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Abstract. Land surface temperature (LST) is a key variable for high temperature and drought monitoring and

climate and ecological environment research. Due to the sparse distribution of ground observation stations, ther-

mal infrared remote sensing technology has become an important means of quickly obtaining ground temperature

over large areas. However, there are many missing and low-quality values in satellite-based LST data because

clouds cover more than 60 % of the global surface every day. This article presents a unique LST dataset with

a monthly temporal resolution for China from 2003 to 2017 that makes full use of the advantages of MODIS

data and meteorological station data to overcome the defects of cloud influence via a reconstruction model. We

specifically describe the reconstruction model, which uses a combination of MODIS daily data, monthly data and

meteorological station data to reconstruct the LST in areas with cloud coverage and for grid cells with elevated

LST error, and the data performance is then further improved by establishing a regression analysis model. The

validation indicates that the new LST dataset is highly consistent with in situ observations. For the six natural

subregions with different climatic conditions in China, verification using ground observation data shows that the

root mean square error (RMSE) ranges from 1.24 to 1.58 ◦C, the mean absolute error (MAE) varies from 1.23

to 1.37 ◦C and the Pearson coefficient (R2) ranges from 0.93 to 0.99. The new dataset adequately captures the

spatiotemporal variations in LST at annual, seasonal and monthly scales. From 2003 to 2017, the overall annual

mean LST in China showed a weak increase. Moreover, the positive trend was remarkably unevenly distributed

across China. The most significant warming occurred in the central and western areas of the Inner Mongolia

Plateau in the Northwest Region, and the average annual temperature change is greater than 0.1 K (R>0.71,

P<0.05), and a strong negative trend was observed in some parts of the Northeast Region and South China

Region. Seasonally, there was significant warming in western China in winter, which was most pronounced in

December. The reconstructed dataset exhibits significant improvements and can be used for the spatiotemporal

evaluation of LST in high-temperature and drought-monitoring studies. The data are available through Zenodo

at https://doi.org/10.5281/zenodo.3528024 (Zhao et al., 2019).

Published by Copernicus Publications.
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1 Introduction

Land surface temperature (LST), which is controlled by

land–atmosphere interactions and energy fluxes, is an essen-

tial parameter for the physical processes of the surface en-

ergy balance and water cycle at regional and global scales

(Li et al., 2013; Wan et al., 2014; Benali et al., 2012).

LST datasets not only are required for high-temperature and

drought research over various spatial scales but also are im-

portant elements for improving global hydrological and cli-

mate prediction models. In particular, the LST directly influ-

ences glaciers and snow on the Qinghai–Tibet Plateau (Ti-

betan Plateau), which is known as the “world water tower”.

In turn, these changes directly affect the living conditions

of nearly 40 % of the world’s population (Xu et al., 2008).

Therefore, LST research at regional and global scales is cru-

cial for further improving and refining global hydroclimatic

and climate prediction models. LST is measured by mete-

orological stations which have the advantages of high re-

liability and long time series. However, the meteorological

station data collected as point data with very limited spatial

coverage are often sparsely and/or irregularly distributed, es-

pecially in remote and rugged areas (Neteler, 2010; Hansen

et al., 2010; Gao et al., 2018). To obtain spatially continu-

ous LST data, various geostatistical interpolation approaches

are commonly applied to achieve spatialization, such as krig-

ing interpolation and spline function methods. However, the

smoothed spatial pattern obtained after interpolation may

suffer from low reliability because the ground station den-

sity is far from sufficient in most regions.

In contrast to ground-based observations with their limited

availability and discrete spatial information, images captured

by satellite thermal infrared instruments have become reli-

able alternative data sources with the advantages of detailed

spatialized surfaces and near-real-time data access (Vancut-

sem et al., 2010). For instance, for the study of uniform con-

tinuous surface temperatures over large-scale areas, such as

at regional and global scales, satellite remote sensing is the

only efficient and feasible method (Xu et al., 2013). Satel-

lite remote sensing obtains global LSTs based on a vari-

ety of mature retrieval algorithms that have been proposed

since the 1970s for use with data from thermal infrared chan-

nels (McMillin, 1975). Due to its optimal temporal coverage

and its global coverage, the Moderate Resolution Imaging

Spectroradiometer (MODIS) sensor has become an excellent

data source for satellite-derived LST data, and the MODIS

LST values are widely used in regional and global climate

change and environmental monitoring models (Tatem et al.,

2004; Wan et al., 2014). However, satellite-derived LST data

are frequently and strongly affected by data gaps and cloud

cover, which affect the quality of the LST product. Cloud

cover is frequent, and the locations of cloud cover are often

uncertain. On average, at any one time, approximately 65 %

of the global surface is obscured by clouds, leading directly

to missing values over large, unevenly distributed areas in an

image (Crosson et al., 2012; Mao et al., 2019). Although the

integrity of the data has been greatly improved, the 8 d and

monthly composite data still contain a number of low-quality

pixels because these are derived from daily LST pixels. In-

valid and low-quality surface temperature data make temper-

ature products discontinuous in time and space, which leads

to great restrictions on the use of temperature products. Thus,

it is necessary to reconstruct these missing and low-quality

LST pixels for satellite-derived LST applications.

Two categories of methods have commonly been applied

to reconstruct missing pixels and pixels exhibiting low-

quality data due to, e.g., cloud and/or aerosol influence,

henceforth termed cloud low-quality pixels from satellite-

derived data in previous studies. The first category includes

methods that directly reconstruct missing and low-quality

values using neighboring information with high similarity

over temporal and spatial scales. Most temporal interpola-

tion methods reconstruct missing and low-quality LST val-

ues based on the periodic behavior of data, such as harmonic

analysis of time series (HANTS), Savitzky–Golay (S–G) fil-

tering and the Fourier transform (Xu and Shen, 2013; Na et

al., 2014; Scharlemann et al., 2008). Crosson (2012) used an-

other temporal interpolation method to reconstruct the LST

data from the Aqua platform (afternoon overpass) using LST

data from the Terra platform (morning overpass). Regard-

ing spatial interpolation methods, previous methods have fo-

cused on geostatistical interpolation, including kriging in-

terpolation, spline interpolation and their variants. Some re-

searchers have also carried out other attempts. For example,

Yu et al. (2015) introduced a method using a transfer func-

tion with the most similar pixels to estimate invalid pixels.

These methods, which estimate missing MODIS LST data

using only adjacent high-quality MODIS LST data, take ad-

vantage of the similarity and interdependence of the available

temporal or spatial attributes of neighboring pixels. To some

extent, these methods have the advantage of simplicity and

reliability. However, this category of methods is often not as

reliable as expected especially in complex topographical re-

gions and areas with many missing data in space and over

time, because data coverage is too sparse for a reliable recon-

struction. The second category of methods solves these data

gap problems by establishing correlation models for cloud

low-quality pixels and corresponding auxiliary data pixels.

Neteler (2010) used a digital elevation model (DEM) as an

auxiliary predictor to reconstruct MODIS LST data from

9 years of data on temperature gradients, which achieved re-

liable results in mountainous regions. Ke et al. (2013) built

a regression model that included many auxiliary predictors –

latitude, longitude, elevation and the normalized difference

vegetation index (NDVI) – to estimate 8 d composite LST

products. Fan et al. (2014) used multiple auxiliary maps, in-
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cluding land cover, NDVI and MODIS band 7, to reconstruct

LST data in flat and relatively fragmented landscape regions.

Other similar algorithms have drawn support by employing

many factors that affect LST, including elevation, NDVI, so-

lar radiation, land cover, distance from the ocean, slope and

aspect. Considering the complexity of the terrain and the

nonuniformity of the spatial distribution of large-scale LST

patterns, a reconstruction model with auxiliary data that pro-

vides rich information for missing pixels can improve the ac-

curacy of the interpolation result.

