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In this paper, we address the interrelated challenges of predicting user comfort and using this to reduce

energy consumption in smart heating, ventilation and air conditioning (HVAC) systems. At present, such

systems use simple models of user comfort when deciding on a set point temperature. Being built using

broad population statistics, these models generally fail to represent individual users’ preferences, resulting

in poor estimates of the users’ preferred temperatures. To address this issue, we propose the Bayesian

Comfort Model (BCM). This personalised thermal comfort model uses a Bayesian network to learn from a

user’s feedback, allowing it to adapt to the users’ individual preferences over time. We further propose an

alternative to the ASHRAE 7-point scale used to assess user comfort. Using this model, we create an optimal

HVAC control algorithm that minimizes energy consumption while preserving user comfort. Through an

empirical evaluation based on the ASHRAE RP-884 data set and data collected in a separate deployment by

us, we show that our model is consistently 13.2 to 25.8% more accurate than current models and how using

our alternative comfort scale can increase our model’s accuracy. Through simulations we show that using

this model, our HVAC control algorithm can reduce energy consumption by 7.3% to 13.5% while decreasing

user discomfort by 24.8% simultaneously.
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1. INTRODUCTION

Reducing energy consumption and emission of greenhouse gases to mitigate the ad-
verse effects of global warming and dwindling supply of fossil fuels has been posed
as one of the biggest challenges of the 21st century. Domestic heating, accounting for
12% of the worldwide energy consumption [Gadonneix et al. 2013], offers great poten-
tial for reducing energy consumption. This has led to the development of smart energy
systems, which aim to reduce energy consumption of heating, ventilation and air condi-
tioning (HVAC), by either simplifying the interaction between the user and the HVAC
system or by automation. The key component of such a system is a smart thermostat,
which allows the definition of detailed HVAC schedules, offers modern user interfaces
and additional features, such as mechanisms to predict occupancy and learn about
the thermal environment, the users’ preferences and their schedules. This informa-
tion enables the smart thermostat to autonomously decide on an optimal temperature
set point and when to switch the HVAC system on and off, taking account of both the
user’s comfort and their preference for energy savings.

However, existing smart thermostats such as the Nest Learning Thermostat or Hon-
eywell’s smart thermostat often fail to accurately learn a user’s personal preferences
and as a result fail to save significant amounts of energy [Yang and Newman 2012;
2013]. This is because current systems often use models from the widely applied ther-
mal comfort modelling standard ASHRAE 55; specifically either Fanger’s static com-
fort model [Fanger 1970] or the adaptive comfort model [de Dear and Brager 1998]. The
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static model is based on the balance of heat loss and gain in the human body and works
on input variables such as a person’s clothing level, metabolic rate and variables de-
scribing the thermal environment (humidity, air velocity and operative temperature).
The adaptive model expresses a person’s preferred temperature as a linear function
of the outside temperature. A key shortcoming of both is that they have been created
based on large population statistics, representing only average preferences over the
whole population. However, as stated by Chappells et al., user comfort is fluid and can
not be expressed by static numbers [Chappells and Shove 2005]. Thermal preferences
can vary greatly between different people and change over time. Thus, when applied
to individual users or small groups of people, these existing models often fail to give
accurate estimates of these users’ thermal comfort.

There are two main ways this issue has been addressed recently: by modelling and
predicting individual users’ comfort and by deploying participatory approaches that
react in real-time to user feedback. Regarding the first, emerging work in the area of
artificial intelligence has started to look at modeling an individual’s heating prefer-
ences [Shann and Seuken 2013; 2014; Lam et al. 2014]. In particular, the rising com-
puting power of modern thermostats and other devices that can be utilised to control
a smart heating system, such as smartphones or similar portable devices, allows the
development of more sophisticated models that utilise machine learning techniques to
adapt to an individual user’s preferences. Such models are usually aimed at domestic
spaces where the aim is to satisfy each single individual instead of the majority of a
large number of office workers. Such approaches are usually based on the adaptive
comfort model discussed above and, in order to adapt to an individual’s preferences,
add extra, user-specific parameters, such as an individual base temperature, thermal
sensitivity or cost-comfort pay-off, to the model [Shann and Seuken 2013; 2014; Lam
et al. 2014]. These variables are then learned using feedback on the heating provided
by the user. Reactive, participatory approaches in contrast rely on real-time feedback
from occupants about their thermal environment [Purdon et al. 2013; Shetty et al.
2015]. In such approaches, occupants are given the opportunity to report their cur-
rent comfort, desired changes to the set-point or similar metrics directly to the smart
heating system. Based on this feedback, the heating system decides on a new set point.

However, both approaches have a number of drawbacks (discussed in more detail in
Section 2). Predictive approaches usually either fail to model the user’s comfort pref-
erences accurately or are impractical. Specifically, while approaches based on Fanger’s
model accurately represent heat gain and loss in the human body, they require very
specific, hard to obtain input variables such as metabolic rate, clothing level and air
velocity. In contrast, approaches using the adaptive model tend to oversimplify the
problem by modelling the comfort temperature as a linear function of only the outside
temperature. Factors such as humidity [ASHRAE 55 2010], acclimatisation [Auliciems
1981] or seasonal adaptations [Liu et al. 2012; de Dear and Brager 2002], proven to
have effects on thermal comfort, are neglected. For example, expectations of colder or
warmer seasons and repeated exposure to their respective thermal conditions may di-
minish the user’s thermal sensitivity [Liu et al. 2012; de Dear and Brager 2002]. In
reality, the actual impact of each factor is likely to vary between individuals. Exist-
ing approaches either only consider single factors or do not provide means to adapt
to the user’s preferences. In the case of participatory approaches, the main drawback
is the reliance on user continuous feedback. Research on user engagement in smart
home systems suggests that users quickly lose interest in such systems and participa-
tion drops [Hargreaves et al. 2013; Snow et al. 2013]. In practice, this means that the
system can be expected to perform worse over time as user engagement diminishes.

To address these shortcomings, in this paper, we develop and evaluate the Bayesian
Comfort Model (BCM), a comfort model that is capable of learning the user’s prefer-
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ences from minimal feedback using only data that is easily obtainable from unobtru-
sive sensors. Based on the learned preferences, the model is able to accurately predict
a user’s individual comfort level (using scales such as the ASHRAE 7-point scale or
the requested change scale introduced in Section 5.1) as well as the user’s optimal
comfort temperature at any given point in time in arbitrary climate conditions. Us-
ing this model, we further develop an HVAC control algorithm that minimizes energy
consumption while retaining user comfort.

