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Abstract

In this paper, we consider the image super-resolution (SR) reconstitution problem. The main goal consists of obtaining

a high-resolution (HR) image from a set of low-resolution (LR) ones. For that, we propose a novel approach based on a

regularized criterion. The criterion is composed of the classical generalized total variation (TV) but adding a bilateral

filter (BTV) regularizer. The main goal of our approach consists of the derivation and the use of an efficient combined

deblurring and denoising stage that is applied on the high-resolution image. We demonstrate the existence of

minimizers of the combined variational problem in the bounded variation space, and we propose a minimization

algorithm. The numerical results obtained by our approach are compared with the classical robust super-resolution

(RSR) algorithm and the SR with TV regularization. They confirm that the proposed combined approach allows to

overcome efficiently the blurring effect while removing the noise.
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1 Introduction
The problem of the reconstruction of a super-resolution

image from low-resolution ones is required in numer-

ous applications such as video surveillance [1], medical

diagnostics [2] and image satellite [3].

A so-called fast robust super-resolution procedure was

proposed in [4]. In this approach, Farsiu et al. proposed

a two-stage approach. In the first stage, a high-resolution

image is built, but having the problem of being blurred.

Then, in the second stage, a deblurring and denoising

procedure is considered, see [4, 5]. Our paper will focus

on this second stage in the context of super resolution.

The main goal consists of increasing the robustness of the

super-resolution (SR) technique in [4] with respect to the

blurring effect and to the noise.

In most cases, the problem of image deblurring or

denoising is an ill-posed one. It is the main reason why the

problem is considered as an optimization one, but consid-

ering a regularized criterion. Some of the widely used reg-

ularization functions are Tikhonov-type regularizer [6, 7]
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and total variation-type regularizer [4, 8, 9]. In the follow-

ing, we will consider a total variation (TV) regularization

framework, but adding a bilateral filtering part [4, 10]. The

main point of this combinationmainly consists of preserv-

ing the essential features of the image such as boundaries

and corners that are degraded, using other approaches.

The outline of the paper is as follows. In Section 2, we

present the general super-resolution problem. Then, in

Section 3, we present the proposed regularized criterion

after pointing out the different regularization used in the

literature. Hence, we introduce the variational problem

and we prove the existence of a minimizing solution of

the relaxed functional using standard techniques from cal-

culus of variations. In Section 4, we derive the proposed

algorithm, and in Section 5, we present some experimen-

tal results; in addition, we compare our approach with

some existing ones in the literature. We finally end the

paper by a conclusion.

2 Problem formulation
The observed images of a real scene usually are in low

resolution. This is due to some degradation operators.

Moreover, in practice, the acquired images are decimated,

corrupted by noise and suffered from blurring [11–13].
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We assume that all low-resolution images are taken under

the same environmental conditions using the same sensor.

The relationship between an ideal high-resolution (HR)

imageX (represented by a vector of size
[
r2N2 × 1

]
, where

r is the resolution enhancement factor) and the corre-

sponding low-resolution (LR) ones Yk (represented by a

vector of size
[
N2 × 1

]
), is described by the following

model

Yk = DFkHX + ek ∀k = 1, 2, . . . , n, (1)

where H is the blurring operator of size
[
r2N2 × r2N2

]
, D

represents the decimation matrix of size
[
N2 × r2N2

]
, Fk

is a geometric warp matrix of size
[
r2N2 × r2N2

]
, repre-

senting a non-parametric transformation that differs in all

frames, and ek is a vector of size
[
N2 × 1

]
that represents

the additive noise for each image.

Given LR images Yk, k = 1, . . . , n, the goal of SR con-

sists of reconstructing the original imageX. Because of the

presence of the different degradation operators, the prob-

lem is difficult and ill-posed. In this paper, we follow the

approach in [4] that suggests to separate it into three steps

1. Computing the warp matrix Fk for each image.

2. Fusing the LR images Yk into a blurred HR version

B = HX.

3. Finding the estimation of the HR image X from the

blurring and noised one B.

We will not detail the first and second steps in the follow-

ing sections; for more details, see [5, 14]. We will focus on

the last step which is a deconvolution and denoising step.