The above studies greatly improved the usability of

MODIS LST data and further added value to long-term LST

trend analyses. However, despite the use of various tech-

niques to reconstruct the LST value, existing techniques fo-

cus on the retrieval of the LST value under the assumption

of clear-sky conditions. However, clouds reduce nighttime

surface cooling and daytime surface warming due to solar

irradiance. These effects are not taken into account using

this assumption, and therefore the derived LST values are

likely biased towards clear-sky conditions. To address this

issue, some scholars have also used microwave temperature

brightness (TB) data, which are mostly derived from high-

frequency channels (≥ 85 GHz), to obtain the LSTs under

clouds (André et al., 2015; Prigent et al., 2016). Although

microwave remote sensing is more capable of penetrating

clouds than thermal remote sensing, the physical mecha-

nisms of the current microwave LST retrieval models are not

very mature (Mao et al., 2007, 2018). Moreover, due to the

difference in the surface properties of the land, the depth of

the radiation signal detected by the microwave will differ at

different locations, and it will deviate from the retrieval re-

sults of thermal infrared remote sensing when used to esti-

mate LST values. Thus, new reconstruction methods for LST

data need to be proposed to compensate for this deficiency.

On this premise, China is used as an example due to its

large coverage area, heterogeneous landscape and complex

climatic conditions. This paper presents a new long-term spa-

tially and temporally continuous MODIS LST dataset in a

monthly temporal and 5600 m spatial resolution for China

from 2003 to 2017 that filters out invalid pixels (missing-

data influence by cloud and rainfall) and low-quality pixels

(average LST error >1 K) and reconstructs them based on

multisource data. We describe a data reconstruction process

that is fully integrated with the benefits of the high reliabil-

ity of surface observations, consistency and high accuracy of

daily valid pixels, and spatial autocorrelation of similar pix-

els. The process compensates for the insufficiency of recon-

structing pixels under clear-sky conditions instead of under

clouds in previous studies. The validation using data from

the China Meteorological Administration observations indi-

cates the robustness of the LST data after interpolation. The

dataset is ultimately used to capture the annual, seasonal and

monthly spatiotemporal variations in the LST in six natural

subregions in China. It is envisioned that this dataset will

help capture changes in surface temperature and will be use-

ful for studies on high temperatures, drought and food secu-

rity.

2 Study area

In order to obtain a set of continuous spatial and tempo-

ral datasets of surface temperature in China and explore the

temporal and spatial characteristics of China’s LSTs, the

study area is divided into six natural subregions based on

China’s three major geographical divisions: climatic condi-

tions, landform types and tectonic movement characteristics.

The eastern region is topographically characterized by plains

and low mountains. This region has a variety of monsoon cli-

mate zones, which, from south to north, include tropical, sub-

tropical and temperate monsoon climate zones. Therefore,

we divide the eastern region into the following four regions,

as shown in Fig. 1. (I) The Northeast Region, which mainly

covers the area to the east of Daxing’anling. This region has a

temperate monsoon climate with an average annual precipita-

tion of 400–1000 mm, and rain and heat are prevalent in the

same period. (II) The North China Region lies to the south

of the Inner Mongolia Plateau, to the north of the Qinling

Mountains and Huai River, and to the east of the Qinghai–

Tibet Plateau. The region is dominated by a temperate mon-

soon climate and a temperate continental climate with four

distinct seasons. This area is characterized by flat plains and

plateau terrain. (III) The Central Southwest China Region ex-

tends from the eastern part of the Qinghai–Tibet Plateau to

the western parts of the East China Sea and South China Sea,

south to the Huai River–Qinling Mountains, and north to the

area where the daily average temperature is greater than or

equal to 10 ◦C. The accumulated temperature in this region

is 7500 ◦C. This region is commonly dominated by a sub-

tropical monsoon climate. (IV) The South China Region is

located in the southernmost part of China and is character-

ized by a tropical and subtropical monsoon climate with hot

and humid conditions. The area has abundant rainfall, and

the average annual precipitation is approximately 1900 mm.

The western region is divided into two natural subre-

gions. (V) The Northwest Region includes the northern Qil-

ian Mountains–Altun Mountains–Kunlun Mountains, the In-

ner Mongolia Plateau and the western part of the Greater

Khingan Range. This region is located in the continental in-

terior and features complex terrain conditions, dominated by

plateau basins and mountainous areas. This region has a trop-

ical dry continental climate with rare rainfall. Consequently,

this area features large areas of barren land, with a deser-

tified land area of 2.183 million km2, accounting for 81.6 %

of China’s desertified land area (Deng, 2018). Moreover, the

Taklamakan Desert in this region is one of the 10 largest

deserts in the world. (VI) The Qinghai–Tibet Plateau region

is mainly located on the Qinghai–Tibet Plateau, which is the

highest-elevation plateau in the world. This region is mainly
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Figure 1. The study area is divided into six natural subregions (I,

II, III, IV, V and VI), and the spatial distribution of the meteorolog-

ical stations in the subregions is shown. The red ellipses mark key

areas where the temperature has changed significantly, and meteo-

rological stations from subset (2) located in these areas referring to

Sect. 3.2 are used to validate the accuracy of the new LST dataset

(a, b, c, d, e and f).

described as having an alpine plateau climate, with relatively

high temperatures and an extensive grassland meadow area.

3 Data and methods

3.1 MODIS data

MODIS is a key sensor of the Earth Observing System (EOS)

program that provides a suite of various products with global

coverage of the land, atmosphere and oceans. MODIS covers

36 spectral bands in the visible, near-infrared and thermal in-

frared ranges (from 0.4 to 14.4 µm), so it is extensively used

to study global marine, atmospheric and terrestrial phenom-

ena (Wan et al., 1997). The MODIS instruments are aboard

two NASA satellites, Terra and Aqua, which were launched

in December 1999 and May 2002, respectively. As both the

Aqua and Terra satellites are polar-orbiting satellites flying at

an altitude of approximately 705 km in sun-synchronous or-

bit, they provide data twice daily. The Terra satellite passes

through the Equator at approximately 10:30 and 22:30 lo-

cal solar time and is called the morning satellite. The Aqua

satellite passes through the Equator at approximately 01:30

and 13:30 and is called the afternoon satellite (Vancutsem et

al., 2010). Each satellite covers the global twice a day and

transmits observation data to the ground in real time.

MODIS LST data are retrieved with two algorithms: the

generalized split-window algorithm (Wan and Dozier, 1996;

Wan et al., 2002) and the day/night algorithm (Wan and

Li, 1997). We use MOD11C1–MYD11C1 and MOD11C3–

MYD11C3 from the last generation of V006 products which

utilizes the day/night algorithm. The day/night LST algo-

rithm exhibits great advantages in retrieving LST: it not only

optimizes atmospheric temperature and water vapor profile

parameters for optimal retrieval but also does not require the

complete reversal of surface variables and atmospheric pro-

files (Wan, 2007; Ma et al., 2000, 2002). A comprehensive

sensitivity and error analysis was performed for the day/night

algorithm, which showed that the accuracy was very high,

with an error of 1–2 K in most cases (0.4–0.5 K standard

deviation over various surface temperatures for midlatitude

summer conditions; Wan and Li, 1997; Wang and Liang,

2009; Wang et al., 2007). The datasets include daytime and

nighttime surface temperature data provided by NASA. In

collection 6 data, the identified cloud low-quality LST pix-

els were removed from the MODIS Level 2 and Level 3

products, and the classification-based surface emissivity val-

ues were adjusted (Wan, 2014). Both datasets provide the

global LSTs generated by the day/night algorithm with a

spatial resolution of 0.05◦ × 0.05◦ (approximately 5600 m

at the Equator), which is provided in an equal-area inte-

gerized sinusoidal projected coordinate system. The monthly

(MOD11C3–MYD11C3) data are deduced from daily global

data (MOD11C1–MYD11C1).