In more detail, we combine principles of the human physiology-based approach of
static comfort models with principals of manual adaptation from adaptive models to
create a more general comfort model. We identify and extract user-specific variables
from classic approaches and parameterise the model with these. We translate the
model into a Bayesian network, adding learning capabilities which allow it to adapt to
individual user’s preferences. We then propose an HVAC control algorithm that min-
imises energy consumption while using the BCM to minimise users’ discomfort. Using
weather forecasts and learned thermal properties of the house, the algorithm creates
an HVAC schedule that minimizes energy consumption while keeping a comfortable
indoor temperature for the occupants. Through an empirical evaluation using data
from the ASHRAE RP-884 data set and data collected by us in a deployment assessing
office workers’ and library occupants’ thermal comfort, we show that our personalised
model predicts user comfort more accurately than existing models. We also investigate
different feedback scales and their effect on the model’s accuracy. Lastly, by simulating
different households, we evaluate the energy saving potential of our heating algorithm
when using our comfort model. In summary, this work advances the state of the art in
the following ways:

(1) We introduce a novel thermal comfort model with learning capabilities that enable
it to adapt to individual users’ preferences. The model is able to infer the users’ com-
fort temperatures and ranges, allowing a smart thermostat to make more informed
decisions about the set point.

(2) We propose an intelligent heating algorithm that utilises the comfort model to min-
imise energy consumption without sacrificing user comfort.

(3) We empirically evaluate the model using the ASHRAE RP-884 data set and data
collected by us in a separate deployment. We show that the model generally gives
13.2% to 25.8% (in some cases up to 55%) more accurate estimates of a user’s comfort
level and can save up to 13.5% of energy while reducing discomfort by 24.8% using
our heating algorithm.

(4) Based on the empirical evaluation, we suggest the requested change scale, a scale to
assess user comfort, that doubles our comfort model’s performance as compared to
the state of the art.

The remainder of this paper is structured as follows. First we discuss the existing
comfort models that we build on in this work in Section 2. We then introduce our
model in Section 3, followed by the heating algorithm in Section 4. In Section 5 we
empirically evaluate our model’s accuracy, how it compares to existing models and the
energy saving potential the model offers for our heating algorithm. Section 6 concludes
and discusses future work.

2. RELATED WORK

Fanger et al. introduced the first thermal comfort model in 1970 [Fanger 1970], which,
with slight modifications, is still used to this day as the static thermal comfort model
defined in ASHRAE Standard 55 [ASHRAE 55 2010]. Fanger’s model is built around
heat balance in the human body. Thermal comfort is defined as the equilibrium of
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VOTE -3 -2 -1 0 1 2 3
THERMAL too cool slightly neutral slightly warm too

SENSATION cold cool warm hot

Table I: 7-point thermal comfort scale

heat gain due to metabolism and heat loss of the body to the environment. The main
measurements are the predicted mean vote (PMV) and the predicted percentage dis-
satisfied (PPD). The PMV denotes the expected mean vote of a group of people on the
thermal environment based on the 7-point comfort scale shown in Table I. The PPD
describes the percentage of people dissatisfied with the thermal environment.

Fanger’s model considers five input variables: operative temperature, air speed, rel-
ative humidity, metabolic rate and clothing level. The operative temperature is pre-
ferred to simple air temperature, as it combines both air temperature and radiant
temperature to give a more accurate estimate of the perceived temperature. While op-
erative temperature and relative humidity are easy to obtain, the other variables pose
problems in practice. Air speeds may vary within a single room [Erickson and Cerpa
2012], so the air velocity at the exact position of the individual would have to be mea-
sured. This is impractical in all but very controlled environments. Metabolic rate and
clothing level may be subject to irregular variations, making them hard to estimate
[Peeters et al. 2009]. In addition to these problems, Fanger’s model neglects possible
adaptations by the user. Those adaptions are usually of physiological (acclimatisation),
behavioural (modification of clothing and other heating controls) and psychological (ex-
pectations of temperatures) nature [Liu et al. 2012].

Adaptive models try to take behavioural adaptive measures, such as opening win-
dows, turning on a fan or changing of clothing, into account [de Dear and Brager 1998].
This is usually done by modelling the user’s optimal comfort temperature in relation
to the outside temperature. Typically, the colder it is outside, the more adaptive mea-
sures a user will take to stay warm. Similarly, as it gets warmer outside, a user will
take more measures to stay cool. As a result, the optimal comfort temperature Topt can
be modelled as a linear function of the outside temperature Tout shown in Equation 1
(taken from [de Dear and Brager 1998]).

Topt = 0.255Tout + 18.9 (1)

While accounting for possible adaptations by the user, adaptive models neglect the
influence of factors defined in the static comfort model. To address the shortcomings
of both approaches, we create a novel thermal comfort model that combines easily
obtainable input variables from existing models into a single, more complete model.

Due to the lack of suitable comfort models, approaches automating heating and air
conditioning (HVAC) tend to focus on predicting user occupancy while using either
static comfort temperatures and ranges or variations of the models introduced above
[Jo et al. 2013; Lu et al. 2010]. While these approaches can achieve significant energy
savings, the inability to satisfy users’ individual preferences might limit acceptance
among users. In addition, as we show in this paper, energy consumption can be further
reduced by using personalised thermal comfort models.

One way to maximise user comfort despite the lack of suitable models is through
participatory sensing. In such participatory approaches, users give live feedback about
the thermal environment to the system, which in response calculates a new set point
temperature based on the feedback. Usually, feedback is obtained through smartphone
apps or computer interfaces. Shetty et al., for example, open a pop-up every 30 minutes
asking their users about their current comfort levels [Shetty et al. 2015]. Using this
feedback stream, individual users’ comfort ranges are constantly adjusted and the set
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point changed accordingly. Purdon et al. provide their users with a smartphone app
enabling them to submit their feedback while also providing them with information
about past and current temperatures and other users’ votes [Purdon et al. 2013]. The
heating system adjusts the set point to achieve an equal balance of hot and cold votes.

