F-test that compares the given model to a model

with only an intercept). Figure 4(a) shows a plot

of the observed values, y, against the explanatory vari-

ables, x.

The nonlinear shape in Figure 4(a) encouraged the

application of a logarithmic transformation to the distance.

The resulting fit can be seen in Figure 4(b), and has a better

linear shape. Regressing log10(Speed) on log10(Distance)

yielded an RAdj
2 value of 0.479 ( p-valueo2.2e-16), which is

only marginally better, but it will be observed later that it

leads to significant improvements in the final model for

both airports.

The RAdj
2 value indicates that almost half of the variance

can be explained by this factor, showing the importance of

this indicator. Therefore, additional time was invested

in analysing it. Instead of only using the entire distance

of an aircraft as a variable, it was divided into three

different components based upon the known behaviour

of aircraft as they taxi around the airport. ‘Distance0’

represented the length of the path directly around the

gates, ‘Distance2’ represented the length of the path

which was comprised of long sub-paths without any

junctions and ‘Distance1’ represented the remaining

distance (where all values were in meters). These distances

were determined using the directed graph model of

Stockholm-Arlanda Airport, by assigning each arc in the

graph to one of the three distances. The ‘Distance’,

‘Distance0’, ‘Distance1’, ‘Distance2’, log10(Distance),

log10(Distance0), log10(Distance1) and log10(Distance2)

values were all included in the analysis. The resulting

regression model yielded an improved RAdj
2

value of 0.604

( p-value o2.2e-16).
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3.3.2. Angle. The total amount of turning that an

aircraft had to achieve was another promising predictor

of taxi speed, since aircraft obviously have to slow down

to make turns. A factor was introduced to measure the

total turning angle (in degrees), calculated as the total

angular deviations between adjacent arcs on the shortest

path for the aircraft. Again, the graph model of the

airport layout was used for this, as shown in Figure 5.

This turned out to be another major factor (RAdj
2 ¼ 0.470,

p-value o2.2e-16) and the importance was improved

further when log10(Angle) was considered (RAdj
2 ¼ 0.482,

p-value o2.2e-16).

Figure 3 Graph representing the airport ground layout for Stockholm-Arlanda Airport.
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3.3.3. Departures versus arrivals. As shown in Figure 2,

the speed for departures can differ significantly from the

speed for arrivals. In contrast to the factors that have

been introduced so far, this information is nominal rather

than being a continuous variable. A dummy variable

called ARR was introduced, defined to be 1 for arrival

aircraft and 0 for departure aircraft. The regression

showed an RAdj
2 value of 0.380 for this single factor,

demonstrating its importance ( p-value o2.2e-16).

3.3.4. Amount of traffic. Another important factor

affecting the taxi speed of aircraft is the amount of traffic

on the airport surface while the aircraft is taxiing.

As a first attempt for an indicator of surface load, we

divided the operational hours into three different cate-

gories. The indicator ‘Traffic_high’ was set to 1 for hours

where more than 50 aircraft were moving and to 0

otherwise. ‘Traffic_medium’ was set to be 1 for hours with

between 36 and 50 moving aircraft and 0 otherwise.

Both indicators were set to zero for the last category

representing low surface load (the same categorisation is

visible in Figure 2). This approach with these variables

resulted in an RAdj
2

value of only 0.007 and a p-value

of 0.036.

A more advanced measure was introduced based on the

paper by Idris et al (2002). The value Ni counts the number

of other aircraft that are taxiing on the airport surface at

the time that the particular aircraft i started to taxi, as

shown in Equation (4), where the Iverson bracket denotes

the value 1 if the condition in square brackets is satisfied

and is 0 otherwise. The parameters tstart
i

and tend
i

represent

the time at which aircraft i starts and ends its taxi

operation.

Ni ¼
X

j2Aircraftnfig

tistart 2 ðtjstart; t
j
endÞ

� �

ð4Þ

The value Qi was also adopted to count the number of

other aircraft which cease taxiing during the time aircraft

i is taxiing, as shown in Equation (5), again using the

Iverson bracket.