3.2 Supplementary data

LST records at hourly intervals from 2399 meteorological

ground stations in China from 2003 to 2017 were used in this

study, and they were provided and subjected to strict quality

control and evaluation by the China Meteorological Admin-

istration (CMA). Meteorological station data were randomly

divided into two completely independent subsets by the jack-

knife method (Benali et al., 2012). In subset (1), the number

of ground stations used for the reconstruction process was

1919, accounting for 80 % of the total number of ground sta-

tions. In subset (2), the number of sites used for verification

was 480, accounting for 20 % of the total. Then, the data used

for the reconstruction process for subset (1) were created by

extracting meteorological station LST data at local overpass

times. For the verification process, six key areas where posi-

tive or negative trends were the most significant (i.e., shown

in the red ellipses a–f in Fig. 1 and Table 1) were selected as

a representative area. The data of the ground weather station

need to be checked manually because different stations are

maintained by different personnel. Occasionally, some data

may be abnormal, especially in remote sites due to instru-

ment aging and lack of maintenance or insufficient power

which causes data inaccuracy. All meteorological ground sta-

tion data were tested for temporal and spatial consistency,

which included identifying and rejecting extreme values and

Earth Syst. Sci. Data, 12, 2555–2577, 2020 https://doi.org/10.5194/essd-12-2555-2020



B. Zhao et al.: A land surface temperature data product for China 2559

outliers. It is worth noting that the key areas marked by red

ellipses contain site data from subset (1) and subset (2). Gen-

erally, there are more stations in the red ellipse than in the

sites used for verification in Table 1, especially in eastern

China where there are a large number of stations. The sur-

face types of most sites are bare land, grassland and agricul-

tural land. Elevation data with a 1 km resolution are obtained

from the NASA Space Shuttle Radar Topography Mission

(SRTM) V4.1 for reconstruction of cloud low-quality data

(http://srtm.csi.cgiar.org/, last access: 24 August 2018).

3.3 LST data restoration method

Although thermal infrared remote sensing technology can

quickly obtain large-area surface temperature information, it

can still be affected by factors such as clouds and rainfall.

It is difficult to fill data gaps caused by clouds in LST data

products based on satellite infrared imagery with data of the

same quality as the clear-sky LST observations. Therefore,

we create a reconstruction model that combines meteorolog-

ical station data and daily and monthly MODIS LST data to

reconstruct a high-precision monthly dataset that takes into

account the actual LST under both clear-sky and cloudy con-

ditions. The reconstruction model effectively preserves the

highly accurate pixels in the original daily and monthly data,

reconstructs only the low-quality daily data, and finally, re-

places low-quality pixels with the composite average pixel

value in the monthly data. To better describe the data pro-

cessing, Fig. 2 shows a summary flowchart for the recon-

struction of MODIS monthly LST data. The reconstruction

model we propose is divided into two general steps: LST

pixel filtering and LST data restoration. Low-quality pixel

values were first identified and set to missing values for all

input monthly LST images based on pixel quality filtering

(see Sect. 3.3.1 for details). Both missing pixels and low-

quality pixels are considered invalid pixels that need to be

reconstructed. For each invalid pixel in the monthly images,

we first determined the invalid pixels in daily LST images at

the same location for all days of the respective month, and

then we reconstructed these invalid daily pixels. The recon-

struction process for the invalid daily pixels is divided into

three steps (see Sect. 3.3.2 for details): (1) where possible we

filled invalid grid cells with co-located in situ observations

of the LST; (2) in case where in situ observations are lack-

ing, we employed the geographically weighted regression

(GWR) method to interpolate invalid pixels based on sim-

ilar pixels from multiple sources; and (3) the remaining in-

valid grid cells we filled with LST values reconstructed based

on regression of the elevation–temperature gradient. Finally,

after we obtained four temperature values corresponding to

the four products of MODIS LST every day, we averaged

over daily data of the respective month and replaced the in-

valid data in the original monthly LST product with the new

monthly LST value based on the reconstructed LST time se-

ries of that month.

3.3.1 Filtering of MODIS LST

MODIS LST data are retrieved from thermal infrared bands

in clear-sky conditions and contain many missing values

and low-quality values caused by factors such as clouds and

aerosols. Generally, the cold top surface of a thin or sub-

pixel cloud is difficult to detect, and the LST retrieved un-

der such conditions usually leads to an underestimation of

LST (Neteler, 2010; Markus et al., 2010; Jin and Dickinson,

2010; Benali et al., 2012). Moreover, other factors can also

contaminate the observation signal and cause the data to be

unavailable, such as aerosols, observation geometry and in-

strumental problems (Wan, 2014). MODIS surface temper-

ature products provide detailed product quality information,

which is very convenient for us to judge and identify.

Cloud cover is extensive and inevitable in daily weather

conditions. Statistical calculations were performed and

showed that missing values for daily data reached approxi-

mately 50 % for Terra and Aqua satellites. Figure 3 shows an

example representing the distribution of valid pixel values in

the daytime for winter and summer. The coverage of pixels

with missing data in the study area at 10:30 GMT+8 dur-

ing the daytime on 1 January 2017 and 1 July 2017 for the

Terra platform reached 44.9 % and 51.7 %, respectively. The

spatial gaps in the daily data are characterized by an arbi-

trary distribution and generally large aggregations. In fact,

the emergence of a large number of missing values every

day makes it difficult to reconstruct high-precision LST un-

der clouds using current techniques due to such a paucity of

information, especially for areas with complex climates.

However, the random occurrence of cloud-covered areas

has a much smaller impact on monthly composite products,

which makes these products a reliable source for building a

high-precision monthly LST dataset. Compared with daily

and 8 d composite data, spatiotemporal integrity and con-

sistency have been greatly improved in monthly compos-

ite LST data. However, for many regions, the lack of data

or quality degradation caused by clouds is still common

even in monthly composite data (Fig. 4). A reliable method

for removing low-quality pixels is implemented using the

data quality control information for MODIS LST data. The

data quality control information is statistically calculated and

stored in the corresponding quality assurance (QA) layer and

is represented by an 8 bit unsigned integer and can be found

in the original MODIS LST HDF files. Therefore, we use the

quality control labels for daily and monthly files as mask lay-

ers to identify low-quality pixels to ensure the quality of the

LST data. For monthly LST data, grid cells with QA layer la-

bels of “theaverageLSTerror< = 1 K”, “LST produced, good

quality” and “theaverageemissivityerror< = 0.01” are con-

sidered to be high-quality data, and the remaining pixels are

low-quality pixels and are set to missing values. Since there

are many pixels with missing value in the daily LST data

due to clouds (as shown in Fig. 3), in order to ensure a suf-

ficiently large number of pixels with daily LST values re-
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Figure 2. (a) The summary flowchart for reconstructing MODIS monthly LST data; (b) the detailed flowchart for reconstructing missing

daily pixels in (a).
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Table 1. Basic information for some of the meteorological stations in key zones.

Region Key zone ID North latitude (◦) East longitude (◦) Elevation (m)

I Northeast a 50758 47.10 125.54 249

I Northeast a 50658 48.03 125.53 237

I Northeast a 50756 47.26 126.58 239

I Northeast a 50656 48.17 126.31 278

I Northeast a 50548 49.05 123.53 282

II North China b 54525 117.28 39.73 5

II North China b 54527 117.05 39.08 3

II North China b 54518 116.39 39.17 8

II North China b 54511 116.19 39.57 52

II North China b 54624 117.21 38.22 7

II North China b 54623 117.43 38.59 6

IV South China c 59431 22.63 108.22 122

IV South China c 59242 23.45 109.08 85

IV South China c 59037 23.93 108.10 170

IV South China c 59228 23.32 107.58 108

IV South China c 59446 22.42 109.30 66

V Northwest d 53336 41.40 108.48 1275

V Northwest d 53446 40.34 109.50 1044

V Northwest d 53602 38.52 105.34 1561

V Northwest d 53513 40.48 107.30 1039

V Northwest e 51730 40.33 81.19 1012

V Northwest e 51716 39.48 78.34 1117

V Northwest e 51810 38.56 77.40 1178

V Northwest e 51811 38.26 77.16 1231

VI Qinghai–Tibet Plateau f 55279 31.48 89.40 4700

VI Qinghai–Tibet Plateau f 55591 29.42 91.08 3648

VI Qinghai–Tibet Plateau f 55598 29.15 91.47 3560

VI Qinghai–Tibet Plateau f 56106 31.53 93.48 4022

Figure 3. Spatial distribution of valid data for daily MODIS LST data from Terra during the daytime on (a) 1 January 2017 and

(b) 1 July 2017. Areas of missing data are blank, and no filtering is performed (see text for details).

quired for the reconstruction, only pixels with an LST error

>3 K are rejected and set to missing values in the daily LST

data. Our aim is to reconstruct the LST for all these grid cells

with invalid data. A summary flowchart of the process used

to construct the LST data model is schematically illustrated

in Fig. 2.