A major drawback with such participatory approaches is their dependence on ongo-
ing user feedback. Research into user engagement in smart energy systems suggests
that users tend to lose interest in such systems and participation drops over time [Har-
greaves et al. 2013; Snow et al. 2013]. For participatory approaches one can expect
diminishing confidence in their decisions over time which is addressed by prompting
users to provide feedback in some approaches [Shetty et al. 2015]. This however might
be bothersome to the users and raises concerns about the real world applicability of
this approach. In contrast, [Purdon et al. 2013] do not actively request feedback from
their users. They assume that the prospect of increased thermal comfort is sufficient
to keep users engaged. In practice however, as long as a reasonable level of comfort is
sustained, user engagement is still likely to drop [Yang et al. 2014]. Using the example
of the Nest learning thermostat, Yang et al. show that users become so disengaged
that malfunctions of the system go unnoticed [Yang et al. 2014].

To overcome these issues, we propose a thermal comfort model that learns user pref-
erences from minimal feedback. By learning an actual model of user comfort rather
than a single comfort range, the model is able to accurately predict user comfort in
varying surrounding conditions.

3. THE BAYESIAN COMFORT MODEL

We now introduce our personalised thermal comfort model. Our model uses a Bayesian
network to learn users’ preferences in order to predict their optimal comfort temper-
ature and comfort vote, for example on the ASHRAE 7-point scale, at any given time.
We combine the human-body centered approach of static models with the outdoor en-
vironment based approach of adaptive models into a more general and more precise
model. In more detail, our model consists of three components: one to calculate the
user’s optimal comfort temperature based on a range of different factors, one to trans-
late the comfort temperature into a vote on the current thermal environment and one
that calculates the current influence of adaptations on the user’s optimal comfort tem-
perature. The outputs of the model are the user’s optimal comfort temperature Topt,
describing the temperature at which the user feels most comfortable, the user’s vote
Tvote, quantifying how dissatisfied a user is with the thermal environment and the
user’s thermal sensitivity γv, describing how much the actual temperature can deviate
from the user’s optimal comfort temperature.

Our model combines the static model, stripped down to reliable, easily obtainable
inputs (namely the operative temperature and humidity), with an extension of the
adaptive model to account for behavioural adaptations as well as seasonal adaptations
[de Dear and Brager 2002]. To transform it into a Bayesian network we simplify re-
lationships between variables to those that either increase or decrease the comfort
temperature. As a result, the comfort temperature is calculated by adding and sub-
tracting different factors from a neutral temperature of exposition denoting the user’s
preferred temperature when all other factors are eliminated.

For simplicity, the model has been broken down into two parts: the general comfort
model (Figure 1) and its adaptive parts (Figure 2). The general comfort model contains
the main equation for calculating the comfort temperature as well as the transfor-
mation of the comfort temperature into a user vote and will be discussed in detail in
Section 3.1. The adaptive parts of the model show the detailed calculation of the influ-
ence of adaptive measures and are explained in Section 3.2. Table II lists the different
types of nodes and variables in the figures and explains their meanings.
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SYMBOL MEANING

Latent Variables are variables that cannot be observed directly and need
to be inferred.

Observed Variables are variables that can either be observed directly or
calculated using variables without further relevance for the model.

Model Parameters are variables that directly describe user preferences
and are learned by the model. Model parameters are modelled as a Gaussian
with a prior mean and precision. The priors for the mean have a Gaussian
distribution, the priors for the precision a gamma distribution.

Noisy Variables are expected to be noisy due to their user-centric nature.
To compensate for such noise, Gaussian noise with a fixed precision is added
to such variables.

Factors define the operation which is used to calculate a variable (outgoing
edge) based on the factor’s inputs (incoming edges).

Plates denote sets of variables and their respective observations. The num-
ber of observations is denoted by the letter in its bottom right corner.

γvar Variables named γvar describe the user-specific scaling for variable “var”.

varγ The user-adjusted value of variable “var” scaled with its γvar counterpart.

as Describes seasonal adaptations (such as acclimatisation).
ab Describes behavioural adaptations (such as increasing clothing).
a The sum of all adaptive measures taken by the user.
h Relative humidity indoors.

Topt Optimal (= most comfortable) indoor temperature for a user.
T , Top Operative indoor temperature.
Tout Outdoor temperature.
Tdiff Difference between Top and the user’s optimal temperature Topt.
Tvote The user’s vote on the thermal environment.
ρ Heating (ρr) or cooling (ρc) ratio.
ξ Maximum energy consumption of heater (ξr) or cooler (ξc).
R Heater output (in ◦C/hr).
C Cooler output (in ◦C/hr).
Φ Leakage rate (in 1/hr).

lb and ub lower and upper bound of the comfort range.
γt Energy consumption at time slot t (in kWh).

Table II: Model notations and nomenclature

3.1. The General Comfort Model

The general comfort model, shown as a factor graph in Figure 1, contains variables
which directly influence the user’s optimal comfort temperature and the resulting
votes. It consists of the calculation of the user’s optimal comfort temperature Topt and
the resulting comfort vote Tvote. The optimal comfort temperature represents the tem-
perature at which a user feels most comfortable and is comparable to the temperature
calculated with adaptive models. The model has two different plates, K and N. Plate N
contains all training observations that include user feedback. These are used to train
the model and learn its parameters. In practice, a training observation would be cre-
ated as soon as the user provides feedback (for example by manually adjusting the set
point). Plate K contains observations used for inferring other variables. These are cre-
ated by the heating system itself when it has to decide on a set point temperature. As
opposed to training observations, inference observations do not include user feedback.

The general model can be split up into two different parts: the part calculating the
optimal comfort temperature and the part calculating the resulting vote by the user.
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γhh h · γh

hγ

γa a · γa a

aγ

T ∗

T ∗ − aγ − hγ

ToptTop Top − Topt

Tdiff γvTdiff · γv

Tvote

K

N

Fig. 1: The general comfort model

The former consists of all variables and factors above Topt, the latter consists of all
variables on the same level or below Topt.

3.1.1. Calculating the optimal comfort temperature. The optimal comfort temperature, Topt, is
calculated as a combination of the base temperature, T ∗, adaptations by the user, aγ,
and effects of humidity, hγ. The base temperature, T ∗, describes the user’s comfort
temperature in neutral conditions where influences of other factors are either negligi-
ble or cancel each other out. Humidity lowers the comfort temperature as the higher
the humidity, the less efficiently the body’s natural cooling mechanism through evapo-
ration of sweat works. As for adaptations, there are two cases: those to gain heat and
those to lose heat. The former (e.g. adding clothing or increasing activity) allow a lower
operative temperature. In contrast, the latter (e.g. turning on a fan) allow higher oper-
ative temperatures. The two different kinds of adaptations are represented by positive
(heat gain) and negative (cooling) values of aγ.

