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We address the combined problem of allocating a scarce resource among 
several locations, and planning deliveries using a fleet of vehicles. Demands are 
random, and holding and shortage costs must be considered in the decision 
along with transportation costs. We show how to extend some of the available 
methods for the deterministic vehicle routing problem to this case. Computa- 
tional results using one such adaptation show that the algorithm is fast enough 
for practical work, and that substantial cost savings can be achieved with this 
approach. 

T HIS PAPER addresses the combined problem of allocating a scarce 
resource available at some central depot among several locations (or 

"customers"), each experiencing a random demand pattern, while decid- 
ing which deliveries are to be made by each of a set of vehicles and in 
what order. 

This problem is an extension of the standard vehicle routing problem 
(VRP). There, one must design a set of vehicle routes of minimal total 
cost, leaving from and eventually returning to the depot, while satisfying 
capacity constraints and meeting customer requirements. These require- 
ments almost universally include exogenously determined, deterministi- 
cally known delivery sizes. 

Most existing resource allocation models, on the other hand, assume a 
cost function that is smooth as well as separable and additive in the 
activities. As a consequence, their application to physical distribution 
problems is confined to situations where all delivery points receive 
individual deliveries rather than being served in routes. 

There are many situations where the vehicle schedules and the delivery 
sizes are (or should be) determined simultaneously. Such is often the 
case, for example, when at each location the demand for the resource is 
random. Here, the deliveries serve to replenish the inventories to levels 
that appropriately balance inventory carrying and shortage costs, but 
thereby incur transportation costs as well. This type of problem is the 
major focus of the paper. 
Subject classification: 331 inventory allocation/VRP, 831 vehicle routing/inventory. 
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We specify a mathematical programming model of the problem. While 
quite complex, the model can be manipulated to induce a convenient 
partial separation into subproblems. Using this separation property, we 
show that well-known interchange heuristics for the deterministic VRP 
can be modified to handle the current problem. Experience with one such 
algorithm suggests that this approach is effective, both in producing good 
solutions and in requiring a modest amount of computation. 

This separation property can also be exploited to adapt quite different 
approaches to the VRP. To illustrate this fact, we derive an exact 
algorithm for the problem using generalized Benders' decomposition. 
(While it is interesting to know that an exact algorithm exists, we have 
no evidence concerning its computational performance.) 

The decomposition algorithm can be interpreted (in the conventional 
manner) as using separate calculations for the allocation and routing 
decisions, but coordinating them appropriately. The somewhat novel 
approach here is to show that a comparable coordinating mechanism can 
be built into an efficient heuristic. 

The basic VRP described above is sometimes complicated by other 
factors. Some can be handled with straightforward extensions of our 
approach, as described in Section 3. 

For the sake of precision, we now describe the scenario envisioned in 
somewhat greater detail: First, the initial inventory (perhaps supply 
remaining from the previous day) for each location is reported to the 
depot. This information is used to determine for the following day the 
allocation of the available product among the locations. The assignment 
of locations to vehicles and the routes are set at the same time. After the 
deliveries are made (say at the end of the day) the demands occur, and 
inventory-carrying and shortage costs are incurred at each location, 
proportional to the end-of-the-day inventory levels. Thus, our model is 
a one-period, "myopic" version of the problem. Note, it is possible to 
choose not to visit some of the locations. 

This scenario applies mainly to internal distribution problems, since 
all decisions are made centrally. An example is Magnanti and Golden's 
[1978] description of deliveries of fuel oil to automotive service stations. 
Some external distribution processes satisfy our assumptions as well. In 
fact, we were motivated by applications in the industrial gas industry, 
where the gas producers themselves install tanks at customer locations 
and determine the replenishment frequency and delivery sizes. Another 
potential application is the allocation of a perishable product such as 
blood, where the supply to various locations in a particular region is 
coordinated by a regional center. The multilocation allocation model of 
Prastacos [1978], as applied in Brodheim and Prastacos [1979], treats a 
problem of this type. 