The spatial distribution pattern of invalid monthly Terra

LST data after filtering by the QA layer is shown in Fig. 4.

The low-quality pixel coverage rates for January and July

2017 were 23.45 % and 19.68 %, respectively. There are

more missing values in winter than in summer in the north-

eastern region, which may be affected by the confusion re-

sulting from large areas of snow cover and clouds in the win-
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Figure 4. Spatial distribution of valid data after pixel filtering (see text for details) for monthly MODIS LST data from Terra during the

daytime in (a) January and (b) July. Areas of invalid data are blank.

ter. However, the missing values are mainly concentrated in

southern China in summer, which is closely related to the

increased cloud cover in the hot summers in South China.

3.3.2 LST data restoration

In the reconstruction model, we first filter each monthly im-

age, and the locations of the cloud low-quality pixels (i.e.,

the missing and low-quality monthly pixels) are determined.

Then, for each month, we filter all daily images of the respec-

tive month by determining all missing and low-quality grid

cells. The valid pixels P̄i in the daily data are retained, the

low-quality daily data are reconstructed, and the low-quality

pixels in the monthly data are replaced with the average LST

derived from the gap-filled daily LST time series of the cor-

responding month (Fig. 2). Missing daily pixels are defined

as the target pixels Tt; the image containing the target pix-

els Tt is the target image. The reconstruction process for the

target pixels Tt is as follows.

When there are clouds in the sky, the surface temperature

of different surface types is not consistent with the temper-

ature of neighboring pixels during the day and night. Fac-

tors that affect reconstruction accuracy mainly include the

NDVI, elevation, latitude and longitude. Grid cells with in-

valid LST values were co-located with meteorological sta-

tions based on the latitude and longitude information. Invalid

pixels were filled using the values from valid in situ LST data

at the same location at the same time, and these filled pix-

els were marked. Then, for the invalid pixels without ground

meteorological station data, we used a combination of two

strategies to reconstruct the missing LST data to improve the

accuracy of the result. The first strategy identified the most

similar pixels by using adaptive thresholds and reconstructed

them by using a GWR method.

GWR is a common and reliable method for estimating

missing pixels, which quantifies the contribution of each sim-

ilar pixel to contaminated pixels. This method assumes that

similar pixels that are spatially adjacent to the target pixel are

close in the spectrum and should be given more weight. Due

to the high temporal variability in thermal radiation emit-

ted from the land surface and atmospheric state parameters,

satellite sensors that measure the thermal radiation energy

from different phase images at the same locations often pro-

duce different values even when the same thermal infrared

sensor is used. Some of the most common regular changes

in surface features, such as the vegetation spectrum changes

due to plant growth, can be predicted using auxiliary infor-

mation of surface meteorological observation stations.

Because the factors that influence surface temperature

(vegetation cover, sun zenith angle, microrelief, etc.) vary

greatly among different regions, the differences in adjacent

pixels in different areas may also vary greatly. Thus, there

will be large deviations in the similar-pixel decision criteria

if a fixed similarity threshold is used. Here, we use an adap-

tive threshold ϕτ to determine similar pixels for each invalid

pixel (Eq. 3). The adaptive threshold ϕτ calculated from the

standard deviation indicates the local area smoothness. The

local area is a certain size area centered on similar pixels,

which is located in the three reference images. The closer the

pixel is, the more similar the environment is, so the smoother

the local area will be. For example, the j th valid pixel in the

target image is determined to be a similar pixel to the tar-

get pixel i only when the relationship described in Eq. (2)

is satisfied in the reference image τ . Simultaneously, similar

pixels were determined based on all valid pixels in the image

rather than on a sliding window because missing values are

often arbitrarily clustered in a large area rather than scattered.

|P τ
s − P τ

t | ≤ ϕτ , (1)

ϕτ =

√

∑n

i=1
(P τ

s − ε)2, (2)

where P τ
s and Pτ

t are the values of pixels corresponding to

the position of the similar pixel and the target pixel in the

reference image, respectively. ϕτ is the threshold used to de-

termine similar pixels. ε is the mean value of all pixels in the

local area. τ is the reference image (value = 1, 2, 3). Here,
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we set the range of the local area to 5 pixels by 5 pixels cen-

tered on the target pixel (Zeng et al., 2013). In this paper, the

number of similar pixels to the target pixel in the target image

should be greater than 4 to apply the GWR method to reduce

the error due to an insufficient number of similar pixels.

After determining similar pixels, the invalid LST values

(at the target pixels) are reconstructed through GWR. In the-

ory, LST data from meteorological stations are the most reli-

able record, even in the case of thick cloud coverage. If there

is ground observation site data, similar pixels are obtained

directly from ground stations which are the most representa-

tive and can better reflect the LST under clouds than under

clear-sky conditions. In the process of reconstructing missing

pixels, the regression weight coefficient of a similar pixel is

determined by its Euclidean distance from the target pixel. In

addition, we assign a related weight multiplier to the marked

ground station data based on the GWR. After selecting some

of the marked pixels as experiments, it was found that the

target pixels could be more accurately estimated when the

relative multiweight values of the ground stations were set to

3 in this paper. Therefore, the weighting coefficients of simi-

lar pixels are determined by Eqs. (5) and (6).

D =

√

(x − xt)
2 + (y − yt)

2, (3)

Wi =

Mc

Di
∑m

i=1
Mc

Di
+

∑n
j=1

Mg

Dj

, (4)

Wj =

Mg

Dj

∑m
i=1

Mc

Di
+

∑n
j=1

Mg

Dj

, (5)

where D represents the Euclidean distance from the similar

pixel (i, j ) to the target pixel t and x, y, xt and yt describe

the locations of the similar pixel and target pixel. i and j rep-

resent similar pixels used to estimate the low-quality LSTs, i

is a valid pixel, and j is a pixel assigned by the ground sta-

tion. Wi and Wj describe the weight that similar pixels i and

j contribute to the target pixels, respectively. m is the num-

ber of similar pixels that are not low-quality as assigned by

clouds, and n is the number of similar pixels that are assigned

by ground stations. Mc and Mg represent the weight coeffi-

cients of clear-sky pixels and ground station assignment pix-

els, respectively. In this paper, Mc and Mg are set at 1 and 3,

respectively. Therefore, the GWR method can be represented

as follows.

Tt =
∑m

i=1
Wi · Ti +

∑n

j=m+1
Wj · Tj , (6)

where Tt is the reconstructed LST value of a target pixel, Ti

and Tj represent LST values for the similar pixel i and j , and

the sum of Wi and Wj values is 1.

The elevation–temperature gradient regression method

was used to reconstruct the remaining low-quality pixels that

did not have enough similar pixels. In general, the elevation

has a particularly significant effect on the spatial variation

in the LST at the regional scale. Elevation is recognized as

the most important factor that characterizes the overall spa-

tial trend in LST (Sun et al., 2016; NourEldeen et al., 2020).

DEM data and LST data are used to construct linear regres-

sion relationships for invalid pixels based on the clear-sky

pixels in the neighborhood of a certain window size; these

data are then used to predict the missing-value pixels by lin-

ear interpolation (Yan et al., 2020). After several simulations

of the experimental pixel window size, the noise was found to

be minimized when a sliding window of 19 pixels by 19 pix-

els was used, and this window size was considered to have

the best complement value.