The three parameters, T ∗, hγ and aγ, are user-specific. While T ∗ is a standalone vari-
able, adaptation, aγ, and humidity, hγ, are scaled with user-specific scale factors (γa

and γh respectively) of their observed or calculated counterparts (a and h respectively).
The unscaled adaptation value a is based on a general adaptation formula that will be
further described in Section 3.2. The unscaled humidity h describes the measured rel-
ative humidity inside the room.

3.1.2. Calculating the user’s vote and comfort range. Thermal comfort is assessed as the de-
viation of the actual temperature from the user’s optimal comfort temperature as sug-
gested by [Rogers et al. 2011]. The vote Tvote on the current thermal environment is
therefore based on the deviation Tdiff of the operative temperature Top from the optimal
comfort temperature Topt. The operative temperature is preferred in thermal comfort
modelling as it incorporates radiated heat. It can be calculated as a combination of air
temperature and mean radiant temperature. The absolute deviation is translated into
a vote by multiplying it with a scaling factor describing the user’s thermal sensitivity
γv, which can be learned from data. By manually setting the scaling factor, various
common scales, such as the ASHRAE 7-point scale, can be supported by the model. By
learning it, the model can compensate for different thermal sensitivities of users.
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Depending on the scale used, the thermal sensitivity γv in conjunction with the op-
timal comfort temperature Topt can be used to calculate the user’s comfort range. The
ability of inferring a comfort range rather than a single comfort temperature is crucial
to our heating algorithm which utilizes said ranges to reduce energy consumption of
the HVAC system. In case of the ASHRAE 7-point scale, ASHRAE standard 55 de-
fines that the vote can deviate by 0.5 points from the neutral point 0 without causing
noticeable discomfort to the user. This means that all temperatures with a predicted
mean vote (equivalent to Tvote) between −0.5 and 0.5 can be considered comfortable for
the user. Therefore, we base our calculations of a user’s comfort range on these val-
ues. Rearranging the calculations shown in Figure 1 allows to calculate the operative
temperature Top depending on the desired user’s vote:

Top =
Tvote

γv

+ Topt (2)

The lower bound lb of the comfort range can be obtained by setting Tvote = −0.5. Re-
spectively the upper bound ub can be obtained by setting Tvote = 0.5.

3.2. Adaptive Components

To cover a variety of adaptations by the user, the model includes a detailed section for
adaptations (see Figure 2). As opposed to existing adaptive models, our model accounts
for both psychological and behavioural adaptations. Physiological adaptations by the
human body are not modelled separately. This is because some physiological adapta-
tions like shivering are reactions to extreme conditions which should not occur when
using our model to control the HVAC system. Other physiological factors (e.g. sweat-
ing) are already covered by the human-body centered approach of the static model.

Psychological adaptations are hard to quantify [Liu et al. 2012]. Because of this, we
restrict psychological adaptations to seasonal adaptations as, which reflect different
expectations for the thermal environment by the user depending on the current season.
For example, during the colder seasons, people are expecting colder temperatures and
are therefore more willing to accept them [de Dear and Brager 2002]. This is modelled
by equation (3), which takes the current day of the year ty as an argument:

as = cos
2πty
365

(3)

During colder seasons, the equation yields negative values up to −1 while during
warmer seasons it yields positive values up to values of 1. Since seasonal adapta-
tions represent long-term adaptations throughout the year, a time resolution of one
day is sufficient to accurately cover such adaptations. To adjust for conditions in the
southern hemisphere, the result can be multiplied with −1. As the amplitude of this
effect might vary between different people and latitudes, the values are scaled with
a learned factor γas

. For example, in tropical regions where temperatures stay fairly
constant throughout the year we expect this scaling factor to assume a low value.

Behavioural adaptations are modelled similar to how existing adaptive models do
this: as a linear relationship with the outside temperature Tout. In contrast to existing
models, the slope γab

of this relationship is learned from user feedback. Further, the
base temperature is omitted, as it is already included in the core model as T ∗.

The overall adaptation a is calculated by adding up both user-corrected parts for
seasonal adaptations aγs

and behavioural adaptations aγb
.

3.3. Learning and Inference

As mentioned earlier, the model is implemented as a Bayesian network to add learn-
ing capabilities. Bayesian networks are directed acyclic graphs that represent sets of
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γabTout γab
· Tout

aγb

γas
asγas

· as

aγs aγs
+ aγb

a
K,N

Fig. 2: Adaptive part of the comfort model

random variables and their conditional dependencies [Pearl 1986] . We implement the
model using the free library Infer.NET [Minka et al. 2014], and perform inference us-
ing expectation propagation (EP) [Minka 2001]. EP is a more general version of belief
propagation (also known as sum-product message passing) that works with continuous
variables of different probability distributions. The algorithm works on factor graphs
where messages containing information about the current expected probability distri-
bution of a node are sent between neighbouring nodes and factors.

Learning is performed by including the model parameters describing a user, namely
T ∗,γv,γh,γa,γas

and γab
, as additional nodes in the network. Performing inference for

model parameters yields the updated, user-specific values for the given training data of
the user. Replacing the priors of the model parameters with the learned values results
in a user-specific model, based on which the optimal comfort temperature (Topt) and
user votes (Tvote) can be obtained.

To achieve best results, model parameters are fully relearned with every new train-
ing observation. As opposed to on-line learning where an up-to-date model is kept and
constantly updated based on the newest observation, relearning the entire model from
scratch yields better results at the cost of speed [Bauer et al. 1997]. The speed trade-off
is acceptable as relearning model parameters is only triggered by new training obser-
vations, which we expect to happen about once a day during the initial training phase
and less frequently afterwards. On our test machine (Intel i5 3570), training the model
took about 200ms for 50 observations. While smart thermostats have less powerful pro-
cessors (ARM Cortex A8 in the Nest thermostat), training the model should still be in
the range of only a few minutes at worst. Compared to how long the heating takes, the
time to update the model is insignificant. Furthermore, single updates usually only
result in small changes to the model, so updates to the model are not urgent.

4. AN OPTIMAL HVAC CONTROL ALGORITHM

In this section, we introduce our optimal HVAC control algorithm that uses the
Bayesian Comfort Model (BCM) introduced in Section 3 to minimise energy consump-
tion of the HVAC system while maximising user comfort. As opposed to other ap-
proaches that try to reduce energy consumption by increasing the efficiency of the
HVAC system [Wei et al. 2015], our approach focuses on optimising the actual tem-
perature set point to reduce the temperature gradient between inside and outside.
Using the comfort model, the algorithm is able to precisely assess how much it can
let the indoor temperature follow the outdoor temperature without causing discomfort
to the users. We model the HVAC scheduling problem as a linear programming prob-
lem of creating a profile of set-point temperatures for different time-slots of the day
that minimises energy consumption. Using linear programming, we are able to calcu-
late optimal HVAC schedules that require as little energy as possible. The set-point
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temperatures are constrained to stay within the users’ comfort ranges to guarantee a
comfortable environment. The algorithm makes use of forecast weather data to predict
comfort ranges and indoor temperatures.

