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Q2A combined theoretical and experimental
investigation of the kinetics and dynamics of the
O(1D) + D2 reaction at low temperature†

Dianailys Nuñez-Reyes,ab Kevin M. Hickson, ab Pascal Larrégaray,ab

Laurent Bonnet, ab Tomás González-Lezana c and Yury V. Suleimanov Q3
de

The O(1D) + H2 reaction is a prototype for simple atom–diatom insertion type mechanisms considered

to involve deep potential wells. While exact quantum mechanical methods can be applied to describe

the dynamics, such calculations are challenging given the numerous bound quantum states involved.

Consequently, efforts have been made to develop alternative theoretical strategies to portray accurately

the reactive process. Here we report an experimental and theoretical investigation of the O(1D) + D2

reaction over the 50–296 K range. The calculations employ three conceptually different approaches –

mean potential phase space theory, the statistical quantum mechanical method and ring polymer mole-

cular dynamics. The calculated rate constants are in excellent agreement over the entire temperature

range, exhibiting only weak temperature dependence. The agreement between experiment and theory is

also very good, with discrepancies smaller than 26%, thereby validating the hypothesis that long-lived

complex formation dominates the reaction dynamics at low temperature.

1 Introduction

Atomic oxygen is an important species in the chemistry of the
interstellar medium,1 in planetary atmospheres2 and in
combustion.3 Oxygen atoms in their ground triplet state,
O(3P), participate in reactions which contribute to the Ox,
NOx, HOx and ClOx budgets of the Earth’s atmosphere4 and
radical–radical reactions such as O(3P) + OH - O2 + H are
important for the transformation of atomic to molecular oxy-
gen in interstellar clouds.5 Although oxygen atoms in their first
excited singlet state, O(1D), are characterized by a long radiative
lifetime,6 it is too short for these atoms to play a meaningful

role in the chemistry of the dense interstellar medium. In
planetary atmospheres, the photodissociation of oxygen bear-
ing molecules can yield high fractional abundances of O(1D)
atoms. In this respect, excited state atomic oxygen reactions
have a clear impact on the overall chemistry. A well-known
example is that of the reactions of O(1D) atoms with H2O, H2

and CH4 reaction above the Earth’s tropopause to form hydro-
xyl radicals that participate in the catalytic destruction of
stratospheric ozone. Surprisingly, there are relatively few
kinetics measurements of the O(1D) + H2 reaction and its
deuterated counterparts, with most previous experiments hav-
ing been performed at 300 K.7–12 Temperature dependent rate
constants have been recorded for the O(1D) + H2 reaction over
the combined 50–420 K range,13–16 but only room temperature
values exist for the other isotopologues. In contrast, the dyna-
mical aspects of the O(1D) + H2 reaction and its deuterated
counterparts have been studied experimentally17–27 and
theoretically18,20–22,28–47 on numerous occasions due to their
fundamental importance as examples of atom–diatom inser-
tion reactions involving deep potential wells. As large numbers
of bound quantum states are supported in these systems, the
application of exact quantum mechanical (QM) methods is
computationally expensive, particularly when several potential
energy surfaces (PESs) are involved. As a result, considerable
effort has been devoted to finding approximate theoretical
strategies which might adequately describe the dynamics of
these systems.
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One relatively simple approach that could be applied to such
systems is Mean Potential Phase Space Theory (MPPST).48 It
relies on the assumption of complex-forming dynamics for the
reaction, the states of the intermediate complex being statisti-
cally populated. Dynamical observables are then predicted from
the calculation of individual capture probabilities from the
reactant and product states. In MPPST, the inter-fragment
interaction is averaged over the Jacobi angle. It is thus assumed
to be isotropic so that capture probabilities can be described by
semi-classical two-body capture models,49 including quantiza-
tion of reactant/product states and tunneling through centrifu-
gal barriers.50,51

The statistical quantum method (SQM),52 also developed
under the assumption of complex-forming dynamics for the
reaction, involves the calculation of individual capture prob-
abilities by means of rigorous QM techniques on full ab initio

PESs. The application of both MPPST and SQM to a large list of
atom–diatom reactions53 have revealed their capabilities to
reproduce the main dynamical features observed both in
experiments and exact QM studies, thus showing the role
played by insertion mechanisms in the overall dynamics of
the corresponding reactive processes.