Ti = α × hi + β, (7)

where Ti is the surface temperature data after interpolation

(unit – ◦C); hi is the elevation value of pixel i (unit – m);

α is the influence coefficient of the elevation on the surface

temperature, which is the regression coefficient; and β is the

estimated intercept. Finally, we accurately crop the image to

a China-wide image to ensure that the sliding pixel window

reaches the edge of the study area.

3.4 Analysis of the LST time series trend

In this study, the slope of a linear regression describes the rate

of LST cooling or warming and is calculated by Eq. (8). The

slope value and correlation coefficient (R), calculated with

Eq. (9), were selected to quantify the temporal and spatial

patterns in the LST variations.

Slope =

∑n
i=1(iTi) − 1

n

∑n
i=1i

∑n
i=1Ti

∑n
i=1i

2 − 1
n

(
∑n

i=1i)
2

, (8)

R =
n
∑n

i=1(iTi) −
∑n

i=1i
∑n

i=1Ti
√

n
∑n

i=1i
2 − (

∑n
i=1i)

2

√

n
∑n

i=1T
2
i − (

∑n
i=1Ti)2

, (9)

where i is the number of years, Ti is the average LST of year

i, and n is the length of the LST time series; here, n is 15.

A positive slope indicates an increase in LST (warming); a

negative slope indicates a decrease in LST (cooling). The R

values range from −1 to 1. An R value greater than 0 means

that the LST is positively correlated with the time series, and

an R value less than 0 means that the LST is negatively corre-

lated with the time series. Meanwhile, the larger the absolute

value of R, the stronger the correlation with the time series

changes.

4 Results

MODIS exhibits good performance in retrieving LST data,

which has been verified by various studies (Wan et al., 2004;

Wan, 2008, 2014; Wan and Li, 2011). Furthermore, to bet-

ter evaluate the accuracy of the new dataset, we performed
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verification for the original data, low-quality data and recon-

structed data in different regions of China. In this study, three

statistical accuracy measures are used to evaluate the accu-

racy of the calibration: the square root of the Pearson coeffi-

cient (R2), root mean square error (RMSE) and mean abso-

lute error (MAE). In addition, we use the reconstructed data

products to perform application analysis to indirectly prove

the accuracy of the data and their practical application value.

4.1 Evaluation of the original product

We conducted a comparative analysis based on the dis-

tribution of six natural subregions (I, II, III, IV, V and

VI) in Fig. 1. Figure 5 shows scatter diagrams relating

ground station data and original MODIS LST monthly data

(MOD11C3–MYD11C3) without QA filtering. It can be seen

from Fig. 5 that for each region, the deviation of some points

causes the distribution of points to be more discrete. Valida-

tion using ground observation data shows that the root mean

square error (RMSE) ranges from 1.39 to 1.61 ◦C, the mean

absolute error (MAE) varies from 1.25 to 1.52 ◦C and the

Pearson coefficient (R2) ranges from 0.91 to 0.98.

4.2 Evaluation of the new product

In order to separately evaluate the improved accuracy of

the low-quality area pixels of MODIS LST monthly prod-

ucts, we made a comparative analysis by partition. Figure 6

shows scatterplots of the low-quality MODIS LST data and

reconstructed results versus their corresponding ground sta-

tion data which show the accuracy comparison of low-quality

pixels before and after reconstruction more clearly. The de-

tailed comparative analysis of the partitions can be seen

from Fig. 6, showing that the overall result between the re-

constructed MODIS LST data and the ground station data

presents a better linear relationship, with more clustered dis-

tribution on both sides of the 1 : 1 line. The accuracy of the

reconstructed data in different low-quality regions is that the

root mean square error (RMSE) ranges from 1.52 to 1.65 ◦C,

the mean absolute error (MAE) varies from 1.4 to 1.51 ◦C

and the Pearson coefficient (R2) ranges from 0.94 to 0.98,

which is improved by more than 0.5 ◦C compared with the

original value.

Figure 7 is an overall evaluation of the new dataset, which

shows the statistical results of the difference between the two

types of data in the six natural subregions (shown in blue in

the scatterplot). According to the scatterplots of the ground

station data and the reconstructed monthly MODIS LST data

shown in blue in Fig. 7, we employed a correction model that

uses the results of linear regression analysis between the two

datasets to further improve the accuracy. The goal of the cali-

bration model is to reduce or eliminate the combined error in-

troduced by various variables. Therefore, the six subregions

with different climatic conditions are corrected separately to

obtain better calibration results for the study area. Addition-

ally, to eliminate contrasts at the boundaries among the six

regions, smooth constraints are imposed on some edge pixels

with significant differences to guarantee consistency among

the regions. The comparisons of the corrected LST data with

the ground station data are indicated by the gray points in

Fig. 7. In this study, the main reason for adopting the re-

gression analysis model is the reality that a linear model can

further improve the robust reconstruction results that have

been obtained through a large amount of work. The results

show that the model reconstruction results are highly consis-

tent with the ground station data; thus, the problem of un-

derestimation of MODIS LST data in some areas has been

reduced.

All subregions showed good agreements between MODIS

LST and meteorological station data. The R2 values varied

from 0.93 to 0.99, with an average of 0.97. The MAE varied

from 1.23 to 1.37 ◦C, with an average of 1.30 ◦C. The RMSE

ranged from 1.24 to 1.58 ◦C, with an average of 1.39 ◦C. A

relatively large RMSE between the reconstructed LST and

ground-based LST appeared in some sites in the Qinghai–

Tibet Plateau region, indicating that the temperature exhib-

ited great spatial heterogeneity over the complex terrain. As

shown in Fig. 1, there are relatively few meteorological sta-

tions in western China. Under the same conditions, the accu-

racy in western China is lower than that in areas with dense

weather stations when using surface meteorological stations

to reconstruct LST values under cloudy conditions. The east

and south of China are connected to the Pacific Ocean, so

the amount of water vapor (clouds) in the sky is higher than

in the west (like in Figs. 3 and 4). In this case, the number

of days in which LST values can be obtained from the re-

mote sensing images in a month is much smaller in eastern

China than in western China. In this study, the accuracy eval-

uation is based on the monthly scale. The accuracy is mainly

determined by the number of days of effective pixels on the

monthly and annual scales, and our analysis indicates that

the more days of available pixels corresponding to the pixels

on the monthly scale, the higher the accuracy. These results

indicate that the reconstructed MODIS LST dataset is robust

and accurate due to its high consistency with the in situ data.

Therefore, we believe that the accuracy of LST data can be

improved by this method.

To further understand the credibility of the data and clar-

ify the limitations of the use of this method, we further assess

the performance in terms of the seasonal bias and compare it

with the original seasonal LST data. Verification ground sta-

tions in representative areas are selected to help illustrate the

distribution of the error in the reconstructed data. Six key

zones are identified, corresponding to the areas a, b, c, d, e

and f shown by the red ellipses in Fig. 1, and an overview

of the ground stations can be found in Table 1. The six key

zones are selected, including the three most significant re-

gions for warming (b, d and f), the two most significant re-

gions for cooling (a and c) and the zone located in Xinjiang

Province (see Fig. 6a for details). Zone (a) located in the
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Figure 5. Scatter diagrams of original MODIS LST monthly data (MOD11C3–MYD11C3) against ground station data (N is the number of

datasets); the statistical accuracy measures (R2, RMSE and MAE) are also indicated.

Figure 6. The scatter diagrams of the low-quality MODIS LST data and reconstructed results versus their corresponding ground station data

in six natural subregions (I, II, III, IV, V and VI). The gray points indicate low-quality LST pixel values in the original MODIS LST data.

The blue points represent the values in the new LST dataset, and the statistical accuracy measures (R2, RMSE and MAE) are also indicated.

Northeast Region and zone (b) located in the North China

Region experienced the strongest negative trend and signif-

icant warming, respectively. In particular, special attention

has been given to the area around the Taklamakan Desert (e)

in Xinjiang, which has complex terrain and extensive hetero-

geneity.