The importance of the interrelationships between inventory and trans- 
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portation planning is easily recognized from the above examples and has 
recently been discussed by Herron [1979]. To our knowledge, ours is the 
first attempt to integrate the allocation and routing problems in a single 
model. More recently, Assad et al. [1982] reported on a simulation study 
for a deterministic inventory/routing system. In a broader context, our 
model may be viewed as a contribution to recent efforts to integrate 
related areas of physical distribution management, which until now have 
only been treated separately. Such efforts include Laporte and Norbert 
[1981] and Federgruen and Lageweg [1980] in the context of network 
design; cf. also Schrage [1981]. 

Random demands have been treated in the VRP literature, but in a 
manner quite different from ours. In Golden and Stewart [1978] and 
Golden and Yee [1979] a primary error occurs when any one vehicle is 
unable to satisfy the demands of the customers on its route. These 
authors suggest procedures to search for minimal-cost routes, subject to 
some upper limit on the probability of a primary error, cf. also Stewart 
and Golden [1982]. Tillman [1969] treats a simplified version of our 
problem, where in effect demands are realized before deliveries are made, 
using a very different computational approach. Cook and Russell [1978] 
have undertaken simulation studies of VRPs with random delivery sizes. 

The scenario treated here is perhaps the simplest possible one which 
accounts for uncertain demands and control over delivery sizes. Having 
shown that inventory and routing models are not entirely incompatible, 
we have reason to hope that further research will lead to systematic 
treatments of more fully dynamic scenarios. For example, the demand at 
a location may be revealed when a vehicle reaches it. Alternatively, 
starting inventories may be random at the beginning of the planning 
period, and actual inventory at each location may be discovered only 
when a vehicle visits it. In these scenarios, costs may be reduced by a 
dynamic determination of the allocations, or even the sequence in which 
locations are visited. In the terminology of stochastic programming, our 
model can serve as a "here-and-now" approximation to many such 
systems. 

To summarize the remainder of the paper, in Section 1 we state the 
problem, introduce notation, and discuss the separation property. Section 
2 discusses an inventory allocation problem (IA) which must be solved 
repeatedly during the algorithm. In Section 3 the interchange heuristics 
are discussed, and in Section 4 we present the generalized Benders' 
decomposition approach. Section 5 presents numerical results. An Ap- 
pendix explores some continuity properties of the model. 

1. STATEMENT OF THE PROBLEM AND NOTATION 

Much of our notation follows that of Fisher and Jaikumar [1978]. 
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Constants 

K = number of vehicles 
n = number of locations, indexed from 1 to n; index 0 denotes the 

central depot 
bk = capacity (weight or volume) of vehicle k 
cij = cost of direct travel from location i to location ] 
Fi( ) = cumulative distribution function of the one period demand in 

location i, which is assumed to be strictly increasing 
hi' = inventory carrying cost (or disposal cost minus salvage value) 

per unit in location i 
hi- = shortage cost per unit in location i 
fli = initial inventory at location i 
A = total amount of product available at the central depot. 

Variables 

We define a dummy route k = 0 consisting of those locations to which 
nothing is to be shipped (bo = 0). 

Y . _ 

1 if delivery point i is assigned to route k 
Yik lo otherwise 

J 1 if vehicle k travels directly from location i to location j; 
Xik 1O otherwise 

=i amount delivered to location i. 

We shall use the notation yk, y, w, and so forth to denote vectors of 
variables taken over the suppressed subscripts. 

The inventory cost function qi(.) and its derivative qi'(.) are given by 

qi(wi) = hi-Q( - fi - wi)dFi(Q) + hj(j3i + wi -)dFiQ), 
dDWi 

qi'(wi) = (hi+ + hi-)Fi(f3 + wi) - hi, i =-1 *. ,n. 

It is straightforward to verify that the qi(.) are strictly convex and C1. 
With this notation, the problem can be stated as follows: 

(P): minm ij,k cijxi1k + Zi qi(wi) (1) 

subject to EiWiyik C bk, k = O *.. , K (2) 

kiwi < A; wi > 0K = n (3) 

Ek=10 (4) 
Zk=0 Yik = 1 i=1 n 
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Zi Xijk = Yjk, j = 0 ... , n; k = 1 ..., K (6) 

E jXijk = Yfik i=0 - 0, **n; k =1, ***, K (7) 

X(jj)eSxS Xijk < ISI-1, S 5i, (8) 

2:c ISI < n -1; k= 1,* ,K 

iejk 0 or 1, i= 0, *., n; i=O ... **, nI 
kO, ...,K. (9) 

Constraint (2) (which is nonlinear) ensures that the load assigned to 
each vehicle is within its capacity, and constraint (3) guarantees that the 
total amount shipped is available at the depot. The remaining constraints 
appear in the deterministic VRP. Constraints (4) and (5) ensure that 
every delivery point is assigned to a single route (possibly the dummy 
route 0). Constraints (6)-(9) define a traveling salesman problem (TSP) 
over the customers assigned to vehicle k. 