Qi ¼
X

j2Aircraftnfig

t
j
end 2 ðtistart; t

i
endÞ

� �

ð5Þ

Since the paper by Idris et al (2002) was restricted to taxi-

out times, this approach was further developed to cope

with separate departures and arrivals. Eight integer

variables were used to allow consideration of the effects

of the counts of arrivals and departures depending upon

whether the current aircraft was an arrival or departure.

These were named NDEP, #DEP, NDEP, #ARR, NARR, #DEP,

NARR, #ARR, QDEP, #DEP, QDEP, #ARR, QARR, #DEP and

QARR, #ARR. In this notation, the N or Q indicated whether

it was the count of already moving aircraft or of aircraft

that ceased their movement. The first index for each value

represented the type of aircraft under consideration

(ARRival or DEParture). The second index indicated

whether it was the count of arrivals or departures (#ARR

or #DEP) which was to be considered for counting, that is,

for a departing aircraft, all of the variables with a first

index ARR are treated as if they are 0 and for arriving

aircraft all of the variables with the first index of DEP are

treated as if they are 0.

A highly significant regression model considering only

these eight factors led to an RAdj
2 value of 0.422 ( p-value

o2.2e-16). Further investigation was performed to deter-

mine whether the model could be further improved by

considering only aircraft destined for, or originating from,

the same runway as the aircraft under consideration.

In that case, the fit was worse (RAdj
2 ¼ 0.382, p-value

o2.2e-16). One possible explanation for this is that often

one runway is used for departures and another one for

arrivals, in which case half of the factors have the same

value as in the unrestricted case and the other half have the

value 0, resulting in less information being considered by

the model than in the unrestricted case.

3.3.5. Less important factors. A number of other

elements were taken into consideration, for example

whether the model could be improved by using the square

of some of the values or by including some interaction

terms but no improvement was found. Another approach

was to consider the number of engines of the aircraft

(RAdj
2 ¼ 0.007, p-value¼ 0.039) or by using the wake

vortex categorisation of the aircraft (RAdj
2 ¼ 0.032,

p-value¼ 4.4e-05). These results for the European airports

that we studied fit the findings of Idris et al (2002) (for a

North American airport), where a poor correlation was

observed between taxi time and aircraft type, and the type

determines both the number of engines and the wake

vortex categorisation.

Further analysis studied the effect of the different

runways and stand groups. Although nothing relevant

was found for Stockholm-Arlanda Airport, some effects

were found at Zurich Airport by analysing different

operational modes (which runway(s) is/are being used for

take-offs/landings). The details are reported later in the

analysis of the whole model for Zurich Airport.

3.4. Multiple regression with several factors

This section presents multiple regression models for

Stockholm-Arlanda Airport and Zurich Airport and ends

with a consideration of the validity of the necessary

assumptions to apply the regression. The discussion of the

results and the applicability of the model can be found

in Sections 4 and 5.

The goal of the multiple regression approach was to find

the most important factors explaining the variability of the

real data sets.

1352 Journal of the Operational Research Society Vol. 64, No. 9



Extensive analysis was performed using different

stepwise selection methods based on the factors described

in Section 3.3 (depending on p-values, Akaike’s Informa-

tion Criterion (AIC) and the Bayesian Information

Criterion (BIC)). The authors decided to present models

that are as practical as possible for use at airports

(requiring less information) and that are easy to interpret.

The following models fulfil this aim and are less than 2.2%

away from the best models found (according to the

RAdj
2 value).

3.4.1. Stockholm-Arlanda Airport. The final regression

model for Stockholm-Arlanda Airport is given in Table 1.

The first column indicates the variables, the second

column the estimated unstandardised coefficients and

the third column the corresponding estimated standard

errors. The fourth column shows the estimated standar-

dised coefficients for all non-dummy variables (ie the

estimated coefficients if the variables were standardised so

that their variance was 1). This measure can be used to

analyse which factor has the largest positive or negative

impact on log10(Speed). In contrast to the unstandardised

coefficients, they have no units and can therefore be

compared directly. The last column shows the significance

of each variable based on a t-test.

The model has a good RAdj
2 value of 0.863 ( p-value

o2.2e-16). This means that around 86% of the variance of

the log10(Speed) values can be explained by the model. The

fit of the prediction can be seen in Figure 6.