Seasonal-scale verification was performed using the RM-

SEs between the MODIS data (including the original LST

and reconstructed LST data) and ground-based LSTs for

comparison in the six key zones, as shown in Table 2. The

original MODIS monthly LST data were used directly with-

out filtering quality flags. For the original MODIS LST im-
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Figure 7. The scatter diagrams in six natural subregions (I, II, III, IV, V and VI) between the ground station data and the monthly MODIS

LST data. The blue points represent the verification results of the reconstructed MODIS LST, and the statistical accuracy measures (R2,

RMSE and MAE) are also indicated. The results of the corrected linear model are indicated in gray.

ages, we averaged the LST data of the month corresponding

to the season and obtained the seasonal LST images. The pix-

els with missing LST values in original MODIS LST images

for the corresponding months of the season were not used

in the verification process. Therefore, if there is no missing

value for the LST pixel corresponding to the site, each sta-

tion can have a maximum of 15 values in each season. Com-

pared with that of the original LST, the average RMSE of

the reconstructed LST data decreased by 18 % from 1.79 to

1.46 ◦C. Both datasets exhibited the largest RMSE in sum-

mer and the smallest in autumn, indicating that the original

and reconstructed LST data have highly consistent seasonal

patterns. For the reconstructed LST data, we further found

that the RMSE values at some sites in the summer were sig-

nificantly higher than those at other sites. The regions that

exhibited high RMSE values were mainly distributed in west-

ern regions (Xinjiang, Inner Mongolia and the Qinghai–Tibet

Plateau), while the values in the other three regions were rel-

atively low. The main reason for this difference may be that

there are relatively few ground observation sites and complex

terrain in the western region. The average RMSE in autumn

was the lowest at 1.07 ◦C. The winter RMSE ranged from

0.04 to 3.81 ◦C, with an average of 1.45 ◦C. The distribution

of the RMSE varied greatly between the eastern and western

regions at the seasonal scale. The maximum RMSE values

for all stations in the eastern typical zones (i.e., key zone a in

the Northeast Region I and key zone b in the North China Re-

gion II) occurred in the cold winter, while the highest values

for most sites in the western region occurred during the hot

summer months (i.e., the remaining four zones). At the same

time, the comparison results show that the mean RMSE was

significantly higher in the western region than in the eastern

region (mean 1.04 ◦C in eastern regions I and II and 1.69 ◦C

in western regions IV, V and VI). A large RMSE between

the reconstructed LST data and the ground-based LST data

appeared in some locations in Inner Mongolia (i.e., key zone

e) in the Northwest Region, further indicating that we need

to arrange more ground meteorological observation stations

in these areas if we want to further improve the accuracy.

We also note that the selected ground stations shown in

Table 2 located in six key zones are examples of where the

local LST warming or cooling rate changed by more than

the average rate, and these areas actually include areas with

greater terrain complexity. Moreover, the examples indicate

that the reconstruction model proposed here is effective even

in the areas of complex topography.

The verification results show that the dataset has rea-

sonable consistency with the in situ measurements, indicat-

ing that the interference of cloud coverage is well elimi-

nated. The dataset obtained after reconstruction is a large-

scale, long-term, unique surface temperature dataset because

it eliminates low-quality pixels caused by factors such as

cloud disturbance and achieves complete coverage of the en-

tire study region. The accuracy and spatiotemporal continu-

ity of this dataset are much better than those of the original

MODIS monthly data. Moreover, in this dataset, the ground

surface temperatures under cloud coverage are retrieved in-

stead of reconstructing the LST under clear-sky conditions,
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Table 2. RMSEs of seasonal LST between monthly LST data (including the original LST data and reconstructed LST data) and ground-based

LST data (Orig. indicates original LST values at the ground stations; Recon. indicates the reconstructed LST values at the ground stations).

Region Key zone ID Spring Summer Autumn Winter

Orig. Recon. Orig. Recon. Orig. Recon. Orig. Recon.

I Northeast a 50758 2.11 1.48 1.36 1.23 1.16 0.61 3.80 3.81

I Northeast a 50658 2.33 1.03 1.61 0.63 0.29 0.27 4.32 3.20

I Northeast a 50756 3.51 0.23 1.03 0.43 0.51 0.26 3.91 3.52

I Northeast a 50656 0.65 0.65 0.90 0.92 0.42 0.04 3.63 3.67

I Northeast a 50548 0.82 0.89 1.09 0.61 0.51 0.40 0.15 0.15

II North China b 54525 3.11 2.26 3.30 2.23 2.11 1.51 2.11 0.94

II North China b 54527 1.30 1.11 1.24 1.25 0.93 0.54 2.36 0.14

II North China b 54518 3.64 1.64 0.52 0.51 0.45 0.15 0.71 0.04

II North China b 54511 1.06 1.26 0.33 0.32 0.50 0.66 1.07 1.27

II North China b 54624 1.99 1.55 1.15 0.49 0.84 0.33 0.40 0.46

II North China b 54623 0.13 0.06 0.48 0.17 1.31 1.06 2.65 2.02

IV South China c 59431 1.71 2.73 0.12 0.06 1.05 1.02 2.91 2.91

IV South China c 59242 2.0 1.08 2.52 1.86 0.03 0.09 2.91 2.59

IV South China c 59037 1.08 0.73 1.26 0.94 0.78 0.78 1.00 1.01

IV South China c 59228 0.92 0.38 1.99 1.75 1.61 0.84 0.75 0.28

IV South China c 59446 2.01 1.30 0.97 0.78 0.49 0.49 2.40 2.39

V Northwest d 53336 3.88 3.88 3.04 3.04 3.53 2.81 1.90 1.82

V Northwest d 53446 2.00 2.01 3.78 3.18 1.96 1.65 0.35 0.35

V Northwest d 53602 4.48 4.28 3.91 3.75 3.97 3.47 1.65 1.65

V Northwest d 53513 1.55 1.48 5.33 5.15 5.01 4.93 2.04 2.24

V Northwest e 51730 3.01 2.97 4.09 5.08 1.48 1.06 2.63 2.10

V Northwest e 51716 0.80 0.75 0.47 0.15 0.74 0.09 0.66 0.32

V Northwest e 51810 2.33 1.29 1.20 0.76 0.33 0.32 1.24 0.28

V Northwest e 51811 0.57 0.57 0.52 0.90 0.62 0.36 1.34 0.39

VI Qinghai–Tibet Plateau f 55279 3.63 3.44 1.37 1.74 1.83 1.45 0.99 0.99

VI Qinghai–Tibet Plateau f 55591 1.76 1.79 5.56 4.08 2.99 2.59 1.95 0.41

VI Qinghai–Tibet Plateau f 55598 0.85 0.85 4.37 4.62 2.95 2.91 0.63 0.69

VI Qinghai–Tibet Plateau f 56106 0.52 0.58 1.44 1.44 0.88 0.68 2.11 1.99

Average 1.92 1.51 1.96 1.72 1.40 1.12 1.88 1.49

which is better than the methods used in many previous stud-

ies.

4.3 The application of the product for trend analysis

We carried out a lot of analysis in 2017 and found that the

mean surface temperature of MODIS surface temperature in

four time periods is close to the annual mean surface tem-

perature because the observation time of the MODIS sensor

is symmetrical, so it is feasible to use the monthly mean in-

stead of the annual mean. Detailed derivation and compara-

tive analysis of how to calculate the average temperature can

be referred to in Mao et al. (2017). After LST data restoration

data reconstruction, four overpass times of images are ob-

tained each month, and seasonal and annual average spatial

data are also obtained by adding averages. Further, we obtain

the corresponding statistical values through equal-area pro-

jection calculations (Mao et al., 2017). Figure 8 shows the an-

nual average LST change in China over the period from 2003

to 2017. The LST fluctuations in China exhibited a general

weak positive trend. The sliding average of the 5-year unit

also showed a weakly fluctuating positive trend. The lowest

LST in China appeared in 2012 at 7.51 ◦C. The temperature

reached its highest value in 2007 (9.26 ◦C), but after 2012,

the LST remained high. This result coincides with the global

warming stagnation period that was noticed from 1998 to

2012, and the LST increased significantly after 2012. After

analyzing the LST on the seasonal and monthly scales, we

found that the cooling in 2012 mainly occurred in the win-

ter, as it was concentrated from January to February, and the

cooling in the southern region was more significant than that

in the other regions. In 2012, due to the abnormally strong

East Asian winter monsoon, there was abnormal rainfall in

the south in winter. Increased precipitation leads to increased

evaporation, which leads to a decrease in temperature. We

also observed a sudden decrease in LST in 2008 and a sudden

increase in 2013. In 2008, severe persistent low-temperature

snowstorm events in southern China in winter caused a de-

cline in LST. The warming in 2013 was mainly affected by
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the abnormally high temperatures in the middle and lower

reaches of the Yangtze River in summer. These indirectly

verify the correctness of the reconstructed data through me-

teorological events, indicating that the reconstructed data can

be used to analyze the long-term spatiotemporal changes in

surface temperature.