Ring polymer molecular dynamics (RPMD) rate theory is an
alternative approach that has been developed54 and extensively
benchmarked16,55–73 over the past decade. It is based on the
classical isomorphism between a quantum system and its n

classical copies forming a necklace and coupled to its nearest
neighbors via harmonic interactions. The real-time classical
dynamics of this necklace ‘ring polymer’ represents an ad hoc

idea of RPMD54,55 to calculate approximately real-time correla-
tion functions responsible for describing various dynamical
processes, including chemical reactions.56–58 Extensive studies
of elementary gas-phase reactions have shown56 that such
approximations allow QM effects of nuclear motions to be
captured precisely, providing reliable and accurate estimates
of thermal rate constants for different energy profiles along
chemical reaction paths and over a wide range of temperatures.

In this paper, we report a combined experimental and
theoretical investigation of the O(1D) + D2 reaction at low
temperature. There has been significant debate regarding the
dynamical aspects of the O(1D) + H2 reaction and isotopic
variants53 where reaction is thought to occur predominantly
over the ground state 11A0 PES through the formation of an H2O
intermediate, 703 kJ mol�1 below the reagent level. The precise
roles played by excited electronic states in different energy
regimes are thought to be relevant considerations to distin-
guish the mechanisms governing the overall reaction
dynamics. In a previous study of the O(1D) + H2 reaction,16

thermal rate constants derived by the RPMD method over the
11A0 and 11A00 PESs were shown to be in reasonably good
agreement with measured values down to 50 K. As the 11A00

surface was shown to contribute negligibly to the overall
reactivity below room temperature, these authors hypothesized
that the difference between measurements and the RPMD
results could be due to coupling between the 11A0 and 21A0

states. Indeed, precise QM wave packet (WP) calculations44 of

the O(1D) + H2 system have suggested that this nonadiabatic
pathway could contribute significantly to the overall reactivity.
For the O(1D) + D2 reaction, an analysis of OD product dis-
tributions from H(D)-Rydberg ‘tagging’ time-of-flight
experiments28 at collision energies within the range 2.0–3.2
kcal mol�1 revealed a transition between complex-forming
dynamics at lower energy to an abstraction process at higher
energy. Similarly, the quasi-classical trajectory (QCT) investiga-
tion of Aoiz et al.74 observed an increase in the backward
scattering component of the differential cross section (DCS)
for increasing collision energies (86.7–138.8 meV); a finding
which is indicative of the appearance of an abstraction type
mechanism and a larger contribution from the 11A00 PES. In this
sense, the experimental results presented here and the compar-
ison with theoretical methods designed to treat complex-
forming reactions, constitute a rigorous test of the overall
dynamics of the O(1D) + D2 reaction at low temperature.

On the theoretical side, the MPPST, SQM and RPMD meth-
ods were employed to describe the reaction dynamics over the
11A0 PES and to furnish thermal rate constants down to 50 K.
RPMD calculations were also performed over the 11A00 PES. In a
similar manner to our earlier investigation of the O(1D) + H2

reaction,16 these results confirm its negligible contribution to
the overall reactivity at room temperature and below. To
validate the theoretical approaches, rate constants were mea-
sured over the 50–296 K range using a supersonic flow reactor
by following the kinetics of O(1D) loss.75 Sections 2 and 3
describe respectively the experimental and theoretical methods
used in this work. The results are discussed in Section 4 and
our conclusions are presented in Section 5.

2 Experimental methods

All measurements were performed using a continuous super-
sonic flow (Laval nozzle) reactor. The experimental setup has
been described in earlier papers,76,77 while modifications that
allowed the kinetics of atom–molecule reactions to be studied
are described in more recent work.16,70,71,75,78–86 In an identical
manner to previous investigations of excited state atom
reactions,16,70,71,75,78,81,84–86 only Laval nozzles employing
argon were used for these experiments as a result of the fast
electronic quenching of O(1D) atoms by carrier gases such as
N2.