3.4.2. Zurich Airport. As indicated in Section 3.3.5, the

current operational mode of the runways is a potentially

significant factor at Zurich Airport. As long as no heavy

winds occur, Zurich Airport operates strictly with three

operational modes: before 7:00 runway 34 is used for

arrivals and runways 32 and 34 for departures; during

the day runways 14 and 16 are used for arrivals and 28

and 16 for departures; and after 21:00 only runway 28 is

used for arrivals and runways 32 and 34 are used for

departures (see Figure 1(b)). We modelled the three

operational modes using two dummy variables, OMorning

to represent the morning period and OEvening to represent

the evening period. Each variable was set to 1 during the

corresponding period and 0 otherwise, so during the day

period both variables were set to 0.

In contrast to Stockholm-Arlanda Airport, statistical

analysis showed only small improvements by classifying

the total distances into different components, so they were

excluded from the final model. This was expected from the

airport layout since it has fewer straight sub-paths without

junctions.

The fit for Zurich Airport is given in Table 2, and

shows an even better fit than for Stockholm-Arlanda

Airport, with an RAdj
2 value of 0.878 ( p-value o2.2e-16).

The scatterplot of the relationship between the observed

values and the predicted values can be seen in Figure 7.

Table 1 Coefficients for Stockholm-Arlanda Airport

Coefficient b̂i Std. dev. Standardised coefficient Sig.

(Constant) �2.349 0.091 ***
log10 (Distance) 0.922 0.029 0.842 ***
ARR 0.211 0.015 ***
NDEP, #DEP 0.031 0.005 0.260 ***
NARR, #DEP 0.029 0.004 0.230 ***
NDEP, #ARR 0.049 0.011 0.209 ***
NDEP, #ARR 0.036 0.006 0.176 ***
Distance2 �5e-05 8e-06 �0.188 ***
QDEP, #ARR �0.034 0.004 �0.268 ***
QARR, #ARR �0.066 0.011 �0.279 ***
QARR, #DEP �0.052 0.006 �0.280 ***
QDEP, #DEP �0.044 0.005 �0.397 ***

Sig. indicates if the p-value is o0.05 (*), o0.01 (**) or o0.001 (***).
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Figure 6 Scatterplot showing the linear fit of the regression
model in Table 1 for Stockholm-Arlanda Airport.
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3.4.3. Validation of statistical assumptions. The estimated

regression coefficients are unbiased if E(ei)¼ 0 for all

i¼ 1, . . . , n. The residual plots in Figure 8 indicate that

this assumption is approximately valid (with perhaps

a slight lack of fit for small speeds). Hence, one can be

confident that the estimated regression coefficients and

resulting predictions are (almost) unbiased.

The standard errors for the estimated coefficients are

valid if the following three assumptions hold: E(ei)¼ 0 and

Var(ei)¼ s
2
for all i¼ 1, . . . ,n, and Cov(ei, ej)¼ 0 for all

iaj. The residual plot in Figure 8(a) indicates that the

constant variance assumption is approximately valid for

Stockholm-Arlanda Airport. For Zurich Airport, there

seems to be some increase in the variance with increasing

predicted speeds. Owing to the time-dependent nature of

the data, it is likely that there is some correlation in the

statistical errors. The Durbin-Watson test indeed indicated

positive serial correlation for both airports. Generalized

least squares models using autoregressive AR(1) and

AR(2) models for the residuals were fitted to account for

this correlation, and the results were compared with

Tables 1 and 2. Estimates of the coefficients and standard

errors at both airports are very consistent.

Finally, the p-values are valid if in addition to the

assumptions above the statistical errors have a normal

distribution. Moreover, even without the normality

assumption they hold approximately if the sample size is

sufficiently large, due to the central limit theorem. The

Q-Q-plots in Figure 9 show that the residuals are

approximately normally distributed. A discussion about

the outliers (indicated with triangles) is presented in

Section 4.2. Formal Shapiro-Wilk tests (Shapiro and Wilk,

1965) were also performed to test the normality assump-

tion, where the outliers were excluded. These tests

supported the findings from the figures and indicated no

evidence for departure from normality ( p-values 0.083 and

0.463 for Stockholm-Arlanda Airport and Zurich Airport,

respectively). However, due to potential (small) violations

of the assumptions of constant variance, the p-values for

Zurich Airport might be slightly off.