3 Deconvolution and denoising step
In this step, we compute the HR image X̂ through a

deblurring process of the image B, obtained from the

fusion step. Unfortunately, this inverse problem is ill-

posed in presence of noise and blur. To overcome this

difficulty, we impose some prior knowledge on the HR

image X in a Bayesian framework. Since X has been

known in the presence of white Gaussian noise, the mea-

sured vector Yk is also a Gaussian one. Via the Bayes rule,

finding the HR image X̂ is equivalent to solve the min-

imization problem (2) using the maximum a posteriori

(MAP) super-resolution algorithm.

X̂ = argmax
X

{p(X|B)}

= argmax
X

{
p(B|X).p(X)

p(B)

}

= argmin
X

{
− log(p(B|X)) − log(p(X))

}
, (2)

where p (B|X) represents the likelihood term defined as

p (B|X) = exp (−‖HX − B‖1) , (3)

the norm of the Lebesgue space L1(�): ‖HX− B̂‖1, is used

since it is very robust against outliers [4]. p(X) denotes

the prior knowledge on the HR image, described by the

prior Gibbs function (PGF). We present in the follow-

ing subsection the related work to the choice of the PGF

function.

3.1 Related work

There are different manners to describe the function PGF,

one of the classical choices was the Tikhonov-type PGF

[15, 16], described as

pTik(X) = exp
(
−γ ‖ŴX‖22

)
, (4)

where Ŵ is a high-pass operator such as Laplacian.

Knowing that edges are generally the most important

features in an image, the Tikhonov regularizer is not a

suitable choice since it tries to limit the high-frequency

component of the image and in most cases destroys sharp

edges. Another successful regularization was the TV-type

[4, 11, 17], defined as

pTV (X) = exp
(
−γ ‖f (|∇X|) ‖1

)
, (5)

where f is strictly convex and non-decreasing function

from R
+ to R

+ such as f (0) = 0 and lim
x→+∞

f (x) =

+∞. The choice of this PGF function was typically in

the denoising and deblurring process in many restoration

problems [18] since it preserves edges in the reconstruc-

tion, but sometimes causes some artificial edges in the

smooth surfaces.

A more robust choice of PGF was the BTV regulariza-

tion, which considers larger neighborhood in the calcu-

lating of the gradient at a certain pixel, which leads to

preserve the sharp edges with less artefact. The expression

of BTV regularization looks like

pBTV(X) = exp

⎛
⎝−δ

p∑

i=−p

p∑

j=−p

α|i|+|j|‖X − SixS
j
yX‖1

⎞
⎠ .

(6)

The operators Six and S
j
y shiftX by i and j pixels in horizon-

tal and vertical directions, respectively, presenting several

scales of derivatives. The scalar weight α (0 < α < 1) is

applied to give a spatially decaying effect to the summa-

tion of the regularization terms. p is the spatial window

size and i + j > 0.

Recently, a new robust regularization term, called bilat-

eral edge-preserving (BEP) regularization, was introduced

to preserving edges by smoothing a range of small gradi-

ents, it is defined as

pBTV(X) = exp

⎛
⎝−δ

p∑

i=−p

p∑

j=−p

N∑

m=1

α|i|+|j|ρ

((
X − SixS

j
yX
)
[m]
)
, c
)
⎞
⎠,

(7)

where the parameter c is the threshold and ρ(x, c) the

potential function that penalize the gradient.
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3.2 The proposed regularization

Based on the strengths and weaknesses of the regulariza-

tions cited above, we propose to combine the TV and BTV

regularization in the deconvolution and denoising stage.

The main idea behind this combination is to regularize

with a fairly large weight γ , in TV term, to preserving the

essential image features, such as boundaries and corners,

as good as possible and not using too large weight δ for

the BTV term to preserve sharp edges and avoid artefacts

(staircasing) caused by a TV regularizer. Thus, we propose

the PGF as follows

p(X) = exp

⎛
⎝−γ ‖f (|∇X|) ‖1 − δ

p∑

i=−p

p∑

j=−p

α|i|+|j|
∥∥∥X − SixS

j
yX
∥∥∥
1

⎞
⎠ .