For a more detailed understanding of the spatial patterns

and regional differences in the LST changes in different ar-

eas, the rate of annual average LST change per pixel from

2003 to 2017 was calculated, and the slope (Fig. 9a), corre-

lation coefficient (R; Fig. 9b), frequency distribution of the

slope (Fig. 9c) and significance of the trend (P ; Fig. A1) are

shown. From 2003 to 2017, the annual average LST in China

showed a weakly positive trend. The LST exhibited a strong

positive trend in many regions in the north but negative trends

in the south, and the positive trend in the west was greater

than that in the east. Different regions showed significant re-

gional variations. Most of China, accounting for 63.7 % of

the study area, experienced a positive trend (slope>0; corre-

sponding to the pale yellow, yellow, light orange, orange and

red parts in Fig. 9c). Additionally, 20.8 % of the pixels expe-

rienced significant warming (slope>0.05, R>0.6, P<0.05).

The areas with significant warming were mainly concen-

trated in the Inner Mongolia Plateau and areas to the south

in the northwestern region. In contrast, 36.25 % of the areas

showed a negative trend (slope<0, depicted in green and four

shades of blue in Fig. 9c). The area with a significant cooling

pattern (slope<−0.075, R<−0.6, P<0.05) covered 6.53 %

of the study area, and these areas were mainly concentrated

in the northeast. More analysis including monthly and sea-

sonal changes can be found in the appendices.

5 Data availability

The dataset is needed for many geoscience studies, especially

for studying regional climate change and thermal environ-

ment changes, agricultural drought, crop yield estimation,

ecosystems, etc. The LST dataset in China is distributed un-

der a Creative Commons Attribution 4.0 License. The dataset

is named Land Surface Temperature in China (LSTC) and

consists of two files. One is 00_Metadata for LSTC.docx,

and the other is 01_LSTC.zip which contains data of LSTC.

Each folder has 12 images (one scene per month). Each

phase consists of two files, namely *.TIF (LSTC image) and

*.TFW (TIFF image coordinate information). More informa-

tion and data are freely available from the Zenodo repository

https://doi.org/10.5281/zenodo.3528024 (Zhao et al., 2019).

6 Discussion and conclusions

In 2013, the Intergovernmental Panel on Climate Change

(IPCC) noted that climate warming is clear (IPCC et al.,

2013). However, some areas of the Northeast Region (I) have

shown a significant warming hiatus over the past 15 years,

and these areas made the greatest contribution to China’s

negative trend. We observed widespread and relatively strong

cooling regimes in most areas (i.e., the slope value ranged

from −0.06 to less than −0.12; see Fig. 9a, b for details),

especially in the north of the Northeast Plain (slope< − 0.1,

R<− 0.8, P<0.05; see Fig. 9a, b and Fig. A1). In the North

China Region (II), the North China Plain and the Yangtze

River Delta in the south both exhibit obvious positive trends,

and both are densely populated areas. In addition, the Cen-

tral Southwest China Region (III) and the South China Re-

gion (IV) also showed negative trends, but the negative trend

was stronger in the South China Region (for most of the area,

slope<0.75, R< − 0.8, P<0.05) than in the Central South-

west China Region. In the Northwest Region (V), some ar-

eas in the Tian Shan and the Inner Mongolia Plateau ex-

perienced significant positive trends (slope>0.10, R>0.8,

P<0.01), and this area exhibited the strongest positive trend

in China over the past 15 years. In the Qinghai–Tibet Plateau

region (VI), the ecological environment is complex, and the

unique plateau terrain and thermal properties of the surround-

ing areas play an important role in regulating the surrounding

atmospheric circulation system. Because the Qinghai–Tibet

Plateau is extremely sensitive to climate change, it is consid-

ered to be a key area of global climate change. Therefore,

we have also paid close attention to the temperature changes

on the Tibetan Plateau. As shown in Fig. 9a and b, an ob-

vious positive trend was captured in the southern part of the

Qinghai–Tibet region (slope>0.08), which should be empha-

sized. Additionally, the positive trend in the Qaidam Basin in

the northeast is significantly higher (slope>0.1) than that in

the surrounding area.

Based on the Terra and Aqua MODIS land surface tem-

perature dataset and meteorological station data, a new LST

dataset over China was established for the period from 2003

to 2017. This dataset effectively removed approximately

20 % of the missing pixels or low-quality LST pixels from the

original MODIS monthly image. A detailed comparison and

analysis with the in situ measurements shows that the recon-

struction results have high precision, the average RMSE is

1.39 ◦C, the MAE is 1.30 ◦C and the R2 is 0.97. The data are

freely available at https://doi.org/10.5281/zenodo.3528024

(Zhao et al., 2019). We believe that this dataset will be of

great use in research related to temperature, such as high

temperature and drought studies, because it effectively over-

comes the limitations of reconstructing the real LST under

cloudy conditions in the past and achieves good spatiotem-

poral coverage.

The high-precision monthly LST dataset constructed for

China provides a detailed perspective of the patterns of

the spatial and temporal changes in LST. The LST dataset

was used to analyze the regional characteristics and capture

the variations in LST at the annual, seasonal and monthly

scales. Our results showed that the LST showed a slight

upward trend with a slope of 0.026 (approximately 63.7 %

and 20.80 % of the pixels underwent warming and signifi-
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Figure 8. Annual mean LST changes in China from 2003 to 2017.

Figure 9. Spatial dynamics of interannual change trends in LST from the slope (a) computed by Eq. (8), the correlation coefficient (b)

computed by Eq. (9) and frequency distribution of the slope (c) during 2003–2017. In panel (c), the different temperature trends (slope) are

divided into 10 subinterval ranges corresponding to the ranges in panel (a). The area to the left of the line AB represents the proportion of

the area that experienced cooling, and the area to the right represents the proportion that experienced warming.

cant warming, respectively). There were great regional dif-

ferences in the climate positive trend. The Northwest Re-

gion, the Qinghai–Tibet Plateau region and the North China

Plain experienced significant positive trends (i.e., the slope

ranged from 0.025 to greater than 0.1). The impacts of hu-

man activities on warming are prominent, such as the in-

crease in greenhouse gases and black carbon aerosol emis-

sions from urbanization and industrial and agricultural de-

velopment. Greenhouse gases absorb infrared longwave radi-

ation from the ground, which results in an increase in warm-

ing. Moreover, the coupling of greenhouse gases and mon-

soon systems can result in changes in the energy budget in

the monsoon region, which affect the intensity of monsoon

circulation. Additionally, the change in temperature in the

https://doi.org/10.5194/essd-12-2555-2020 Earth Syst. Sci. Data, 12, 2555–2577, 2020
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short term may be caused by the increase in aerosols such

as scattering aerosols and black carbon emitted along with

other atmospheric pollutants. Black carbon aerosol pollution

leads to heating of the air and a reduction in the cooling ef-

fect of solar radiation reaching the surface, resulting in local

or even global climate changes (Kühn et al., 2014). However,

scattering aerosols are expected to produce cooling effects by

absorbing and scattering solar radiation. Consequently, the

effect of human activities on global climate change is com-

plex. The impact of human activities on temperature trends

is expected to be especially pronounced in rapidly expand-

ing urban areas, such as North China and the Yangtze River

Delta.