75 These Ar based nozzles allowed uniform supersonic flows
to be generated at specified temperatures of 50 K, 75 K and 127
K, with calculated densities in the range (1.26–2.59) � 1017

cm�3 and flow velocities between 419 and 505 m s�1. The
calculated and measured characteristics of the three nozzles
used in this work are given in Table 1 of Grondin et al. (2016).75

In addition to the low temperature experiments, kinetic mea-
surements were also performed at 296 K by removing the Laval
nozzle and by reducing the flow velocity, effectively using the
apparatus as a slow-flow reactor. Nevertheless, the flow velocity
(73 cm s�1) was still high enough to ensure that the gas in the
probe region was always replenished between laser shots.
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O(1D) atoms were generated in an identical manner to our
other recent studies of O(1D) reactivity16,75,85 through the
pulsed laser photolysis of ozone (O3) at 266 nm with an energy
ofB23 mJ. O(1D) atoms were detected through resonant pulsed
vacuum ultraviolet laser induced fluorescence (VUV LIF) at
115.215 nm via the O(1D) 3s 1D–2p 1D transition. The procedure
to generate tunable light at this wavelength by frequency
tripling has already been described by Grondin et al.75 Never-
theless, a change in the composition of the rare gas mixture
used in the tripling cell (75 Torr of xenon and 155 Torr of argon)
was found to yield approximately 30% higher fluorescence
signals compared to earlier work using 100 Torr of xenon and
230 Torr of argon. The present VUV LIF collection optics and
solar blind photomultiplier tube (PMT) are identical to those
used in the recent work of Hickson and Suleimanov.16

The output of the PMT was connected to a boxcar integrator
for signal processing and acquisition with the acquisition
electronics, lasers and oscilloscope being synchronized by a
delay generator operating at 10 Hz. Each time point consisted
of 30 individual laser shots, with at least 50 time intervals
recorded for each O(1D) decay profile. Time points recorded
with the probe laser firing at negative delays with respect to the
photolysis laser allowed the pre-photolysis baseline level (con-
sisting mostly of scattered light from the probe laser) to be
evaluated.

The gases used in the experiments O2 (99.999%), Ar
(99.999%), D2 (99.8%) and Xe (99.998%) were not purified prior
to use. All flows were controlled by calibrated digital mass flow
controllers. To derive rate constants for the O(1D) + D2 reaction
required a precise knowledge of the D2 concentration in the
supersonic flow. This quantity was determined from its flow
ratio (FD2

/Ftot) multiplied by the calculated total flow density. It
was always several orders of magnitude larger than the esti-
mated O(1D) concentration so that pseudo-first-order condi-
tions could be assumed for all measurements. Due to
inefficient gas-phase spin conversion, the D2 used in the
present experiments was characterized by a fixed ortho/para
ratio of 2 : 1 at all temperatures.

3 Theoretical methods
Statistical quantum mechanics

The SQM method has been used before in a series of investiga-
tions focused on complex-forming reactions.52,53,87,88 Assum-
ing that the reaction proceeds via the formation of an
intermediate species between reagents and products, the
state-to-state probability can be approximated using the follow-
ing expression:52

SJ
vjO;v0j0O0ðEÞ

�

�

�

�

�

�

2

�
pJvjOðEÞ � p

J
v0 j0O0ðEÞ

P

v00 j00O00

pJ
v00 j00O00ðEÞ

(1)

where vjO and v0j0O0 refer, respectively, to the initial and final
rovibrational state of D2, indicating the quantum numbers for
vibrational, rotational and third component of the angular
momentum; the pJ(E) quantities correspond to the probability

to form the complex from the initial state at the collision energy
E and for the total angular momentum J. The sum in the
denominator of eqn (1) runs for all energetically open rovibra-
tional states at the energy E for both reagent and product
channels. Using the above expression for the reaction prob-
ability, it is then possible to calculate the corresponding
integral cross section, svjv0j0(E) and then the thermal rate con-
stant:

kvj;v0j0ðTÞ ¼

ffiffiffiffiffiffiffi

8b3

pm

s

ð1

0

svj;v0j0ðEÞe
�bEEdE (2)

where we have defined b = (kBT)
�1 and the cross section

includes the 1/5 factor corresponding to the electronic partition
function.