(8)

Wewill rewrite the problem (2) by substituting p(X) and

p(B|X) using there expressions in (8) and (3), respectively,

which will constitute the final SR problem defined as

X̂ = argmin
X

⎧
⎨
⎩‖HX − B‖1 + γ ‖ f (|∇X|) ‖1

+ δ

p∑

i=−p

p∑

j=−p

α|i|+|j|‖X − SixS
j
yX‖1

⎫
⎬
⎭ ,

(9)

we suppose, in addition, that f is a linear growth function,

i.e. ∃c > 0 and b ≥ 0 such that

cx − b ≤ f (x) ≤ cx + b. (10)

Based on this assumption, we can seek a solution for (9) in

the Sobolev spaceW 1,1(�) [5, 19], where � is the domain

of the image

W 1,1(�) =
{
X ∈ L1(�), ∇X ∈

[
L1(�)

]2}
.

Since this space is non-reflexive, we cannot say any-

thing about a bounded minimizing sequence in W 1,1(�).

To overcome the ill-posedness of this problem, we use

the procedure of relaxation. A typical choice of the space

that guarantees the compactness results is the space of

functions of bounded variation BV (�) [18].

3.2.1 The Proprieties of BV(�) space

We summarize firstly some of the properties of the space

BV (�) that we will use in the following theorems. We

suppose in the following that � is bounded and has a

Lipschitz boundary.

(P1) Lower semicontinuity (l.s.c) in BV (�)

Let be a sequence (un) ∈ BV (�) such as : un −→
L1(�)

u,

then∫

�

|Du| ≤ lim
n→+∞

∫

�

|Dun|.

(P2) The weak* topology in BV (�)

The weak* topology in BV (�) noted BV −ω∗ is defined

such as

un ⇀
BV−ω∗

u ⇐⇒

⎧
⎨
⎩

un −→
L1

u

Dun
∗
⇀
M

Du
,

where Dun
∗
⇀
M

Du, signifies

∫

�

ϕ Dun −→

∫

�

ϕ Du ∀ϕ ∈ C0(�)N .

C10(�)N is the space of continuously differentiable func-

tions with compact support in �.

(P3) Compactness results of BV (�)

⋆ The space BV (�) is continuously embedded in

L2(�) (N = 2 the dimension of the space).

⋆ Every uniformly bounded sequence (Xj) in BV (�) is

relatively compact in Lp(�) for 1 ≤ p < N
N−1 ,N ≥ 1.

Moreover, there exists a subsequence (Xjk) and

X ∈ BV (�) such as Xjk ⇀
BV−ω∗

X.

For more details about the space BV (�), see [18, 20].

For the reason that every bounded sequence inW 1,1(�)

is also bounded in BV (�), we use the classical character-

istics of the BV − ω∗ topology to deduce the existence of

a subsequence that converges BV − ω∗. Let us define the

relaxed function of the problem (9).

Theorem 3.1. The relaxed function associated to the

problem (9), for the BV − ω∗ topology is defined as

F(X) = ‖HX − B‖1 + γ ‖f (|DX|)‖1

+ η

p∑

i=−p

p∑

j=−p

α|i|+|j|‖X − SixS
j
yX‖1,

(11)

where D is the distributional gradient; in addition, we have

∫

�

f (|DX|)dx =

∫

�

f (|∇X|)dx + c

∫

SX

|X+ − X−|dH

+ c

∫

�−SX

|CX |,

X+ and X− are respectively the upper and lower limit as

defined in [18].

SX = {x ∈ � : X−(x) < X+(x)},

H is the Hansdorff measure and Cx the Cantor part.

Proof

We define firstly the function F
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F(X) =

⎧
⎨
⎩

‖HX − B‖1 + γ ‖ f (|∇X|)‖1

+η
∑p

i=−p

∑p
j=−p α|i|+|j|‖X − SixS

j
yX‖1 ifX ∈ W 1,1(�)

+∞ ifX ∈ BV (�) \ W 1,1(�)

. (12)

If X ∈ W 1,1(�), we have F(X) = F(X). Let us take a

sequence (Xk)k∈N that converges to X in BV (�), from the

l.s.c of F , we have

F(X) ≤ lim inf
k→+∞

F(Xk).

Since F(X) ≤ F(X), we get that

F(X) ≤ lim inf
k→+∞

F(Xk). (13)

To prove the other inequality, we use the theorem in [21].