Observe, (1)-(9) do not include storage capacity limits at the customer 
locations. The (slight) modifications required to handle this case are 
described briefly at the end of Section 2. 

Unlike the deterministic VRP, our problem is feasible for any vector y 
satisfying (4) and (5). In this sense, the model has a less intricate 
combinatorial structure than the VRP, resulting in some simplification 
of our algorithms, which partly compensates for the added complexities 
introduced. The ability to adapt delivery sizes and to eliminate a few 
"inconvenient" locations (or locations with relatively large inventories) 
enables substantial cost savings, as exhibited in Section 5. Also (in 
contrast to the deterministic model and to most mixed integer programs), 
the minimal cost of (P) is continuous in all cost and capacity parameters. 
(See the Appendix for a proof of this statement. If the Fj are continuous 
in one or more parameters, e.g. normals, Weibulls or gammas, then this 
continuity result extends to these parameters as well.) The continuity 
property is important in planning studies where some of the data may 
be uncertain. It excludes the possibility that a small change in the data 
may induce a sudden change in the optimal cost, cf. also the continuity 
analysis on p. 834 in Geoffrion and Graves [1974] as well as Williams 
[1973]. (In the deterministic VRP, a slight increase in the delivery size 
of a customer may require reassignment of several customers or even an 
additional truck.) 

Observe that with y fixed, the problem decomposes into simpler sub- 
problems, namely, an inventory allocation problem (discussed in the next 
section) and K TSPs, one for each vehicle. This fundamental separation 
property is the basis of the computational approach of Section 3. 

Our algorithm for (1)-(9) requires an initial set of routes (i.e., feasible 
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values for x and y). An obvious procedure would be first to solve the 
inventory allocation problem obtained by relaxing (2): 

min Zi qi(wi) s.t. Fi wi< A; wi >, 0, i = 1, .. * , n. (10) 

(Zipkin [1980] summarizes solution methods for this problem. Alterna- 
tively, instead of solving (10), one could minimize each qi separately.) 
Let twi* i = 1, * * *, n} denote an optimal solution. Then, use one of the 
available initialization procedures for the deterministic VRP with the 
delivery size at location i fixed at wi* (i = 1, * * *, n). (The adaptability 
of the delivery sizes allows for certain simplifications in these initializa- 
tion procedures, cf. Section 5). 

2. THE INVENTORY ALLOCATION PROBLEM 

Any specific value of y determines a partition I Yk: k = 0,. , K} of 
indices I1, * * *, nj, where Yk = {i: Yik = 1}. Thus Yk is the set of locations 
to be serviced by vehicle k according to the assignment y, k = 0, . .. , K. 
The inventory allocation problem, then, can be written as follows: 

(IA): min EL qi(wi) (11) 

subject to wi < A (12) 

E.EY. wi c bk, k = .*, K (3 
(13) 

Wio0 >- 1, * n. 

(For actual solution of this problem, of course, the variables wi for i E Y0 
and the constraint for k = 0 can be ignored.) 

Let us project this problem onto new variables Wk = ZiEY, wi. That is, 
for each k = 1, , K, define 

Qk(Wk) = min XiEY, qi(wi) 

subject to ZieY, wi = Wk (14) 

Wi > 0, i E Yk. 

The problem (IA) is equivalent in an obvious sense to the following 
model: 

min ,K1 Qk(Wk) (15) 

subject to ,K1 Wk s A 0 c Wk c bk, k = 1, ..., K. 