Here, statistical calculations have been performed on the
ground 1A0 PES of Dobbyn and Knowles89,90 and the capture
probability calculation of eqn (1) has been achieved using the
time-independent propagation described in ref. 52 in a region
defined between Rc (the distance at which the D2O complex is
supposed to form) and Rmax (an asymptotic distance) with
values 1.9 Å (2.5 Å) and 27.8 Å (36.9 Å), respectively for reagents
(products). SQM calculations for both j = 0 and j = 1 initial
rotational states of D2 have been performed and total cross
sections have been calculated considering the usual 2/3 and 1/3
coefficients for the D2( j = 0) and D2( j = 1) populations respec-
tively, a ratio which describes reasonably well the actual experi-
mental conditions. The centrifugal sudden approximation52

provides good enough results in comparison with the
coupled-channel version of the SQM approach and it suffices
for the presently investigated collision energy range (10�5–
0.4 eV).

Mean potential phase space theory

MPPST is based on a semi-classical statistical approach for
atom–diatom reaction.91,92 It uses the same statistical assump-
tions for the intermediate complex states as the SQM method.
However, capture probabilities from the asymptotic semi-
classically quantized (v, j, l) states are computed in an approx-
imate manner. For barrierless processes, such as the one
studied here, the reactant/product channel anisotropies are
expected to be moderate. Consequently, the inter-fragment
potential might be assumed to be isotropic: anisotropy is
implicitly considered by averaging the ab initio PES over the
reactant g Jacobi angle in attractive regions for the 1A0 O(1D) +
D2 and OD + D channels.89,90 Capture probabilities are then
computed via a two-body capture model49 accounting for
possible tunneling through the radial effective potential
through the Wentzel–Kramers–Brillouin (WKB) model50,51

and used in eqn (1) and (2).48 A simplified classical mechanical
treatment of the orbital angular momentum leads to results in
quantitative agreement because of subtle compensation
between tunneling and quantum reflection.51 Besides, as the
process is highly exothermic (1.89 eV), the reaction cross-
section equals the intermediate complex cross-section so that
capture from the reactant is only needed if no information on

1

5

10

15

20

25

30

35

40

45

50

55

1

5

10

15

20

25

30

35

40

45

50

55

This journal is �c the Owner Societies 2018 Phys. Chem. Chem. Phys., 2018, 00, 1�11 | 3

PCCP Paper



the dynamical observables of the products is required (as is the
case for the rate constant calculations). It should be noted that,
because of the isotropic assumption for the inter-fragment
potential, the capture cross-section does not depend on the
D2 initial rotational state.

Ring polymer molecular dynamics

In the present study, we used the RPMD rate code developed by
one of us (YVS).93 The RPMD rate computational procedure is
well documented in previous studies57–59 and in a recent
review.56 Briefly, the Bennett–Chandler factorization94,95 is
used to avoid high computational expense of the direct trajec-
tories approach which can be prohibitive at low temperatures
and/or high energy barriers. The calculation is split into two
steps – the construction of the ring polymer potential of mean
force W(x) (or free energy) profile along the reaction coordinate
x defined using the formalism of two dividing surfaces
(1)56,57,59,93 and the ring polymer transmission coefficient k

(or recrossing factor) calculation (2). These steps are usually
performed sequentially to detect the maximum value of the free
energy during the first step and to initiate the recrossing factor
calculations from this point during the second step. This allows
recrossings to be minimized (thereby avoiding the issue of
converging small values of k) and the propagation time
required to achieve the plateau value of k to be optimized.
For thermally activated energy profiles, the free energy barrier
is located near the classical saddle point configuration while
for reactions of insertion type it is usually located prior to the
complex (deep well) and is due to the entropic factor.56

Theoretical RPMD rate constants were obtained using the
two lowest PESs 11A0 and 11A00 which possess barrierless and
thermally activated energy profiles, respectively. In the present
study, we employed the Dobbyn–Knowles surfaces.89,90 The
input parameters are summarized in Table S1 (ESI†) along with
the intermediate RPMD results such as the potential of mean
force (PMF) (Fig. S1, ESI†) and the transmission coefficient (Fig.
S2, ESI†) which are similar to the results previously obtained for
the O(1D) + H2 reaction.