Meanwhile, a negative trend was also observed in China:

most areas of the Northeast Region and South China Region

became colder, especially in the Songnen Plain in the mid-

dle of the region (i.e., slope = −0.11, R = 0.61, P<0.05).

Some areas in South China also showed a slight negative

trend (P<0.05). The interannual temperature changes indi-

cated that the daytime temperature changed more intensely

than the nighttime temperature, which may be closely re-

lated to changes in solar radiation and the release of large

amounts of greenhouse gases from human activities. Sea-

sonal changes are primarily driven by Earth’s rotation but are

also affected by monsoon changes, ocean currents and other

factors. The LST trends showed significant changes among

the different seasons. The positive trend in winter was more

significant than that in the other three seasons, especially in

the northwestern region of the arid and semiarid zone and

the Qinghai–Tibet Plateau. As a key parameter for different

research fields, such as simulating land surface energy and

water balance systems, the LST provides important infor-

mation for monitoring and understanding high-temperature

and drought conditions, which must be taken into considera-

tion for agricultural production and meteorological research.

Therefore, we believe that the LST dataset produced in this

study can be useful for drought research and monitoring and

can be further used for agricultural production and climate

change research.

The reconstruction strategy, which combines monthly data

with daily data, effectively solves the problem of reconstruct-

ing real LST data under cloud coverage with very limited in-

formation and improves the accuracy of the monthly data re-

construction results. Although the linear bias correction illus-

trated in Fig. 7 can improve the overall accuracy, for various

reasons, the temperature value is higher in some places and

lower than the real value in some places. Therefore, after cal-

ibration, there will still be places where the temperature value

is higher or lower than the true value, which is also affected

by the location and number of calibration model stations and

the representativeness. We believe that these datasets can be

applied to research regional agricultural ecological environ-

ments and to monitor agrometeorological disasters. On the

basis of large-scale remote sensing data, although we make

full use of site data to obtain as much data information as

possible, which improves the spatial and temporal continuity

of the data, the ground surface observation data still have a

representative problem, and the accuracy still needs to be im-

proved in some places. The verification of temperature prod-

uct data using site observation data also faces the representa-

tive problem, and there are still uncertainties in accuracy ver-

ification. To overcome this difficulty, we should obtain more

ground station data; screen this information for all stations;

and only use data from those where surface conditions ad-

jacent to the station match, e.g., 90 % of the surface condi-

tions in the MODIS pixel. Another important step would be

to screen the station data to only use that set of observations

which has the highest quality and/or is based on a consistent

measurement technique. Of course, we can further improve

the accuracy by further dividing the area into smaller ones

and establishing more correction equations for different ar-

eas and different times.
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Appendix A: Day and night change analysis

To more specifically assess the interannual changes in LST,

we further analyzed the day and night trends in LST. The

spatial distribution of the average annual day and night LST

in the time series is shown in Fig. A2, and the correspond-

ing significance is shown in Fig. A3. During the day, the

positive trend mainly comes from the eastern part of North

China, the central and western parts of the northwest, and

the southern part of the Qinghai–Tibet Plateau. The annual

daytime positive and negative trends of LST in most re-

gions from 2003 to 2017 are significantly higher than those

in the nighttime. Thus, the average LST positive and nega-

tive trends can be attributed to changes during the daytime.

The temperature difference between day and night also in-

dicates that the trend of LST changes is more likely due

to factors such as daytime human production and sunshine

hours. The effects of changes in solar radiation on the near-

surface thermal conditions are the most pronounced. Among

these changes, the positive trend in the southern part of the

Qinghai–Tibet Plateau is obvious (slope>0.09). Duan and

Xiao (2015) found that since 1998, the amount of daytime

cloud cover in the southern part of the Qinghai–Tibet Plateau

has decreased rapidly, resulting in an increase in sunshine

hours. The increase in solar radiation during the day will di-

rectly lead to an increase in surface temperature, which is

an important factor leading to an increase in daytime tem-

perature. However, compared with the trend during the day,

the interannual temperature change trend at night is relatively

gentle and can be considered stable.

Figure A1. Significance of the spatial distribution of annual av-

erage LST trends based on an independent-samples t test in China

from 2003 to 2017. Note that the symbols ***, ** and * explain that

there are increasing or decreasing tendencies averaged over China

at the 99 %, 95 % and 90 % confidence level, respectively (same as

Figs. A3 and B2).
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Figure A2. Spatial dynamics of day and night LST change trends based on (a) slope and (b) correlation coefficient.

Figure A3. Distribution of diurnal LST change trend significance during 2003–2017.

Earth Syst. Sci. Data, 12, 2555–2577, 2020 https://doi.org/10.5194/essd-12-2555-2020



B. Zhao et al.: A land surface temperature data product for China 2573

Appendix B: Seasonal change analysis

In addition to analyzing the characteristics of the interan-

nual variation in LST, we also conducted an analysis of the

seasonal variation characteristics to further reveal the LST

variation patterns in detail (see Figs. B1 and B2). The vari-

ation characteristics are also described by the slope of the

change and the correlation coefficient (R) in Sect. 3.4. The

results show that there is a significant spatial difference be-

tween the seasonal surface temperature trends, reflecting the

effect of seasonal temperature changes on regional tempera-

ture changes. From 2003 to 2017, the positive trend in the

four seasons was most significant in winter, which exhib-

ited the largest warming area (accounting for 70 %), followed

by that in spring and summer, and the national average LST

change in autumn basically did not change. Compared with

the global warming hiatus that occurred from 1998 to 2002,

the positive trends in China showed large differences in the

four seasons (Li et al., 2015).

Specifically, in spring, the warming area is mainly con-

centrated in the northern areas (I, II and V), while a weak

negative trend is observed in the southern areas. The largest

positive trend over the northern areas appears in the Inner

Mongolia Plateau (slope>0.18, P<0.01). In addition, rapid

warming also occurred in the North China Plain in the east-

ern part of the North China Region (II; especially near Bei-

jing and some areas of Hebei Province, slope>0.12, R>0.6,

P<0.01).

As shown in Fig. B1, compared with the other two sea-

sons, both summer and autumn showed weak positive trends

throughout the country. In summer (Fig. B1, panels b1, b2

and b3), there were slight increasing trends in most areas of

China, while there were still negative trends in the North-

east Region (I; details in Fig. B1). Significant increasing

trends were mainly observed in the Qinghai–Tibet Plateau,

North China Plain, Inner Mongolia Plateau, Tarim Basin and

some areas in the north, with the largest positive trend in the

Qinghai–Tibet Plateau. In autumn, the negative trends were

mainly present in the Northeast Region (I) and the northern

Chinese Tian Shan in the Qinghai–Tibet Plateau region (VI).

In contrast, the Qinghai–Tibet Plateau was still controlled

by strong positive trends (near Lhasa city, slope = 0.09, R =

0.60, P<0.05), especially in the southern part of the Tang-

gula Mountains.

Of the areas, 69.4 % experienced warming in winter,

which is significantly higher than other seasons (details in

Fig. B2). Thus, winter is the most important source of inter-

annual increases in the average LST. The most remarkable

positive trends in winter were observed in the Northwest Re-

gion (V) and the Qinghai–Tibet Plateau region (VI).
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Figure B1. The interseasonal variability rates (slope) and correlation coefficients (R) of LST in spring (a), summer (b), autumn (c) and

winter (d) from 2003 to 2017: (a1), (b1), (c1) and (d1) are the spatial distributions of the slopes in the four seasons; (a2), (b2), (c2) and (d2)

are histograms of the slopes in the four seasons; and (a3), (b3), (c3) and (d3) are the spatial distributions of the correlation coefficients (R)

in the four seasons.
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Figure B2. Distribution of seasonal LST trend significance during 2003–2017.
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