Since each qi is C' and strictly convex, the methods developed in Zipkin 
for problems of form (14) can be applied. Zipkin also shows that each Qk 

is C' and strictly convex. Similar methods, therefore, can be used to solve 
(15) itself, although additional complications arise from the upper bounds 
on the W-variables and the fact that the Qk functions are defined 
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implicitly. Federgruen and Zipkin [1983] present efficient methods to 
solve (15), and hence (IA). For now, suffice it to say that 

(a) The procedure is finite; 
(b) Problem (14) must be solved explicitly for k = 1, * , K at Wk = 

bk, but never for any other value of Wk; 
(c) The method is well-suited for recovery of optimality when y is 

changed, especially when it changes slightly. The latter case will 
require very few major iterations (and often none); 

(d) The procedure yields optimal dual variables (Lagrange multipliers) 
for problem (IA). 

We now show how to estimate the change in optimal cost in problem 
(IA) resulting from switches of locations between subsets. Such estimates 
are used in the algorithm of Section 3. 

Suppose (IA) is solved, yielding a (unique) optimal solution lb and a 
(not necessarily unique) optimal dual solution (j, i/) where = (Pkk)k=O 

For some k1 and k2, suppose we revise y so that some elements of Yk, and 
Yk, are traded. Specifically, we desire an estimate of the change in total 
inventory costs when switching the set of locations J1 5 Yk1 from k1 to 
k2, and the set of locations J2 5 Yk2 from k2 to k1. For i E J1, let bi' be 
the solution to qi' (wi) = p + Pk2 if qi' (0) < p + -k2, and let it equal zero 
otherwise. Similarly, let iii' solve qi'(wi) = p + Pk, or i= 0 for i E J2. 
Then (pj, v) is the optimal dual solution to the new problem (IA) with 
modified righthand sides 

A - 1 W-EJ2 Wi' + J1 Ci' + EJ2 Wi 

for the constraint (12), 

bkl -EJ1 Wi + J2 i and bk - E 2Cvi + J WI' 

for the k1-th and k2-th constraint in (13), respectively, and all other 
righthand sides unchanged. The change in cost from the prior (IA) to 
this modified new one is just 

Ejluj2 [qi(&i') - qi(Cvi)]. (16) 

Since (j, v) is a subgradient of the minimal cost of (IA) as a function of 
its righthand side at these modified values, moreover, the change in cost 
from the modified (IA) to the actual new (IA) is bounded below by 

(j + hk1) (J1 Ci -J2 ai') + (i + Ph2) ( -J2 i a'). (17) 

We may sum (16) and (17) to obtain a (lower) estimate AIA(k1, k2, J1, 
J2) for the change in inventory costs of (IA) resulting from switching the 
locations J1 and J2, where 

AIA(k1, k2, J1, J2) = EJ2uJ2 [qi(wi') - qi(wi)] (18) 

+ (P + Ph) (EJ1 di - XJ2 &i) + (P + Vk2) (XJ2 Ci - J1 wil' 
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It is worth noting that this estimate requires I J, I + I J2I inversions (or 
function evaluations, if the inverse of qj' is available in explicit form), 
plus the same number of function evaluations to obtain the qi(J'i'), plus 
4(IJ1 I + I J2I) additions and two multiplications. 

Suppose now that there are limits on storage capacity at the customer 
locations. These can be expressed as constraints wi c ui for i = 1, 
n, appended to (1)-(9). The separation property mentioned in Section 1 
still holds, so (IA) now includes the same constraints. The methods of 
Federgruen and Zipkin can easily be extended to this case. Moreover, a 
lower estimate AIA can be calculated as above, with li' redefined to 
ensure feasibility; that is, i~j' is defined as above, except Cvi' = ui if qi' (ui) 

P j + Pkb, i E J1, or if q'(ui) < j + Vk/ for i E J2. 

3. MODIFIED INTERCHANGE HEURISTICS 

A number of the successful approaches to the deterministic TSP and 
VRP can be described as interchange heuristics. Each such method starts 
with a given tour (or set of routes) and improves it by a sequence of small 
changes. Many potential changes are evaluated before any one is imple- 
mented. This general description covers the "r-opt" methods of Croes 
[1958], Lin [1965] and Lin and Kernhigan [1973] for the TSP, and 
extensions to the VRP by Russell [1977] and Christofides and Eilon 
[1969], as well as the procedures of Wren and Holliday [1972] and 
Cassidy and Bennet [1972], among others. 

We now show that methods of this kind can be adapted easily to 
accommodate inventory allocation. We concentrate on r-opt methods 
(specifically 2-opt for ease of presentation), but extension to other 
interchange heuristics should be straightforward. (For example, an earlier 
version of this paper adapts the method of Lin and Kernhigan.) 