4.1. Modelling Heating and Cooling Dynamics of the House

To accurately plan set-point temperatures, the HVAC control algorithm needs to be
able to predict how switching on the heating or air conditioning will affect the room
temperature. In this paper, we built upon a simple model introduced by [Rogers et al.
2013]. We chose this model over other more sophisticated models (for example [Tang
et al. 2014]) due to its simplicity. Being a linear model it can be included into the opti-
misation with only minor increases in runtime. The model describes the HVAC system
and room using a leakage rate Φ ∈ R+ (in 1/hr) and a heater output R (in ◦C/hr).
The leakage rate Φ describes the rate at which the indoor temperature adjusts to the
outdoor temperature Text. The heater output describes by how many ◦C the indoor
temperature increases per hour when the heater is running at full power. Rogers et al.
limit their model to heating only. To support air conditioning, we have to add a third
variable, the cooling rate C (in ◦C/hr), which describes by how many ◦C the indoor
temperature decreases per hour when the air conditioning is running at full power.

Most modern thermostats control the HVAC system by switching it on and off at
varying frequencies to achieve different intensities. For more efficient optimisation,
we simplify this behaviour and allow the HVAC system to run at fractions of its full
power. We therefore introduce a heating ratio ρtr ∈ [0, 1] and cooling ratio ρtc ∈ [0, 1],
describing at what fraction of their maximum output the heating and air conditioning
are running. In practice, for a system where the heater or AC can either run or be
switched off, a ratio of 0.5 in a time interval would mean that the heater/AC oscillates
equally between on and off, effectively heating at half its maximum capacity. As a
result, the indoor temperature T t+1 in the house at time t + 1 with a heater output R
and cooler output C is calculated as follows:

T t+1 = T t +
[

ρtr R− ρtc C − Φ
(

T t − T t
out

)

]

∆t (4)

4.2. Formalization as a Linear Program

The main task of the HVAC control algorithm is to create an HVAC schedule that min-
imises the energy consumption of the HVAC system, while keeping the indoor tem-
perature within the user’s comfort range. For the formulation as a linear program, we
add constraint 5 to the operative indoor temperature Top, limiting its values to stay
between the lower bound lb and upper bound ub of the comfort range.

lb ≤ Top ≤ ub (constraint 5)

By including user comfort in the form of a constraint rather than adding it as another
objective, the overall objective of the algorithm reduces to minimizing only the energy
consumption. For that, the algorithm needs to be able to calculate the energy usage
of the HVAC system. The energy consumption is mostly proportional to the heating
ratio and cooling ratio. When heating at 50% of its maximum capacity, the energy
usage can be expected to be close to 50% of the heater’s maximum power consumption
as well. We therefore model the energy consumption as the heating ratio or cooling
ratio, multiplied by the maximum power consumption of the heater (ξr in kW) or air
conditioner (ξc in kW). The overall energy consumption γ

t (in kWh) in a time-slot of
length ∆t ending at time t is calculated as follows:

γt = (ρtr ξr + ρtc ξ
c) ∆t (6)
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In some cases, it can be beneficial or even necessary for the algorithm to plan ahead
and look at several time slots simultaneously. For example, when dealing with large
temperature gradients between inside and outside, the HVAC system might not be
powerful enough to keep the indoor temperature within the user’s comfort range. This
issue can be addressed by pre-heating or pre-cooling the house at an earlier time.
Another example are variable hourly price rates for energy that are becoming more
common due to the development of the smart grid. The algorithm should be able to pre-
heat or pre-cool the house during times when energy is cheap. To allow the algorithm
to plan ahead, we consider several time slots t ∈ S simultaneously and minimise the
aggregated energy consumption. S denotes the set of all time slots considered in the
current computation. The resulting objective is shown in equation 7.

min(

S
∑

t=0

γt) (7)

To factor in variable energy prices, it is sufficient to multiply each single energy con-
sumption with the energy price pt at that time slot. The objective function for minimiz-
ing cost is shown in equation 8.

min(

S
∑

t=0

γt pt) (8)

In the next section, we empirically evaluate how accurate predictions about user’s
comfort ranges done by the BCM are. Using simulations, we assess the energy saving
potential the BCM offers in combination with our HVAC control algorithm.

5. EVALUATION

In this section, we evaluate the accuracy of predictions made by the Bayesian Comfort
Model (BCM) and the energy savings achieved using our HVAC control algorithm. The
model’s accuracy is evaluated using data sets from the publicly available ASHRAE
RP-884 database and data collected in a deployment carried out by us. Energy savings
are assessed using simulations. The thermal properties of a typical house and HVAC
system are chosen based on data presented by [Rogers et al. 2013].

5.1. Experimental Setup

To show the validity of our comfort model and emphasise the need for more person-
alised models, we empirically evaluate it and, using simulations, we demonstrate our
heating algorithm’s energy saving potential when using the comfort model. We use
data from existing longitudinal studies from the ASHRAE RP-884 project and from a
deployment conducted by us. The ASHRAE RP-884 database is a standard database
used to evaluate and create thermal comfort models and contains a number of differ-
ent independent thermal comfort studies. In the studies we chose, users were asked
to provide feedback on their thermal comfort using the ASHRAE 7-point scale. Since
the BCM works with continuous feedback scales, in our own deployments, we use a
modified version of the 7-point scale that uses continuous values ranging from -3 to 3
rather than discrete values. In an attempt to improve the interaction with the heat-
ing system for the user and get more accurate feedback, we test an alternative comfort
scale. Rather than asking users how they feel, potentially disregarding that some users
might prefer to feel slightly warm or cold, we use the desired change scale asking users
how they would like the temperature to change.