16 PMFs for the 11A0 PES are nearly flat
before entering the complex-formation region at long range
while for the 11A00 PES they demonstrate free energy barriers
due to the thermally activated nature of the title reaction on
this excited PES thus explaining why its contribution decreases
dramatically with decreasing temperature. Plateau values of the
transmission coefficients for the 11A00 PES are achieved much
faster (after 0.4 ps, see Fig. S2, ESI†) than for the 11A0 surface for
which the transmission coefficients were propagated to longer
time (2 ps). This is a characteristic feature of barrierless
reactions with a deep well along the reaction path.56 The final
results of the present RPMD calculations are summarized in
Table S2 (ESI†).

4 Results and discussion

The possible complex-forming character of the O(1D) + H2

reaction has already been investigated by statistical

methods.45,46,52,53 The calculated rovibrational cross sections
and DCSs compared favourably with both exact QM and experi-
mental results at Ec = 56 meV, suggesting that the dynamical
features observed at this collision energy resulted predomi-
nantly from an insertion mechanism. A statistical description
of the dynamics below 150 meV was also performed in a
previous study of the O(1D) + H2 reaction, including a compar-
ison of rate constants derived by the SQM and MPPST methods
with exact QM and experimental results.45 An equivalent study
can be performed for the O(1D) + D2 system, comparing
statistical predictions with previous work. QM reaction prob-
abilities obtained by Pradhan et al.96 for a zero total angular
momentum J = 0 using the same 11A0 PES89,90 are reasonably
well described by the MPPST and SQM approaches as can be
seen in Fig. 1.

The statistical probabilities of 0.96–0.98 are only slightly
above the QM results. In Fig. 2 we present integral cross
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Fig. 1 Total reaction probability for O(1D) + D2 as a function of the
collision energy for zero total angular momentum (J = 0) (solid black line)
Pradhan et al.96 O(1D) + D2 (v = 0, j = 0); (red dashed line) MPPST method,
this work; (red solid line) SQM method, this work.

Fig. 2 Integral cross section for the O(1D) + D2 reaction as a function of
the collision energy. (solid black line) SQM method, this work; (solid
magenta line) MPPST method, this work; (solid blue line) WP results from
Sun et al.101 and experimental cross sections from Hsu et al.23 (red points
and dashed line). In the inset the same results on a logarithmic scale down
to lower energies.
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sections (ICSs) for the title reaction up to E0.25 eV collision
energy. The WP results by Sun et al.101 and the experimental
ICSs reported by Hsu et al.23 are also included for comparison.
Whereas both statistical approaches predict cross sections
which deviate from the observed behavior exhibited by the
measurements of Hsu et al.23 as the energy increases, both
SQM and MPPST calculations seem to improve on the apparent
deficiencies of the WP values of Sun et al.101 In fact, the
extension to low energies (10�4 eV) shown in the inset of
Fig. 2 reveals that present statistical cross sections display the
expected behavior as Ec decreases.

Fig. 3 shows experimental DCSs for the O(1D) + D2 reaction
at Ec = 0.104 eV (top panel) and 0.228 eV (bottom panel) taken
from Ahmed et al.97 and Alagia et al.,18 respectively.