Figures 1 and 2 illustrate the basic idea of 2-opt as applied to the VRP. 
Figure 1 shows an initial set of routes, while Figure 2 shows a potential 
interchange. The interchange consists of dropping two links from the 
current routes (the dashed lines) and adding two new ones (the double 
lines). In the process, the partition of customers among vehicles changes; 
the singleton subset J1 moves to set k2 and J2 to ki. (Other switches, of 
course, might change only the sequence in which a vehicle visits its 
customers, not the partition.) 

Evaluation of such a switch in a deterministic problem clearly requires 
adding the costs of the new links and subtracting the costs of the old 
ones, a very cheap computation. In our stochastic-demand problem the 
same evaluation suffices when the partition does not change. When it 
does change, problem (IA) changes, so we must also assess the changes 
in expected penalty and holding costs. While we could resolve (IA) for 
each potential switch, a more attractive approach is to use the approxi- 
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* 11 

Figure 1. Initial routes. 

mation AIA, as defined in (18), and to resolve (IA) only when considering 
implementing a switch. (The exact cost change should then be computed 
to check that an overall improvement is truly achieved and, if so, to 
update the multipliers (p, z').) Calculation of AIA certainly adds to the 
work of evaluation, but not unreasonably much. (Note, since AIA is a 
lower bound, if there exists an advantageous 2-opt switch, the algorithm 
will identify one.) 

Prior to evaluation, moreover, a potential switch must be checked for 
feasibility in a deterministic VRP. This step can be skipped in our 
problem, since vehicle capacities do not restrict the feasible partitions. 

l X t~~~~~~~~~~~~~~~~~~ 
l / \ l~~~~~~~~~~~~~~~~~~ 

Figure 2. Potential interchange. 



1028 Federgruen and Zipkin 

We remark that 2-opt indeed changes at most two subsets at a time, 
so when (IA) must be resolved, special techniques can be applied; cf. the 
Appendix in Federgruen and Zipkin. These techniques can be used also 
in the method of Lin and Kernhigan. 

Section 5 reports our experience with a hybrid heuristic including 3- 
opt with the modifications above. 

The VRP is sometimes complicated by restrictions on feasible routes 
involving, for example, the duration of routes and/or the timing of 
deliveries (cf., e.g., Fisher and Jaikumar [1978]). Given an interchange 
heuristic that distinguishes feasible routes in a deterministic VRP with 
such restrictions, clearly, the revised method of evaluating routes de- 
scribed above can be used. 

Problems with multiple depots (cf., e.g., Gillett and Johnson [1976]) 
can be handled as well. Consider the case where the assignment of 
vehicles to depots is fixed. Formulate the analogue to (1)-(9) and fix the 
variables analogous to y. The problem then separates into some TSPs 
and one problem of the form of (IA) for each depot. An interchange code 
for the multiple-depot VRP can thus be adapted as in the single-depot 
case. (A slight modification is required in AIA to account for the fact 
that the- sets of variables in the several allocation problems may change 
between iterations.) 

4. AN EXACT ALGORITHM USING GENERALIZED BENDERS' 
DECOMPOSITION 

This section shows how to modify a very different approach to the 
VRP. The result is an algorithm that solves (1)-(9) exactly, and that 
provides a lower bound on the true optimal cost in each iteration. Our 
purpose here is to demonstrate the flexibility of computational techniques 
permitted by the separation property. 

The method of Fisher and Jaikumar [1978] for deterministic VRPs 
relies on the fact that a TSP can be viewed as a linear program, whose 
feasible set is defined implicitly as the convex hull of all feasible solutions 
to the TSP (the so-called traveling salesman polytope). From this stand- 
point, the VRP is a mixed-integer linear program, where the integer 
variables are the Yik, since with y fixed the VRP reduces to K TSPs. The 
VRP may thus be solved exactly with Benders' decomposition procedure, 
cf. Benders [1962]. 

Benders' decomposition requires dual solutions for the linear subprob- 
lem(s) in order to generate cuts. Cutting-plane algorithms for the TSP 
have enjoyed a resurgence recently (e.g., Grotschel [1980], Miliotis [1976, 
1978], Padberg and Hong [1980]), and produce a dual solution as a by- 
product. We remark that the method of Fisher and Jaikumar [1978] does 
not require that cutting planes be used to solve each TSP, only that the 
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(relatively few) binding cutting planes be generated and priced once the 
solution is found. 