The taxi distance appears on both sides of the multiple

linear regression models, due to the decision to use speed as

the dependent variable. However, since it seems clear that

distance might influence speed but not the other way

round, we assume that there are no endogeneity problems.

3.5. Cross-validation

A common way of testing how well a model performs in

predicting new data is the so-called PRESS statistic,

suggested by Allen (1971):

PRESS ¼
X

n

i¼1

ðyi � ŷðiÞÞ
2: ð6Þ

Table 2 Coefficients for Zurich Airport

Coefficient b̂i Std. dev. Standardised coefficient Sig.

(Constant) �2.601 0.250 ***
log10(Distance) 1.161 0.091 0.731 ***
ARR 0.260 0.018 ***
NDEP, #DEP 0.025 0.005 0.234 ***
NARR, #ARR 0.054 0.008 0.208 ***
NARR, #DEP 0.019 0.004 0.143 ***
NDEP, #ARR 0.029 0.007 0.101 ***
OEvening 0.049 0.013 ***
OMorning �0.075 0.019 ***
log10(Angle) �0.143 0.039 �0.083 ***
Distance �7e-05 2e-05 �0.181 **
QDEP, #ARR �0.032 0.004 �0.208 ***
QARR, #DEP �0.067 0.006 �0.285 ***
QARR, #ARR �0.081 0.007 �0.318 ***
QDEP, #DEP �0.046 0.004 �0.466 ***

Sig. indicates if the p-value is o0.05 (*), o0.01 (**) or o0.001 (***).
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Figure 7 Scatterplot showing the linear fit of the regression
model in Table 2 for Zurich Airport.
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It sums the squared differences between the observed

variables yi and the predicted variables ŷðiÞ for each

of the sample points i, where the prediction ŷðiÞ only

uses the data of the remaining observations. It can

be categorised as a leave-one-out cross-validation. The

PRESS statistic can be used to calculate an R2 value for a

prediction:

R2
Pred ¼ 1�

P

n

i¼1

ðyi � ŷðiÞÞ
2

P

n

i¼1

ðyi � �yÞ2
: ð7Þ

The RPred
2 value was 0.860 for Stockholm-Arlanda

Airport and 0.875 for Zurich Airport. This means that,

for similar settings at the airport (the same operational

modes, similar weather conditions and so on), these models

could explain around 86 and 87.5%, respectively, of the

variability in predicting new observations due to the

combination of the statistical analysis with the incorpora-

tion of the ground layout model.

3.6. Prediction accuracy

A second data set was made available for Zurich Airport

after the model had been fitted to the existing data set. The

second data set consisted of 5613 aircraft movements that

occurred during one week’s operation between the 27th of

June and the 3rd of July 2011. Even though we used the

same coefficients as reported in Table 2, and they were

generated using the old data, the approach was still able to

demonstrate a high RAdj
2 value of 0.864 for the prediction.

Keeping the same factors as in Table 2, but re-estimating

the coefficients for the new data set, the RAdj
2 could only be

improved to 0.899. These results demonstrate that the

model was not only able to fit historic data well but that it

can also be used to make accurate taxi speed predictions,

especially when keeping in mind that the two data sets were

from periods which were almost 4 years apart.

4. Interpretation of the models

First of all, it can be seen from Tables 1 and 2 that the two

fitted regression models are very similar and have the same

Predicted log(Speed)

1.251.000.750.500.250.00

R
e
s
id

u
a
l

0.60

0.40

0.20

0.00

-0.20

-0.40

Predicted log(Speed)

1.000.750.500.250.00-0.25

R
e
s
id

u
a
l

0.40

0.20

0.00

-0.20

Figure 8 Residual plots showing the validation of the assumptions: (a) Stockholm-Arlanda Airport; (b) Zurich Airport.
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general structure, indicating the potential usage for other

airports. All the factors in the tables are highly significant

( p-value o0.01).

4.1. Coefficient meanings

We now interpret some of the coefficients to gain insight

into the effects of specific factors. The straightforward inter-

pretation of this model could possibly encourage airport

operators to use this approach to support their needs.