For each X ∈ BV (�), ∃(Xk) ∈ C∞(�)∩W 1,1(�) such that

Xk ⇀
BV−ω∗

X,

Since H : L1(�) −→ L1(�) is continuous then

‖HXk − B‖1 −→ ‖HX − B‖1. (14)

Also, the operator (I − SixS
j
y) is continuous in L1(�) for

every i and j such as i + j > 0. Then

p∑

i=−p

p∑

j=−p

α|i|+|j|
∥∥∥Xk − SixS

j
yXk

∥∥∥
1

−→

p∑

i=−p

p∑

j=−p

α|i|+|j|
∥∥∥X − SixS

j
yX
∥∥∥
1
.

(15)

Using the continuity of f, we have

f (|DXk|)(�) −→ f (|DX|)(�). (16)

Using (14), (15) and (16), we deduce that

lim inf
k→+∞

F(Xk) ≤ F(X). (17)

From (13) and (17), we have finally

F(X) = lim inf
k→+∞

F(Xk). (18)

Let us prove now the existence of the problem (9).

Theorem 3.2. We assume that the operators (I − SixS
j
y)

and H defined: L1(�) −→ L1(�) are continuous, and in

addition, H does not annihilate the constants, in particu-

lar (H .1 �= 0) . We keep also all assumptions on f defined

above. Then the minimization problem

inf
X∈BV (�)

F(X) (19)

admits a solution X ∈ BV (�).

Proof

Let (Xk)k∈N be a minimizing sequence for (19), using the

assumption on f in (10), we can deduce that there exist

c1, c2 and c3 positive constants such as

‖HXk − B‖1 ≤ c1, (20)

p∑

j=−p

α|i|+|j|‖Xk − SixS
j
yXk‖1 ≤ c2, (21)

and

|DXk|(�) ≤ c3. (22)

The inequality (22) says that the total variation is

bounded; we have to prove now that ‖Xk‖1 is also

bounded. We use the classical approach proposed in [22].

We construct two sequences such that

Yk = 1
|�|

∫
�
Xk dx, and Zk = Xk − Yk , then

∫

�

Zk dx = 0, and DZk = DXk . (23)

Using the generalized Poincaré-Wirtinger inequality [23],

there exists a constant c4 such that

‖Zk‖L2(�) ≤ c4‖DZk‖(�). (24)

By the inequality (23) and the relation (22), we have

‖Zk‖L2(�) ≤ c4.c3. (25)

Then

‖Xk‖L2(�) = ‖Xk − Yk + Yk‖L2(�)

= ‖Zk + Yk‖L2(�)

≤ ‖Zk‖L2(�) + ‖Yk‖L2(�)

≤ c4.c3 + ‖Yk‖L2(�),

(26)

with ‖Yk‖L2(�) = |
∫
�
Xk dx|. We have also

∥∥∥∥H
(

1

|�|

∫

�

Xk dx

)∥∥∥∥
L1(�)

≤ ‖HYk − HXk‖L1(�) + ‖HXk

− B‖L1(�) + ‖B‖L1(�)

≤ ‖H‖L∞(�)‖Zk‖L1(�) + c1 + ‖B‖L1(�)

≤ c5‖H‖L∞(�)‖Zk‖L2(�) + c1 + c6

≤ c5‖H‖L∞(�)c4.c3 + c1 + c6

≤ C,

(27)

where C = c5‖H‖L∞(�)c4.c3 + c1 + c6, we have finally

‖H

(
1

|�|

∫

�

Xk dx

)
‖L1(�) = |

∫

�

Xk dx|‖H .1‖L1(�)

≤ C.

(28)
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Since H .1 �= 0, from (26) and (28), we can deduce that the

sequence (Xk)k∈N is bounded in L2(�) and � is bounded

so it is also bounded in L1(�). Finally, using (22) and

(26), we find that (Xk)k∈N is bounded in BV (�). Using the

propriety P3 3.2.1, there exists a subsequence noted also

(Xk)k∈N such that

Xk ⇀
BV−ω∗

X.

Since H is continuous, we have

‖HXk − B‖1 −→ ‖HX − B‖1,

and
p∑

i=−p

p∑

j=−p

α|i|+|j|‖Xk − SixS
j
yXk‖1−→

p∑

i=−p

p∑

j=−p

α|i|+|j|‖X − SixS
j
yX‖1.

Since F is weak l.s.c, we deduce that

F(X) ≤ lim inf
k→+∞

F(Xk) = inf
X∈BV (�)

F(X), (29)

i.e. X is a minimum of F .