The corresponding SQM and MPPST angular distributions,
also shown, agree well at lower collision energy (see top panel).
DCSs calculated with a QCT approach by Rio and Brandao32 at
the same energies (not shown here) were obtained using a
different PES98 and are slightly larger than present statistical
distributions. Although measurements were not performed at
the forward (901) and backward (1801) scattering directions, the
accord with the theoretical distributions over the rest of the
angular range is remarkable. Noticeable deviations are
observed however, at higher energy (0.228 eV – bottom panel
of Fig. 3). While no definitive statements can be made by
comparing the calculated absolute DCSs with a relative angular
distribution obtained through a transformation between the
laboratory and center of mass reference systems, these differ-
ences might be an indication of the onset of an abstraction
mechanism as the energy increases that cannot be properly
described using the statistical approaches (as seen with the

cross sections before). QCT calculations on both 1A0 and 1A00

PESs, on the other hand, reproduce experimental DCSs, show-
ing that excited electronic states clearly contribute to the
dynamics at higher energy.47,99 Nevertheless, a similar
description26 was not possible for even larger energies, 25.9
kJ mol�1 (0.268 eV), with the authors concluding that further
theoretical and experimental work was required.

On the experimental side, the O(1D) VUV LIF signal was
recorded as a function of time for a range of excess D2

concentrations and in the absence of D2. Two such decay
profiles are displayed in Fig. 4A for experiments conducted
with [D2] = 1.1 � 1015 cm�3 and without D2.

In the absence of D2, the O(1D) VUV LIF signal decays
exponentially to zero as a function of time through non-
reactive quenching collisions with the carrier gas Ar. When
D2 is added to the system, O(1D) atoms are removed from the
flow by reaction with D2 in addition to quenching by Ar. A
function of the type IO(1D) = IO(1D)0 exp(�k0t), where t is time and
IO(1D) and IO(1D)0 are the time dependent and initial O(1D) VUV
LIF intensities (which are proportional to the O(1D) concen-
tration) was used to perform a non-linear least-squares fit to the
data. This allowed the pseudo-first-order rate constants for
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Fig. 3 Differential cross sections for the O(1D) + D2 reaction at 0.104 eV
(top) and 0.228 eV (bottom) collision energy. Black lines are present SQM
results, blue lines are present MPPST results and red lines are experimental
results from Ahmed et al.97 (top) and Alagia et al.18 (bottom), conveniently
scaled here to match the theoretical values at the sideways scattering
direction, 90 degrees.

Fig. 4 (A) O(1D) VUV LIF signal as a function of time at 50 K. (red solid
circles) [D2] = 1.1 � 1015 cm�3; (blue open circles) without D2. The fits are
represented by solid blue and red lines using an expression of the form
IO(1D) = IO(1D)0

exp(�k0t). (B) Measured pseudo-first-order rate constants as
a function of [D2]. (red solid circles) 296 K experiments; (blue solid squares)
50 K experiments. Error bars were derived from single-exponential fits to
the individual O(1D) decays and are cited at the level of a single standard
deviation. Second-order rate constants were derived from weighted fits to
the data (solid red and blue lines).
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O(1D) removal, k0, to be extracted from the time constants of the
decays. In the present experiments, k0 is essentially equal to the
sum of two contributions (see Grondin et al.75 for a more
detailed analysis), k0 = kO(1D)+Ar[Ar] + kO(1D)+D2

[D2] where kO(1D)+Ar
and kO(1D)+D2

are the second-order rate constants for O(1D)
removal by Ar and D2 respectively. Plotting k0 as a function of
[D2] thus allows us to determine kO(1D)+D2

from a weighted linear
least-squares fit to the data. Representative second-order plots
obtained at 296 K and at 50 K are shown in Fig. 4B and at 127 K
and 75 K in Fig. S3 (ESI†). In these examples, the large y-
intercept value represents the quenching contribution of the
carrier gas Ar, kO(1D)+Ar[Ar]. The measured second-order rate
constants are listed in Table S3 (ESI†) and displayed as a
function of temperature in Fig. 5 alongside the present theore-
tical results and earlier work.