4.1.1. Distances. The most important factor for both

airports was the logarithmic transformation of the total

distance. In general, the average taxi speed was higher

the further an aircraft had to taxi. This finding is new

compared with the results from other research, where the

focus was on airports with longer queues, which probably

dominated the effect of the distance. Even with the

assumption of using the shortest path for each aircraft,

the results look promising and would probably look even

better by utilising the actual distance rather than the

shortest path.

4.1.2. Departures versus arrivals. Another important

factor in the models for both airports was the differentia-

tion between arriving and departing aircraft. Since

departures often need to wait in a queue, their average

speed is smaller in comparison with arriving aircraft,

which are forced to clear the runway as soon as possible

and taxi directly to the stands.

4.1.3. Angle. The logarithmic transformation of the total

turning angle that an aircraft had to complete was

observed to be a significant slowing factor at Zurich

Airport. The inclusion of this factor significantly im-

proved the accuracy of the prediction.

4.1.4. Amount of traffic. All of the different Q values

were observed to have a negative effect upon the taxi

speed. In general, more aircraft travelling around the

airport means that each individual aircraft’s speed is

reduced. Factors which particularly slowed taxi speeds

were QDEP, #DEP and QARR, #ARR, representing the number

of aircraft which have the same target (runways or stands)

but end their taxi operation first. The N variables were

found to counteract some of the effect of the Q variables,

together modelling those aircraft which both start to taxi

earlier and which reach their destination earlier. Our

results showed differences between the North American

airport studied by Idris et al (2002) and the European

airports considered in this research, since the number of

arrivals did not affect the taxi-out time in their study

whereas there was a strong correlation in our analysis.

This may be related to the airport layouts or the runway

queue lengths.

4.1.5. Operational mode. In the case of Zurich Airport,

the influence of the different operational runway modes

was incorporated into the model. It can be observed that

aircraft taxi faster in the evening than during the day, and

faster during the day than in the morning. There is

insufficient information at the moment to determine

whether the effect is due to the different runway modes

or whether other elements such as visibility or different

aircraft mixes at different times of the day are affecting

the taxi speeds.

4.2. Unexplained variability

Around 13% of the variability in taxi speeds cannot be

explained by our models. Some potential explanations are

listed below:

K The taxi behaviour can vary between different airlines

and pilots. Additional data should allow us to analyse

this in more detail in the future.

K In the case of Stockholm-Arlanda Airport the taxi time

information was only to the minute rather than to the

second, but the model uses continuous time for the

speed predictions. The data of Zurich Airport had

detailed times at the runway, but again the times at the

stand/gates were only to the minute. This matching of

continuous time to discrete values is unlikely to provide

extremely accurate predictions.

K We assumed that aircraft travelled along the shortest

path and that there were no unexpected changes. This

assumption will be valid in general but can lead to

occasional errors.

An analysis of the outliers at Stockholm-Arlanda

Airport showed that the three worst fits (the three triangles

in Figures 6, 8(a) and 9(a)) were for aircraft landing at

runway 26 and taxiing to stand group F. The taxi times

were extremely short: 1min for one of the aircraft and

2min for the other two. Given the minute granularity on

the data, it is perhaps unsurprising that the estimations

were least accurate for these aircraft. Similarly, the most

extreme outliers at Zurich Airport (the three triangles in

Figures 7, 8(b) and 9(b)) were also related to very short

taxi times.

4.3. Related applications

The same approach was also used to estimate taxi times for

London Heathrow Airport (LHR), which is one of the
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busiest international airports in the world. A multiple

linear regression approach was used to predict taxi times

for Heathrow (Atkin et al, 2011b), using a data set that

covered one week’s operations (9391 movements) for

summer 2010. The dependent variable was log10(Speed)

and log10(Distance) and the N and Q values were used as

explanatory variables. For Heathrow, it was found

to be better to have separate regression models for

departures and arrivals, and to separate cases depend-

ing upon which runway the aircraft were starting from

or landing at. The RAdj
2 value was 0.929 for departing

aircraft and 0.835 for arriving aircraft, totalling to

0.882. Experiments with leave-one-out cross-validation,

as explained in Section 3.5, indicated that the RPred
2

values

were at most 0.1% smaller than the RAdj
2 values, leaving

them very high.

5. Applicability of this research

The two main applications for this research are for total

taxi time prediction and for use in a ground movement

decision support system. We consider both of these in

this section.