For the uniqueness, we cannot say anything since the

L1 norm is not strictly convex. However, if we replace the

norm ‖HXk −B‖1 by ‖HXk −B‖22, we can check easily the

uniqueness of the solution.

4 Proposed algorithm
In this section, we describe the numerical approach to

the minimization problem (9). To discretize this problem,

we use the classical approach based on the descritiza-

tion of its gradient descent partial differential equation

(PDE). We can also use the split Bregman algorithm [17]

to resolve the problem (9). Using the calculus of variation

techniques, the gradient descent PDE associated to the

problem (9) is described as
⎧
⎪⎪⎨
⎪⎪⎩

∂tX = H⊺sing(HX − B) + γdiv

(
f
′
(|∇Xn|)

|∇X|
∇X

)

+η
∑p

i=−p

∑p
j=−p α|i|+|j|

(
I − S

−j
y S−i

x

)
sign

(
X − SixS

j
yX
)
,

ν.∇X = 0 on ∂�.

The minimizer of the problem (9) is obtained numeri-

cally by an explicit finite difference scheme that approx-

imates this PDE. We will denote by Xi,j, i, j = 1, ...N a

discrete image andM = R
N2

the set of all discrete image.

The operators Six and S
j
y are given in discretization form.

In addition, the discretization of the operators ∇ and div

is given by

(∇X)1i,j =

{
Xi+1,j − Xi,j if i < N

0 if i = N
,

(∇X)2i,j =

{
Xi,j+1 − Xi,j if j < N

0 if j = N
,

and
(
div
(
p1, p2

))
i,j

=
(
div
(
p1, p2

))1
i,j

+
(
div
(
p1, p2

))2
i,j
,

where

(
div
(
p1, p2

))1
i,j

=

⎧
⎨
⎩

p1i,j − p1i−1,j if 1 < i < N

p1i,j if i = 1

0 if i = N

,

(
div
(
p1, p2

))2
i,j

=

⎧
⎪⎨
⎪⎩

p2i,j − p2i,j−1 if 1 < j < N

p2i,j if j = 1

−p2i,j−1 if j = N

,

To simplify this problem, we consider the case where

f (x) = x, which coincides with the classical TV regular-

ization. The algorithm associated to solve the problem (9)

is finally given such as the following:

Algorithm 1 Steepest descent algorithm

Inputs: The blurred image B̂; the steepest descent param-

eter dt.

To avoid the derivative singularity when X is locally con-

stant (in the special case where the denominator is equal

to zero), we introduce a small parameter ǫ > 0;

The procedure:

X̂n+1
i,j = X̂n

i,j + dt
(
H

⊺

i,jsing
((
HX̂
)n
i,j

− Bi,j

))

+ dt

⎡
⎢⎢⎣γ div1i,j

⎛
⎜⎜⎝

(
∇X̂
)1
i,j√((

∇X̂
)1
i,j

)2
+
((

∇X̂
)2
i,j

)2
+ ǫ

⎞
⎟⎟⎠+ γ div2i,j

⎛
⎜⎜⎝

(
∇X̂
)2
i,j√((

∇X̂
)1
i,j

)2
+
((

∇X̂
)2
i,j

)2
+ ǫ

⎞
⎟⎟⎠

⎤
⎥⎥⎦ + dt.η

∑p
i=−p

∑p
j=p

α|i|+|j|
(
I − S

−j
y S−i

x

)
sign

(
X̂n
i,j − SixS

j
yX̂

n
i,j

)
i, j = 0, . . . ,N

Output: The HR deblurred image X̂

5 Numerical results
In this section, we evaluate the performance of the pro-

posed algorithm. We construct a synthetic LR image to

test our algorithm and compare it with the SR algorithm

with TV regularization and robust super-resolution (RSR)

algorithms. The peak signal-to-noise ratio (PSNR) is used

to measure the quality of our approach. We choose a

benchmark of six images (Fig. 1) with a different grey-level

histogram.

We construct a n = 20 input low-resolution frames for

each image in Fig. 1, sub-sampling with a decimation fac-

tor r = 4 and blurring with 5×3 Gaussian blur kernel with

a standard deviation equal to 3 for all the tested images.