There are several earlier room temperature measurements of
the rate constant for the O(1D) + D2 reaction.7,12,24,100 The
experimental rate constant of (1.13 � 0.11) � 10�10 cm3 s�1

determined at 296 K in the present work is in excellent agree-
ment with all but one of these previous investigations.7 Con-
sidering the error bars, the present rate constants are found to
be independent of temperature over the 50–296 K range; in
good qualitative agreement with our recent investigation of the
O(1D) + H2 reaction over the same range.16 Fig. 5 also contains
the results of previous theoretical investigations of the title
reaction.96,101 Although the results of Pradhan et al.96 were
obtained by means of a J-shifting approximation, the good
agreement between the present experimental results and both
the QM rate constants of Pradhan et al.96 and all the approx-
imate theoretical approaches employed here strongly supports
the involvement of a long-lived intermediate complex in the
dynamics of the O(1D) + D2 reaction in this low temperature
regime. Interestingly, the rate constants derived by Pradhan

et al.96 are approximately 10% lower than the experimental
ones, with an identical difference having also been observed in
the case of the O(1D) + H2 reaction.

16,102

As rate constants have already been measured for the
O(1D) + H2 reaction over the same temperature range and
calculated using all three theoretical methodologies employed
here,16,45 we can also evaluate the temperature dependent
kinetic isotope effect (KIE) (defined as the ratio of the rate
constants, kO(1D)+D2

/kO(1D)+H2
, at a given temperature). The

derived KIE values are compared with previous experimental
and theoretical work for these systems in Fig. 6.

The present experimental and theoretical KIE values agree
very well with the experimental value of 0.81 determined by Hsu
et al.23 at higher equivalent temperatures. They are also in
excellent agreement above 100 K with the previous theoretical
values derived from the ratio of the rate constants obtained by
the Sun et al.101 and Lin and Guo44 QMWP investigations of the
O(1D) + D2 and H2 reactions respectively over three PESs. While
the experimental KIE remains constant down to 50 K, the QM
WP KIE increases dramatically below 100 K. This discrepancy
could be a sign of convergence issues in either or both QM WP
studies at low collision energies. In contrast, the KIE derived by
Pradhan et al.96,102 using a time independent QMmethod and a
J-shifting approximation is in excellent agreement with the
present experimental and theoretical ones over the entire
temperature range.

The comparisons shown in Fig. 5 and 6 between the rate
constants (KIE values) derived by exact QM methods and the
equivalent values derived by the three theoretical approaches
applied here validate the use of these statistical-based and
approximate QM methods for an accurate description of the
dynamics of complex-forming insertion type reactions in the
low temperature regime. The good performance of these clas-
sical and statistical approaches suggest that alternative

1

5

10

15

20

25

30

35

40

45

50

55

1

5

10

15

20

25

30

35

40

45

50

55

Fig. 5 Rate constants for the O(1D) + D2 reaction as a function of
temperature. Experimental values: (green inverted open triangle) Heidner
and Husain;7 (blue open square) Davidson et al.;100 (black solid square)
Matsumi et al.;24 (black open triangle) Talukdar and Ravishankara;12 (red
solid circle) this work. Theoretical values: (dashed dotted black line) QM
results of Pradhan et al.;96 (dotted black line) QM results of Sun et al.;101

(solid red line) this work, MPPST method; (dashed red line) this work, SQM
method; (red open circles) this work, RPMD method.

Fig. 6 Kinetic isotope effect (KIE), kO(1D)+D2
/kO(1D)+H2

, as a function of
temperature. Experimental values: (black solid square) Hsu et al.;23 (black
open triangle) Talukdar and Ravishankara;12 (red solid circle) this work.
Theoretical values: (dashed dotted black line) QM results of Pradhan
et al.;96,102 (dotted black line) QM WP results of Sun et al.101/QM WP
results of Lin and Guo;44 (solid red line) this work, MPPST method; (dashed
red line) this work, SQM method; (red open circles) this work, RPMD
method.
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methods such as the statistical QCT method proposed by Aoiz
and coworkers103,104 should also be able to describe the main
dynamical features of the title reaction over this temperature
range. While such agreement is extremely encouraging, the
present and previous calculations all slightly underestimate the
measured rate constants for both the O(1D) + D2 and O(1D) + H2

reactions at low temperature. These discrepancies could have
several possible origins including deficiencies in the PESs used,
or they might be due to convergence issues or approximations
used during the calculations. Alternatively, such differences
could indicate the presence of nonadiabatic couplings in these
systems that are not considered by the present calculations.
Future work should focus on the inclusion of a correct treat-
ment of nonadiabatic interactions to improve further the
agreement between experiment and theory. A possible strategy
may comprise calculations including Coriolis coupling between
the 1A0 and 1A00 PESs, as described by Drukker and Schatz42 for
the case of the O(1D) + H2 reaction, besides the nonadiabatic
contribution coming from the 2A00 surface.