5.1. Improved total taxi time prediction

To the best of our knowledge, there is no existing taxi time

prediction function to compare against for both departing

and arriving aircraft, but we have the lookup table

which is used for Zurich Airport. This considers only the

sources and destinations and gives average taxi-in and

taxi-out times. However, it has a granularity of 1min and

deliberately underestimates times. In order to eliminate

the deliberate underestimates, we used linear regression

to find a linear scaling that best fitted their table to the

observed data. This resulted in an improved RAdj
2

value of

0.180, with a scaling of axþ b, where a is 0.883 and b is

2.210. In contrast, the approach presented in this paper,

when applied to taxi times (rather than log10(Speed))

resulted in an RAdj
2 value of 0.793, thus explaining the

variability in taxi times at this airport to a much greater

extent than the lookup table and indicating the benefits of

the consideration of more factors. The function generated

by our multiple linear regression is, therefore, more

appropriate for predicting total taxi time.

The results were also compared with the results from the

application of a reinforcement learning algorithm by

Balakrishna et al (2009) at other airports. They presented

results for the 73 or 75min prediction accuracy for the

taxi-out times (see Table 3), measuring the percentage of

departing aircraft with a time difference between the

predicted time and the observed time which is smaller than

the given threshold value. An average of 95.7% was found

for Detroit International Airport (DTW) and an average of

93.8% for Tampa International Airport (TPA) for73min

accuracy. The results for John F. Kennedy International

Airport (JFK) were not very consistent and much less

promising, showing 75min prediction accuracy between

20.7 and 100% for different days and parts of the day.

Additionally, Idris et al (2002) predicted 65.6% of the

taxi-out times at Boston Logan International Airport

(BOS) within 75min of the actual time. In contrast, our

regression model found an average 73min accuracy of

94.4% for Stockholm-Arlanda Airport and 95.6% for

Zurich Airport, considering both departures and arrivals

simultaneously.

Reported taxi times at Stockholm-Arlanda Airport were

from 1 to 16min for arrivals and 3 to 20min for departures.

The seven cases which were not predicted within 75min

accuracy were all departures with very long taxi times with

the highest deviation of 7.40min. Figure 10 shows the

deviations of the estimated to the actual taxi times where

the deviations are ordered. The rounded deviations are also

shown (the step function), where the estimated taxi times

are rounded to the nearest minute, to match the accuracy

of the historic input data from Stockholm-Arlanda Air-

port, since many stakeholders are only interested to this

level of accuracy. Taxi times at Zurich Airport ranged

from 1 to 12min for arrivals and 4 to 24min for depar-

tures. Again, the four worst predictions were for aircraft

with long taxi times and only one prediction was not

within 76min accuracy (but this has less than 8min

deviation).

The results labelled ‘(simplified)’ in Table 3 also

show the prediction accuracy of our approach for both

Stockholm-Arlanda Airport and Zurich Airport without

taking the actual graph layout of the airports into account.

Table 3 Comparison of prediction accuracy

Within

73min

Within

75min

Stockholm-Arlanda Airport (simplified) 73.2% 88.4%

Zurich Airport (simplified) 82.6% 91.6%

Stockholm-Arlanda Airport 94.4% 98.9%

Zurich Airport 95.6% 99.4%

Stockholm-Arlanda Airport (full) 96.1% 99.2%

Zurich Airport (full) 96.8% 99.7%

Detroit International Airport 89.9%–97.1% —

Tampa International Airport 89.9%–95.7% —

John F. Kennedy International Airport — 20.7%–100%

Boston Logan International Airport — 65.6%

The first block shows the result for the two studied airports where the

prediction model is simplified by not considering the airport layout

(particularly by not considering the factors about the distances and the

turning angles). The results for the best found models are indicated in

the last three blocks.
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A simplified regression analysis was performed without the

different distance measures and the measures related to the

turning angle. The big improvements when the layout is

considered emphasise the need for layout-based factors

for airports where queuing is not dominating the whole

ground movement process.

In contrast, the results labelled ‘(full)’ in Table 3

correspond to the model with the best RAdj
2 value when

considering all possible factors, rather than attempting to

simplify the model. These indicate that the RAdj
2 would

increase by around 2.2%. However, the aim of this

research was to provide a practical model that was easy

to interpret and hence the focus was not entirely on getting

the model with the best accuracy.