Moreover, we add an additive white Gaussian noise ek
arbitrary in each frame with σ = 10. The parameters

chosen for our algorithm are α = 0.5, γ = 0.4, η = 1

and P = 2. There are different choices of the function
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Fig. 1 a–f Set of images used in the tests. This is a set of benchmark images used as an original image in the tests

f that verifies the assumptions above such as the choice

taken in the algorithm above, we also choose the so-called

hypersurface minimal function defined as

f (x) =
√
1 + x2. (30)

In Table 1, the PSNR values are shown for the six differ-

ent images in the figure (Fig. 1) with different choices of

σ noise. The best value of the PSNR is in italicized num-

ber on each row. We can easily deduce that our model is

always better than the others, which assures the efficiency

of our algorithm.

In Figs. 2, 3, 4, 5, 6 and 7, we have shown the simulated

HR images compared with SR using a TV regularization

[8] and the RSR [4] for Fig. 1a–f, respectively. Visually, we

can assure that our result suppresses the noise and errors

caused by misregistration and point spread function mis-

estimation, even if we observe that the noise is not totally

removed. Typically, the execution of the main imple-

mented programme requires an average of 2∼15 min on

a 3.0 GHz Pentium Quad core computer for 256 × 256

grey-scale images; for the color and large-size images, we

can use the proposed algorithm [24], which usemany-core

processors to accelerate the proposed method.

6 Conclusions
We propose a new combination of TV and BTV in the

space of bounded variation applied in the deblurring

step of the robust super-resolution problem. We prove

Table 1 The PSNR table

Image Method σ = 10 σ = 15 σ = 20

Lena SR with TV reg. 27.2222 26.868 26.426

RSR 28.07 27.78 27.589

Proposed approach 29.0844 28.7012 28.5562

Barbara SR with TV reg. 26.0826 25.658 25.4893

RSR 25.6836 25.1263 25.0369

Proposed approach 26.6194 26.2022 26.0014

Bird SR with TV reg. 33.0900 32.6237 32.254

RSR 33.1751 32.8233 32.5865

Proposed approach 34.8474 34.5266 34.33

Lake SR with TV reg. 30.9070 30.25 29.922

RSR 30.6298 30.2522 30.0866

Proposed approach 31.0437 30.86 30.636

Baboon SR with TV reg. 26.0667 25.789 25.3244

RSR 25.7250 25.388 25.263

Proposed approach 27.4975 27.1626 26.92

Peppers SR with TV reg. 29.9331 29.544 29.1668

RSR 30.9049 30.5012 30.278

Proposed approach 30.9569 30.68 30.4622

RSR robust super resolution, SR super resolution, TV total variation
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Fig. 2 a–d Results obtained for image ‘Lena’ using different methods. In this figure, we illustrate the result obtained for the image ‘Lena’ compared

with SR algorithm using TV regularization and the RSR

Fig. 3 a–d Results obtained for image ‘Barbara’ using different methods. In this figure, we illustrate the result obtained for the image ‘Barbara’

compared with SR algorithm using TV regularization and the RSR
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Fig. 4 a–d Results obtained for image ‘Bird’ using different methods. In this figure, we illustrate the result obtained for the image ‘Bird’ compared

with SR algorithm using TV regularization and the RSR

Fig. 5 a–d Results obtained for image ‘Lake’ using different methods. In this figure, we illustrate the result obtained for the image ‘Lake’ compared

with SR algorithm using TV regularization and the RSR
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Fig. 6 a–d Results obtained for image ‘Baboon’ using different methods. In this figure, we illustrate the result obtained for the image ‘Baboon’

compared with SR algorithm using TV regularization and the RSR

Fig. 7 a–d Results obtained for image ‘Peppers’ using different methods. In this figure, we illustrate the result obtained for the image ‘Peppers’

compared with SR algorithm using TV regularization and the RSR
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the existence of minimizers using a relaxation technique.

Finally, we perform the choice of our model using the

PSNR criteria in Section 5.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read

and approved the final manuscript.

Acknowledgements

We are grateful to the anonymous referee for the corrections and useful

suggestions that have improved this article.

Received: 14 February 2015 Accepted: 9 June 2015

References

1. Q Luong, Advanced image and video resolution enhancement techniques.

PhD thesis, Faculty of Engineering Ghent University, (2009)

2. D Hill, J Hajnal, D Hawkes (eds.),Medical Image Registration (CRC, 2001)

3. H Zhang, Z Yang, Li Zhang, H Shen, Super-resolution reconstruction for

multi-angle remote sensing images considering resolution differences.