5 Conclusions

This work presents an experimental and theoretical investiga-
tion of the dynamics and kinetics of the gas-phase O(1D) + D2

reaction. On the experimental side, a supersonic flow reactor
was used to attain temperatures as low as 50 K. O(1D) atoms
were produced and detected directly in the cold flow by pulsed
laser photolysis and pulsed laser induced fluorescence meth-
ods respectively. On the theoretical side, three conceptually
different methodologies were used to examine the dynamics of
the title reaction – Statistical QuantumMechanics (SQM), Mean
Potential Phase Space Theory (MPPST) and Ring Polymer
Molecular Dynamics (RPMD). The results of both the SQM
and MPPST calculations confirm that the reaction can be
treated statistically and that the dominant mechanism at low
temperature involves complex formation through O(1D) inser-
tion into the D–D bond. Thermal rate constants derived by
these two methods are in good agreement with the measured
values. Rate constants calculated by RPMD, a more recently
proposed method that has no prior assumptions regarding the
reaction mechanism, were also in good agreement demonstrat-
ing the suitability of this technique for the investigation of
insertion reactions down to low temperature. It is argued that
the slight discrepancies between theoretical and experimental
results could arise either from deficiencies in the present
calculations such as approximations or due to inaccuracies in
the underlying potential energy surface, or from nonadiabatic
effects that are not considered here.
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20 F. J. Aoiz, L. Bañares, J. F. Castillo, V. J. Herrero,
B. Martinez-Haya, P. Honvault, J. M. Launay, X. Liu,
J. J. Lin, S. A. Harich, C. C. Wang and X. Yang, The O(1D)
+ H2 Reaction at 56 meV Collision Energy: A Comparison
between Quantum Mechanical, Quasiclassical Trajectory,
and Crossed Beam Results, J. Chem. Phys., 2002, 116,
10692–10703.

21 S. K. Gray, G. G. Balint-Kurti, G. C. Schatz, J. J. Lin, X. Liu,
S. Harich and X. Yang, Probing the Effect of the H2

Rotational State in O(1D) + H2 - OH + H: Theoretical
Dynamics Including Nonadiabatic Effects and a Crossed
Molecular Beam Study, J. Chem. Phys., 2000, 113,
7330–7344.

22 X. H. Liu, J. J. Lin, S. Harich, G. C. Schatz and X. M. Yang, A
Quantum State-Resolved Insertion Reaction: O(1D) + H2 (J
= 0)- OH (2P, v, N) + H(2S), Science, 2000, 289, 1536–1538.

23 Y. T. Hsu, J. H. Wang and K. P. Liu, Reaction Dynamics of
O(1D) + H2, D2, and HD: Direct Evidence for the Elusive

Abstraction Pathway and the Estimation of its Branching,
J. Chem. Phys., 1997, 107, 2351–2356.

24 Y. Matsumi, K. Tonokura, M. Kawasaki and H. L. Kim,
Dynamics of the Reaction O(1D) + HD, H2, and D2 –
Isotopic Branching Ratios and Translational Energy-
Release, J. Phys. Chem., 1992, 96, 10622–10626.

25 P. Hermine, Y. T. Hsu and K. Liu, A Crossed-Beam Study of
the Reaction O(1D) + D2: Collisional Energy Dependence of
Differential Cross-Section, Phys. Chem. Chem. Phys., 2000,
2, 581–587.

26 N. Balucani, P. Casavecchia, F. J. Aoiz, L. Bañares,
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91 P. Larrégaray, L. Bonnet and J.-C. Rayez, Validity of Phase

Space Theory for Atom�Diatom Insertion Reactions,
J. Phys. Chem. A, 2006, 110, 1552–1560.
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