If y is fixed in problems (1)-(9), we obtain the same K TSPs plus the 
inventory allocation problem. The latter is a nonlinear program, so 
Benders' decomposition cannot be used. Generalized Benders' decom- 
position (Geoffrion [1972]), however, can be adapted nicely to the current 
problem. 

This method can be summarized as follows: A master problem in the 
y variables, equivalent to the original, is derived by projection and 
dualization. A sequence of relaxed master problems is solved. Each such 
problem yields a tentative solution y, which defines the subproblems. 
The subproblems are solved or determined to be infeasible. Dual solutions 
or extreme rays then define one or more constraints ("cuts") of the 
master problem. These cuts are appended to the previous relaxed master 
problem, and the process continues. 

The success of generalized Benders' decomposition for a particular 
problem depends on the resolution of several issues. The subproblems 
must be relatively easy to solve; algorithms for them must produce 
optimal multipliers (or extreme rays, where appropriate); and they must 
not have duality gaps (if the master problem is to be equivalent to the 
original version of the problem). The TSPs regarded as linear programs 
satisfy these conditions. For the allocation problem, the methods devel- 
oped in Federgruen and Zipkin solve it easily and yield optimal multi- 
pliers; as a convex program, it has no duality gap. 

Also, what Geoffrion calls "Property P" must hold: The constraints of 
the master problem are expressed in terms of optimization problems, and 
these must be "easy" to evaluate. We demonstrate below that this 
criterion is well-satisfied. 

Our discussion assumes all subproblems and the relaxed master prob- 
lems are solved exactly, and that nonbinding constraints are never 
dropped. The effects of relaxing these assumptions here are the same as 
in the general case, cf. Geoffrion. 

A lower bound on the true optimal cost is produced in each iteration 
of generalized Benders' decomposition (cf. Geoffrion). In one iteration, 
therefore, the suboptimality of any starting solution (e.g., one computed 
by a heuristic) could be checked. 

Master Problem 

Recall that xk = (xiiJ)ij and yk = (Yik)i are vectors of variables. Let us 
rewrite (1)-(9) as follows: 

min Xijk CijXijk + >i qi(wi) 

subject to G k(Xk, yk) > 0 

xk E Xk, k = 1, ... , K, y E Y, and (2), (3). 
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In this version, Y represents (4) and (5), Xk = {xk: 0 < Xiik c 1, i, i = 

0, * * *, nJ, and Gk represents all the other linear inequalities defining the 
kth TSP polytope. 

Following Fisher and Jaikumar [1978], we now project this problem 
onto y. The allocation problem and the TSPs are feasible for any y E Y. 
For y E Y, let v(y) be the minimal objective value with y fixed. Then, as 
in Geoffrion, 

V(y) -= Supk0 minxkexk CijXijk - XkGk(xk, yk)} 

+ suppv?0 minw:o {J;=1 qi(wi) + p(A - E'= ww) 

+ o Vk(bk - l Wiyik). 

The following master problem is thus equivalent to (1)-(9): 

min Z 

subject to Z > v(y) 

YE Y. 

Cuts for the Relaxed Master Problem 

Cutting-plane methods produce a dual-optimal 7k for each k. (Although 
7r is a vector of very large dimension, nearly all its components will 
usually be zero.) Solution of the allocation problem yields optimal mul- 
tipliers (p3, vi). These values generate a cut helping to approximate v(y), 
of the following form: 

Z > Ek~l {minqkeXkk j=o CijXijk - TkG (X, yk)} + pA + Sk-1 Vkbk 

+ min,?-0 {JA=1 [qi(wi) - (, + E=O vkYik)Wi] }- 

Now we discuss how to simplify this expression. 
The minimum over Xk is independent of yk and reduces to the expres- 

sion 

>k~l (dk + En O dikyik) = XK=l (dk + dOk + En 
1 

dikyik), 

where all d's represent constants. In the minimum over w, note that by 
constraints (3) exactly one Yik is 1 for each i. Thus, the minimum equals 

Z= 1i 
Yik 

minwi>o-qi(wi) 
(p + Vk)Wi}. 