As discussed in the introduction of this paper, several

other airport-related decision support systems as well as a

wide variety of stakeholders at an airport (eg runway

controllers, gate allocators, cleaning crews, de-icing crews,

bus drivers, etc) will benefit from better taxi time predictions.

5.2. Use for ground movement decision support

As discussed at the beginning of this paper, algorithms that

aim to optimise ground movement at airports need a model

for predicting taxi times when there are no delays, since the

interaction between aircraft would be explicitly considered

by the model anyway. Such predicted uninterrupted taxi

times can then be used to find a globally good solution by

adding some delays or detours to aircraft where contention

with other aircraft is indicated by the algorithm. The

presented regression model allows such uninterrupted taxi

time modelling by setting all N and Q values to 0.

Regression models work well within their range of obser-

ved data, but have to be handled with care for predictions

at the boundaries and for extrapolations. Importantly,

both data sets contain a number of observations with all N

and Q values equal to 0 (for three departures and nine

arrivals at Stockholm-Arlanda Airport and six departures

and for four arrivals at Zurich Airport) and these values

are spread throughout the taxi speed range.

Once the regression approach has been implemented in a

ground movement search methodology, it will be interest-

ing to test the new system against the actual operations at

the specific airport, and to fine tune the parameters to

match the taxi times even more.

6. Conclusions

With the current emphasis upon improving the predictions

for on-stand times and take-off times (Eurocontrol, 2010),

an improved method for taxi time prediction is both

important and timely. This paper analysed the variation in

taxi speed and, consequently, the variations in taxi times,

and considered not only departures but, for the first time,

also arrivals. Data from Stockholm-Arlanda and Zurich

Airport, both major European hub airports, was used for

this research and the potential significant factors were

identified and individually tested. Multiple linear regression

was used to find a function which could more accurately

predict the taxi times than existing methods. An emphasis

was placed upon ensuring that the function was easy to

interpret and simple to use for operators at airports and

researchers. Key for the analysis was the incorporation of

information about the surface layout, since, in contrast to

other airports which have previously been studied, the

runway queuing was not dominating the entire taxi time.

The average speed between the gate and runway (and

between the runway and gate) was found to be highly

correlated to the taxi distance, with higher speeds being

expected for longer distances. Arrivals had higher taxi

speeds than departures, due to departure queues at the

runway, and the quantity of traffic at the airport was also
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Figure 10 Taxi time prediction accuracy at Stockholm-Arlanda Airport.
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found to have a significant impact upon the average taxi

speed, as identified by several variables in the resulting

model. Finally, the total turning angle and the operating

mode (which runways were in use) were also highly

correlated to the average taxi speed.

Consideration of taxi time accuracy does not appear to

have been sufficiently incorporated into the current state-

of-the-art research in ground movement decision support

systems at airports. Better predictions would, if nothing

else, reduce the amount of slack which had to be allowed

for taxi time inaccuracies, allowing tighter schedules to be

created. Historic data is vital for model calibration, but

such data usually include the effects of various inter-

aircraft dependencies. When a decision support system

takes care of the dependencies between the aircraft,

predicted taxi speeds should not themselves include the

effects of these dependencies. However, it is not usually

obvious how to quantify and eliminate these effects.

Among other uses, the approach which has been presented

here could potentially be used for exactly such situations,

allowing individual effects to be removed from considera-

tion. The development of such a facility was the prime

motivation for this research.

Since this work considers a combined statistical and

ground movement model, which seems to accurately

predict the effects of turns and congestion as well as total

travel distances, we note here that these results can also

feed into ground movement models, to improve the

accuracy of the predictions for the effects of re-routing or

delays. We plan to consider this in future research.

In addition to our current work on ground movement

simulation, we aim to use this research to generate more

realistic benchmark scenarios for ground movement. These

will not only stimulate researchers to compare their ground

movement algorithms but to do so with scenarios that are

closer to reality. Further research should explore more

sophisticated ways of fine-tuning the parameters to further

increase the value of the approach for decision support

systems for ground movement at airports, or other

prediction approaches such as fuzzy rule-based systems

or time series analysis.
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