In addition to information about indoor climate conditions and user votes, the model
also requires data about outdoor weather conditions. To obtain this data, historical
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PAKISTAN ATHENS BAY AREA, CA SOUTHAMPTON

Subjects (s, w) 16, 15 31, 0 271,220 11, 12
Observations 50-150 65 up to 7 up to 20

Time-span 1 week 10 - 60 days 5 days 14 - 28 days
Separate days 5 - 7 up to 10 up to 5 up to 5

Consecutive days yes some yes some
Feedback scale {−3..3} {−3..3} [−3, 3] [−3, 3]

Ventilation NV HVAC NV & HVAC NV & HVAC
Space type both office office office

Table III: Description of the different data sets. Subjects means the number of occu-
pants during summer (s) and winter (w), observations the observation count for each
occupant, separate days describes on how many separate days data was taken for each
user and space type the usage of the building (office or domestic).

records for the locations of the studies was downloaded from Weather Underground1. If
no historical records for the year and location of a study were present, averages of other
years were used. This was the case for most data points in the Pakistan and Athens
data sets. For both, historical records from 2001 to 2014 were used. If no records for
the exact hour were present, we performed a linear interpolation using the previous
and next data point available. This was mainly the case for the city of Quetta in the
Pakistan data set where for most dates only data for every six hours was available.

We test the model’s accuracy with respect to the amount of training observations.
Overall, we test our model on 576 different individuals in 10 different cities. The pa-
rameters of each data set are shown in Table III. Overall, these studies cover a wide
range of scenarios like different seasons, ventilation systems and space types.

In the following sections we introduce the used data sets in more detail and explain
the design and setup of our deployment.

5.1.1. The ASHRAE data sets. The Pakistan data set contains data for the cities of
Karachi, Peshawar, Multan, Quetta and Saidu [Nicol et al. 1994]. We have omitted
data from Saidu due to extreme values (e.g. indoor temperatures of 14◦C during win-
ter) that should not occur in practice when using an automated HVAC system. The
7-point scale used in the data set is not suitable for such extreme conditions since no
fine-grained feedback can be given in such extreme conditions. The Bay Area data set
contains data for five different cities in the area: San Francisco, Berkeley, Palo Alto,
San Ramon and Walnut Creek). In each data set, the indoor thermal environment is
described by multiple values, of which we used the operative temperature, relative
humidity inside the building, date and time. Due to the low observation count per in-
dividual but high number of different individuals, the Bay Area data set was mainly
used to show the general applicability for a wide range of different users rather than
to assess its final solution quality.

5.1.2. Thermal Comfort study in Southampton. To gather more data and test alternative
feedback scales, we conducted a deployment at the University of Southampton, UK,
to measure people’s thermal comfort levels. We developed posters inviting people to
log how they feel about their thermal environment. On each poster further featured
a temperature logger measuring the temperature every 4-10 minutes. We deployed a
total of 172 of these posters at various locations around (1) a university library and
(2) several offices on one floor of a naturally ventilated office building. Each poster
featured the title “How’s the temperature?”, a large QR code and a URL address unique

1Weather Underground - http://wunderground.com
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Poster ID: 100

How is the Temperature?
We want to know about your thermal comfort.

Scan the QR code or visit the URL below to provide feedback on

temperatures in this building:

http://comfort.tips/uos/100

Temperature Logger

(100)

If you have any questoins regarding this study contact email@email.com

(a) The poster asking for feedback. (b) The web interface to provide feedback

Fig. 3: The user interface of the study

to each poster (Figure 3a). Scanning the QR code or following the URL linked the user
to a simple web-interface (Figure 3b) where they could log their thermal comfort.

There were two sliders on the user interface, the first representing the ASHRAE
7-point scale, the second our own desired change scale. Moving the sliders caused the
label above to adjust to the respective value on the scale. For the ASHRAE scale, the
labels were: I’m feeling [very cold, cold, slightly cool, neutral, slightly warm, warm,
hot]. Under the assumption that some people might like it to be slightly warm or cold,
we added the requested change scale, asking users how they want the temperature to
change. This scale uses the following labels: I want it to [be much colder, be colder, be
a bit colder, stay as it is, be a bit warmer, be warmer, be much warmer]. The labels
correspond to values between -3 and 3. Compared to the ASHRAE scale, this scale is
inverted, meaning that negative values correspond to positive values on the ASHRAE
scale and vice versa. We also allowed users to mark whether one of the following things
affected their thermal comfort: cold draft, heat from radiators and heat from the sun.
To bottom of the page featured a comment box where users could list other things
causing them discomfort. Feedback was linked to individual users by assigning each
user an anonymous, unique ID that was stored in a cookie in the browser.

Office deployment. In the office deployment, we positioned 29 posters and three hu-
midity sensors in 8 offices and 3 hallway locations around a single floor of a natu-
rally ventilated office building with occupant-controlled windows and normal radia-
tors. Some of the smaller offices further featured portable, manually controlled air
conditioning units. Posters were deployed over a two-week period between February
and March 2016. Occupant numbers in offices ranged from 2 people (1 office) to 4-10
people (4 offices) to more than 20 (3 large open plan offices). The offices were occupied
by university administrative workers, who had been informed by email in advance
of the deployment. Following the deployment, we further conducted semi-structured
interviews with some of the occupants to find out more about their experience with
thermal comfort, the deployment and its user interface.
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OFFICE LIBRARY

Votes logged 167 990
Overall Users 57 688
Eligible Users 12 23

Processable Users 12 11
Processable Votes 98 61

Table IV: Statistics of votes and users in the deployments

Library deployment. In the library deployment, we positioned 143 posters over all 5
floors of the library. At the time of the deployment, the library was mostly ventilated
with forced natural ventilation with some small areas being equipped with air condi-
tioning. Since students were not approached directly with information about the study,
the posters and loggers were deployed for 5 weeks between May and June 2016, giving
students enough time to discover and familiarise themselves with the study. Posters
were positioned to reach a representative geographic coverage for temperature and to
be sufficiently visible and accessible to occupants in most parts of the library. Similar
to the office deployment, three posters were equipped with humidity loggers. These
posters were positioned on the first, third and fifth floor of the library. The library was
mostly occupied by students, who due to wishes of the library were not approached
directly or informed via email about the study. For the same reasons, no interviews
were conducted following the library deployment.

Processing of results. In order to use the data obtained from these deployments for
validating our comfort model, we had to process parts of it first. Since the model re-
quires multiple observations per user, we discard all users that did not provide enough
feedback to provide meaningful results. We set this threshold to be five observations
or more. This value was decided based on evaluations on the ASHRAE data set, in
which our model requires around four training observations to outperform the other
models. Having five or more observations per user allows to train the model to that
point while still leaving at least one additional observation for evaluation. Users who
have provided five or more observations are considered to be eligible users.