For each i, k, the inner minimization here is just a newsboy problem. 
Call its cost fik. (This simplification is what satisfies Property P.) Thus, 
the form of the cut is 

Z p pA + k=1 (Vbk + dk + dOk) + Ei- fioYiO 

+ E 
K 

l (dik + fik)Yik- 
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The relaxed master problem is thus min Z, subject to cuts of the form 
(19), as well as constraints (4) and (5). 

In general, since Y is finite, only a finite number of subproblems can 
be generated, and the algorithm converges to the true optimum in a finite 
number of iterations. Using the lower bounds, we can terminate the 
procedure prior to optimality when any given error tolerance is achieved. 

5. COMPUTATIONAL RESULTS 

In this section we report our computational experience with a modified 
interchange heuristic (Section 3), using problems adapted from the 
literature. We discuss both computation times and cost comparisons 
between our problems and deterministic versions of them. 

Description of the Code 

With unlimited supply and vehicle capacities, each location would be 
given an amount wi*, the (unique) minimum of the function qi(-). (Wi* is 
often referred to as the "newsboy solution.") An initial assignment of 
locations to vehicles (as well as an initial set of routes) is obtained by 
applying a sweep heuristic, as in Gillett and Miller [1974] or Gillett and 
Johnson to the deterministic VRP with wi* as the (fixed) delivery size of 
location i. (A new vehicle is used as soon as the cumulative load on the 
current truck exceeds 1/K Ei-y wi*.) For this set of assignments we next 
solve the inventory allocation problem (IA) exactly, and find 3-opt 
solutions to the K TSPs. The solution procedure for the problem (IA) 
follows the overall approach of Federgruen and Zipkin. 

The improvement part of the procedure iteratively constructs a set of 
routes that cannot be improved by serving more or fewer locations or by 
a 3-opt switch involving at most two routes. (A 3-opt interchange could 
involve three routes; such switches were ignored.) Potentially beneficial 
switches are identified by evaluation of the MIA function; for these the 
exact cost change is computed to check whether an improvement is truly 
achieved. (The optimal solution of (IA) is recovered using the methods 
in Federgruen and Zipkin.) Whenever the assignment of one or more 
locations is changed, we recover a 3-opt solution of all (at most two) 
routes involved. 

The improvement routine has two phases. In Phase I, we consider 
switches only between pairs of routes that are adjacent in the initial 
solution. Phase II considers all pairs of routes. 

The Problem Set 

A 50-location and a 75-location problem introduced by Christofides 
and Eilon were used as the basis for our computational experiments. 
(These correspond to problems 8 and 9 in Chapter 9 of Eilon et al. 
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[1971].) The vehicle capacities in these problems are 160 and 140, 
respectively. The supply in the depot was fixed at 160 and 1000 units, 
respectively. All Fi(.) for i = 1, *- -, n were taken to be normal with 
coefficients of variation equal to one. We generated starting inventories 
fi for i = 1, * * *, N from a uniform distribution between 0 and 15; and 
used identical penalty and holding cost rates in all locations. To construct 
a set of demand distributions corresponding roughly to the deterministic 
problems, we proceeded as follows. The costs h' and h- were temporarily 
fixed at 0.5 and 5. Mean demands (and hence standard deviations) were 
chosen to equate the "ideal" delivery size w1* for i = 1, * , n with the 
fixed delivery sizes used in Christofides and Eilon. Next, fixing the 
demand parameters, we varied h' and h-. We also varied the number of 
vehicles K. 

Computational Results 

Table I summarizes the results of 18 runs on an IBM 4341. In reporting 
computational times, we distinguish between the times spent in inventory 
allocation subroutines ("alloc"), and subroutines administering potential 
switches ("switch"); a third category ("other") includes all remaining 
procedures (such as the sweep-procedure resulting in an initial solution). 
(Since the clock routine often consumed more than 50% of the total 
time, we ran all problems twice, once with and once without the clock 
routine. Half of the time consumed by the clock routine is attributed to 
"alloc" and half to "switch," since the number of clock routine calls are 
almost identical in both sets of subroutines.) Very roughly speaking, we 
can interpret the "switch" plus "other" time as the time a deterministic 
VRP heuristic would require, and the "alloc" time as the additional 
computation required to handle stochastic demands. 