Remote Sens. 6, 637–657 (2014)

4. S Farsiu, M Dirk, M Elad, P Milanfar, Fast and robust multiframe super

resolution. IEEE Trans. Image Process. 13, 1327–1344 (2004)

5. A Laghrib, A Hakim, S Raghay, M EL Rhabi, Robust super resolution of

images with non-parametric deformations using an elastic registration.

Appl. Math. Sci. 8, 8897–8907 (2014)

6. E Lee, M Kang, Regularized adaptive high-resolution image

reconstruction considering inaccurate subpixel registration. IEEE Trans.

Image Process. 12, 806–813 (2003)

7. V Patanavijit, S Jitapunkul (eds.), A Robust Iterative Multiframe

Superresolution Reconstruction Using a Huber Bayesian Approach with

Huber–Tikhonov Regularization (International Symposium on Intelligent

Signal Processing and Communications, Yonago, Japan, 2006)

8. M Ng, H Shen, E Lam, L Zhang, A total variation regularization based

superresolution reconstruction algorithm for digital video. EURASIP J.

Adv. Signal Process, 1–16 (2007). Article ID 74585

9. L Rudin, S Osher, E Fatemi, Nonlinear total variation based noise removal

algorithms. Physica D. 60, 259–268 (1992)

10. X Zenga, L Yangi, A robust multiframe super-resolution algorithm based

on half-quadratic estimation with modified BTV regularization. Digital

Signal Process. 23, 98–109 (2013)

11. P Milanfar, Super-Resolution Imaging (Digital Imaging and Computer Vision).

(Taylor and Francis/CRC Press, 2010)

12. RY Tsai, TS Huang,Multiframe image restoration and registration. Advances

in Computer Vision and Image Processing, vol. 1, chap. 7. (JAI Press,

Greenwich, Conn, USA, 1984), pp. 317–339

13. S Park, M Park, M Kang, Super-resolution image reconstruction : a

technical overview. 20(3), 21–36 (2003)

14. A Laghrib, A Hakim, S Raghay, ME Rhabi, A robust multi-frame super

resolution based on curvature registration and second order variational

regularization. Int. J. Tomography Simul. 28, 63–71 (2015)

15. MK Park, MG Kang, Regularized high-resolution reconstruction

considering inaccurate motion information. Opt. Eng. 46, 117004 (2007)

16. V Patanavijit, S Jitapunkul, A lorentzian stochastic estimation for a robust

iterative multiframe super-resolution reconstruction with

Lorentzian–Tikhonov regularization. EURASIP J. Adv. Signal Process, 1–21

(2007)

17. S Osher, M Burger, D Goldfarb, J Xu, W Yin, An iterative regularization

method for total variation-based image restoration. Multiscale Model.

Simul. 4, 460–489 (2005)

18. G Aubert, P Kornprobst,Mathematical Problems in Image Processing Partial

Differential Equations and the Calculus of Variations. Second Edition.

(Springer, New York, 2006)

19. F Demengel, G Demengel, Espaces Fonctionnels. Utilisation dans la

Résolution des équations aux Dérivées Partielles, Savoirs actuels. (EDP

Sciences, 2007)

20. L Ambrosio, A Compactness Theorem for a New Class of Functions of

Bounded Variation. (Boll. Un. Mat. Ital., 1989), pp. 857–881

21. F Demengel, R Temam, Convex functions of a measure and applications.

Indiana Univ. Math. J. 33, 673–709 (1984)

22. L Vese, Problèmes variationnels et edp pour l‘analyse d’images et

l‘évolution de courbes. PhD thesis, Université de Nice Sophia-Antipolis,

Nov. (1996)

23. H Brezis, Functional Analysis, Sobolev Spaces and Partial Differential

Equations. (Springer, New York, 2011)

24. Y Zhang, J Xu, F Dai, J Zhang, Q Dai, F Wu, Efficient parallel framework for

HEVC motion estimation on many-core processors. IEEE Trans. Circ. Syst.

Video Technol. 24 (2014)

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Keywords

	Introduction
	Problem formulation
	Deconvolution and denoising step
	Related work
	The proposed regularization
	The Proprieties of BV() space


	Proposed algorithm
	Numerical results
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	References