In case of the library deployment, some additional filtering was required as it co-
incided with both a heat wave in the UK as well as exam periods. The unusually
high outdoor temperatures together with high occupancy due to students preparing
for their exams lead to very high temperatures (28◦C and higher) in some parts of the
library. As a result, a lot of users only provided extreme votes of 3 (ASHRAE scale)
or -3 (our scale). Such situations should not occur in a system controlled using our
heating algorithm and comfort model, since the model would suggest lower set-points
after the first extreme vote. We therefore only considered users where extreme votes
would make up 50% or less of the feedback. Some users further provided feedback too
frequently, with votes just being minutes apart from each other, potentially leading
the algorithm to overfit to these conditions. We therefore average all votes that are
less than 15 minutes apart from each other. Users with five or more remaining votes
after this reduction are considered to be processable users. Table IV gives an overview
over how many users participated in each deployment, how many votes were logged
and how much of the data was processable in the end.

5.2. Model Accuracy

We benchmark our model’s prediction accuracy against the existing, standardised
ASHRAE comfort models described in Section 2: 1. Static comfort model (PMV) by
[Fanger 1970] 2. the adaptive model by [de Dear and Brager 1998] The approaches
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DATA SET PMV ADAPTIVE

Pakistan 27% (0.39) 5% (0.055)
Athens 31.2% (0.363) 25.9% (0.28)

Bay Area (s) 23.8% (0.259) 29.2% (0.342)
Bay Area (w) 18% (0.216) 7.2% (0.076)

Southampton (ASHRAE scale) 45.8% (0.931) 27% (0.406)
Southampton (our scale) 55.4% (0.87) 43.1% (0.529)

Overall 25.8% (0.314) 13.2% (0.15)

Table V: Accuracy gains (difference of the RMSE in parentheses) for the predicted Tvote

of our model vs. PMV and adaptive models after up to 20 observations

were compared based on the RMSE of their predictions for Tvote. Using the RMSE
allows to draw conclusions about both, absolute performance by looking at the ab-
solute values as well as relative performance by comparing the RMSE of different
approaches. While the PMV (similar to Tvote) for the static model was provided with
the data sets, for our own deployment we manually computed it using the equations
provided in the ASHRAE standard. We chose values of 1.1 for the metabolic rate, cor-
responding to the activity of “typing”. For the office deployment, the clothing level was
set to 1.0 (typical winter indoor), for the library deployment to 0.5 (typical summer
indoor). We use the model’s default value of 0.1 m/s for the air velocity, as this was
not measured in our deployment. As the adaptive model only outputs an optimal com-
fort temperature Topt instead of a vote Tvote, we need to calculate the vote. To do so,
we multiply the difference between the operative temperature Top and optimal comfort
temperature Topt by a thermal sensitivity (see equation 9).

Tvote = 0.29(Top − Topt) (9)

We chose a value of 0.29 for the thermal sensitivity, which corresponds with values
learned by our model as well as values found by [de Dear and Brager 1998].

The data was divided by single individuals into separate subsets. For those subsets,
cross validation was performed using each single data point as an inference observa-
tion in separate evaluation runs, using random data points from the remaining data
as training observations. For each evaluation run, different amounts of training obser-
vations, increased in steps of 1, were tested. For data sets with many data points per
individual (Pakistan and Athens), up to 20 training observations were used. For the
Bay Area and Southampton, the amount was increased up to the maximum possible
observation count of a user (number of observations - 1).

The evaluation for a single data point consisted of two steps. First, the model was
trained using the training observations. Following this, feedback for different evalu-
ation points was inferred and the squared error between the prediction and actual
feedback was logged. From all single results, the RMSE and standard error σ were
calculated, which will be discussed in the next section.

5.2.1. Empirical results. Table V shows accuracy gains for predictions of Tvote achieved
by our model compared to the PMV and adaptive model. The poor performance when
having less than three observations can be explained by inaccurate priors that were
estimated manually by us after the first initial simulations (see Table VI for the val-
ues chosen for the priors). One can see that apart from the Pakistan data set (see
Figure 4a), our model achieves significant accuracy gains (7-55% smaller prediction
error for Tvote) in comparison to the other approaches (Figures 4b and 4c). We identify
two main reasons for the accuracy gains: using a more complete model and adapting to
individual users’ preferences. As opposed to the other approaches, the BCM includes
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Fig. 4: RMSE of predicted vote vs. observation count (with 2σ confidence interval)

both static as well as adaptive components at the same time, yielding an overall more
accurate representation of thermal comfort. However, even with the more complete
model, individual users’ preferences may still vary. By learning from user feedback,
the BCM compensates for those varying preferences. The lower accuracy gains on the
Pakistan data set can be explained by the fact that this data set contains many spu-
rious 0 votes regardless of the thermal environment, possibly due to the participants
misunderstanding the trial protocol, which hinders the learning process. Further, our
model seems to benefit from the continuous scale used in the Bay Area data set, in
which it reached a similar solution quality after only 4 observations as opposed to 6-8
in the other data sets (see Table V). In general, our model typically converges after
10 observations (see Figure 4c), but starts outperforming the other models after 2 - 4
observations. We tried to incorporate measurements for draft and metabolic rates pro-
vided in the ASHRAE data sets into our model. Including these parameters however
did not yield any notable improvements.

Table VI shows the value range, average µ and standard deviation σ of the learned
parameters. Apart from seasonal adaptations, γas

, one can see that all parameters
are well spread out over their value ranges, indicating their importance to represent
individual users accurately. The low variance in values for γas

is a result of the data
sets being limited to either winter or summer. In a data set spanning over longer times,
we expect this parameter to have a greater impact on users’ comfort levels. One can
see that users’ thermal sensitivities, γv, vary a lot. As we will show in section 5.3, our
heating algorithm’s ability to reduce energy consumption is highly dependent on the
thermal sensitivity (as it determines the width of the comfort range), stressing the
importance of learning this particular parameter.