The following observations can be made. The two-phase variant is far 
more time consuming than the Phase I version. Improvements in the 
second phase are rare, and in any case of limited size. Our discussion 
below thus reflects the Phase I results only. 

Computational times vary between 3-7 and 7-16 CPU seconds for the 
two problem sizes. The time spent for allocation is certainly a substantial 
fraction of the total, but in every case the total time is well within the 
same order of magnitude as the "switch" plus "other" time. Thus, while 
the combined routing/allocation problem requires more effort than the 
VRP (as one would expect), the overall computational demands of the 
combined approach are reasonable for many applications. 

As expected, when h' and h- increase, a different set of routes is 
chosen, usually with larger routing costs, however, enabling a less than 
proportional increase in inventory carrying and/or shortage costs. 
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Comparisons between the Combined Problem and the VRP 

To enable a meaningful comparison between the combined inventory 
allocation/routing problem and the VRP, we reran the 50- and 75- 
location problem with depot supplies of 800 and 1500 units, respectively. 
(These suffice to cover all the fixed deliveries in the corresponding VRPs.) 
Thus, the known VRP solutions reported in Table 9.2 of Eilon et al. are 
feasible solutions in the combined model as well. Table II exhibits to 
what extent these solutions can be improved by using the combined 
approach. The results show that substantial savings (6-7%) can be 
achieved in operating costs while reducing the number of required trucks 

TABLE II 

(h' = 0.5; h- = 5) 

Customers Total Inventory Routing Total n k Visited Quantity Cost Cost Cost 
Delivered 

75 Stochastic 7 70 980.0 868.9 669.9 1538.7 
75 Stochastic 8 71 1120.0 797.4 720.8 1518.1 
75 Stochastic 9 73 1259.0 749.5 799.9 1549.3 
75 Stochastic 10 74 1345.0 742.1 842.3 1584.4 

75 Determin. 10 75 1364.0 736.4 876.0 1612.4 

50 Stochastic 3 44 480.0 574.9 414.7 989.6 
50 Stochastic 4 46 640.0 496.0 440.2 936.2 
50 Stochastic 5 44 729.0 483.8 454.1 937.8 

50 Determin. 5 50 777.0 450.5 556.0 1006.5 

by no less than 20%! (These savings are achieved by eliminating only 
four locations.) The usual caution applies when extrapolating these 
results to other problems. 

APPENDIX 

Let a represent the vector of model parameters, cf. Section 1. Let 
z(a) be the value of (P) for parameter vector a. Let z(a; x, y) be the 
value of (P) for fixed vector a, and fixed vectors x, y and let (z(a) = 

minx, {z(a; x, y), subject to (4)-(9)}. 

LEMMA. The value of (P) is continuous in A, bk(k = 1, . . ., K), i3, hi, 
hi-, and ci (i,j = 1, .. , n). 

Proof. Let fanI}n=i - ao. Let (Xn, YeJ be part of the optimal solution for 
(P) with a = an; n 2 0. Note that for n > 1, z(an; Xn, yn) - z(ao; Xn, Yn) 
< z(a?n)- z(ao) < z(an; x0 y0) - z(ao; xO, yo). Since there are only finitely 
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many (x, y) vectors satisfying (4)-(9), it suffices to show that for any 
such pair (x*, y*) 

z(a; x*, y*) = U cJk):Xik=11 cij + i(a; Y*) (Al) 

is continuous in a where 

i(a; y*) = min Zi qi(wi) subject to(12), (13), (A2) 

with Yk={i:y* =1}, k=O, 0 ,K. 

Continuity of the first term in (Al) is immediate. To verify continuity of 
z, let wn for n > 1 solve 2(an; y*)* Since {wn}nj=1 is contained in a compact 
set, it has a convergent subsequence. Restricted to this subsequence, 
Wn - > wO (say). Limiting arguments show that wo is feasible for a = ao. 
Hence limn,- Z((an; y*) = limo >i qi(an; Wn) = >2i qi(ao; wo) > 2(ao; y). 

To prove the converse inequality, let lb solve 2(ao; y*) and construct 
an'} -> w with Wn' feasible for a = an. Then lim,. 2(an; y*) > lim,- 

>i qi(an; Wn') = Zi qi(ao; lb) = 2(ao, y). 
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