Comparison of different temperature scales. In addition to the general evaluation of
the prediction accuracy of our model, we also evaluate the effect different feedback
scales have on the prediction’s accuracy. Figure 5 shows the model’s prediction accu-
racy using the standard ASHRAE 7-point scale (Figure 5a) as well as using the re-
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PARAMETER VALUE RANGE µ σ PRIOR

T ∗ [19.86, 25] 22.02 0.99 21
γv [0.006, 0.96] 0.29 0.23 0.3
γh [2.6, 3.37] 2.9 0.135 3
γa [0.034, 0.91] 0.61 0.25 0.5
γas

[0.93, 1.32] 1.04 0.046 1
γab

[−0.43, 0.063] -0.29 0.116 -0.3

Table VI: Learned parameter statistics (µ = average, σ = standard deviation)
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Fig. 5: Comparison of different feedback scales (with 2σ confidence interval)

quested change scale described in section 5.1.2 (Figure 5b). Despite the low number
of participants and resulting large error, one can see that using our requested change
scale seems to lead to much lower prediction errors in all comfort models. Our scale
leads to reductions in prediction error of up to 22.7% lower for the PMV, 18.4% lower
for the adaptive model and 36.4% lower for our comfort model.

A possible explanation for this is that, as explained in section 5.1.2, the ASHRAE
scale does not correct for general users’ preferences of finding slightly warm or cold
temperatures preferable to a neutral environment. On average, the differences of
users’ votes between the scales was 0.54, suggesting that users often don’t necessarily
aim for a “neutral” environment.

5.3. Energy Savings

To assess the theoretical energy savings of our algorithm when using the BCM, we
simulate households and their HVAC systems. We evaluate two main metrics: energy
consumption and user discomfort. Energy consumption is calculated as the aggregate
of the products of heating and cooling ratios with the maximum energy consumption
of heater and AC (similar to equation 6). We chose values of ξr = 8kW and ξc = 12.5kW
for the maximum energy consumption of the heater and AC which correspond to real
values observed in the Pecan Street data set, a data set that containing disaggregated
household energy data. Running times are calculated by multiplying the heating and
cooling ratios (ρtr and ρtc) at time t with the length of a time step ∆t. User discomfort is
defined as the aggregated discomfort of each user over each time step of the simulation.
For a time interval t, user discomfort is calculated as the product of the deviation of the
indoor temperature from the user’s comfort range and the length of the time interval
∆t. We simulate 1000 households with either 2 or 3 occupants per household with an
average of 2.4 occupants per household which is the average number of occupants in a
household in OECD countries. Users are simulated using random configurations of our
comfort model where parameters are drawn from the distributions shown in Table VI.
To cover a variety of climates and seasons, households were simulated over the time
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Fig. 6: Energy saving potential and discomfort

period between 1st of January 2014 to the 31st of December 2015 in the following cities:
Austin, TX, USA; Brussels, Belgium; Cape Town, South Africa; Moscow, Russia; San
Francisco, CA, USA; Seattle, WA, USA; Shanghai, China; Sydney, Australia.

We define two main benchmarks for our model: a fixed set-point heating system
(FSP) and a fixed comfort range (FCR) system. The FSP emulates a typical thermo-
stat that keeps the indoor temperature as close as possible to a user defined set point.
As real thermostats usually fluctuate slightly around the set-point temperature, we
allow the indoor temperature to deviate by up to 0.2◦C from the set point tempera-
ture. We choose the set point to be the average comfort temperature of all occupants
throughout the simulations (23◦C). Using these set point temperature and deviation
values, the algorithm keeps the indoor temperature between 22.8◦C and 23.2◦C. This
is realized by defining this as the lower and upper bounds (lb and ub) of the comfort
range (see Section 4.2). We use the FCR to demonstrate the benefits of using comfort
ranges over a single comfort temperature. Similar to the FSP, the FCR is implemented
by setting lb and ub to static values. For the FCR, we allow 0.5◦C deviation from the
base temperature, resulting in a temperature range from 22.5◦C to 23.5◦C.

5.3.1. Dealing with multiple occupants. In practice, most houses will be occupied by mul-
tiple occupants simultaneously. Each of these occupants will have their own configu-
ration of the comfort model, resulting in each occupant having their own personalised
comfort range. As the algorithm only optimizes for a single comfort range, we need to
merge all occupants’ comfort ranges. We implement a simple comfort compromiser that
aggregates comfort ranges by taking the maximum of all occupants’ lower bounds and
the minimum of all occupants’ upper bounds. There can be cases when not all comfort
ranges overlap, leading to the maximum lower bound being larger than the minimum
upper bound. In that case there is no way to guarantee a comfortable environment for
every user at all times. We resolve such conflicts by using the next highest lower bound
or next lowest upper bound. This is repeated until an overlap is found.

5.3.2. Results. Figure 6a shows the resulting relative running times of heater and air
conditioning units depending on the comfort model used. One can see that the FSP
and FCR require more energy for both, heating and cooling. In the case of heating, the
FCR uses about 6.4% more energy than the BCM, the FSP about 10.5%. For cooling,
the FCR increases energy consumption by about 15.1%, the FSP by 39.4%. Cooling
times were about 10 times lower than heating times, meaning that the great differ-
ence for cooling only has a minor effect on the overall energy consumption which was
increased by 7.3% with the FCR and by 13.6% with the FSP. The FSP used about 5.8%
more energy than the FCR, showing the positive effect that larger temperature ranges
have on the algorithm’s energy saving capabilities. Compared to a real thermostat, we
expect the energy savings to be slightly higher as our algorithm is utilizing even the
narrow comfort range in the FSP to reduce energy consumption. Figure 6b shows the
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average discomfort experienced per user per day. The BCM leaves about 0.26◦Ch per
day, meaning that on average, users experience the equivalent of an hour of 0.26◦C
from their comfort range per day. One can see the BCM decreases discomfort by about
24.8%. The remaining discomfort in our model mainly results from non-overlapping
comfort ranges of occupants in the same building which cannot be avoided.

6. CONCLUSIONS

In this work we presented the Bayesian Comfort Model (BCM), an intelligent HVAC
control algorithm using the BCM and proposed the desired change scale to assess
user comfort as an alternative to the ASHRAE 7-point scale. The BCM existing com-
fort models, simplifies them to only require easily obtainable input parameters and
utilises a Bayesian network to learn individual users’ preferences. The HVAC control
algorithm utilizes linear programming to find optimal HVAC schedules that maximise
user comfort while minimizing energy consumption.

Through empirical evaluations using standard data sets and data collected in a new
deployment we showed that our model outperforms existing approaches by 13.2% -
25.8% after a short initial learning phase. We further showed how the model’s per-
formance also benefits from using the desired change scale instead of the standard
ASHRAE 7-point scale. By using the ability to infer additional user parameters such
as thermal sensitivity, our heating algorithm was able to reduce energy consumption
for heating by 6.4% to 10.5%, energy consumption for air conditioning by 15.1% to
39.4% while at the same time reducing user discomfort by 24.8%.
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