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Abstract
Cancer and Alzheimer’s disease (AD) are two common disorders for which the final
pathophysiological mechanism is not yet clearly defined. In a prospective longitudinal study we have
previously shown an inverse association between AD and cancer, such that the rate of developing
cancer in general with time was significantly slower in participants with AD, while participants with
a history of cancer had a slower rate of developing AD. In cancer, cell regulation mechanisms are
disrupted with augmentation of cell survival and/or proliferation, whereas conversely, AD is
associated with increased neuronal death, either caused by, or concomitant with, beta amyloid (Aβ)
and tau deposition. The possibility that perturbations of mechanisms involved in cell survival/death
regulation could be involved in both disorders is discussed. Genetic polymorphisms, DNA
methylation or other mechanisms that induce changes in activity of molecules with key roles in
determining the decision to “repair and live”- or “die” could be involved in the pathogenesis of the
two disorders. As examples, the role of p53, Pin1 and the Wnt signaling pathway are discussed as
potential candidates that, speculatively, may explain inverse associations between AD and cancer.
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An inverse association between cancer and AD
While attending patients in nursing homes where most residents have some type of dementia,
we were puzzled by the observation that a history of cancer was not a common finding among
residents who were demented, whereas many residents that were cognitively normal had had
cancer in the past. This anecdotal observation was followed by a longitudinal prospective study
in which we found an inverse association between cancer and AD [1]. The study was done
using archival data of longitudinal studies of memory and aging study at the Alzheimer’s
disease Research Center at Washington University School of Medicine in St Louis. In these
studies, participants are cognitively evaluated annually with the Clinical Dementia Rating CDR
[2], and a thorough medical history is obtained including a history of cancer, its type, treatment
and date of diagnosis. Results showed an inverse association between cancer and AD.
Specifically, we found that of the 594 participants, who at their first visit had no history of
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cancer, 395 had dementia of the Alzheimer type [DAT] and 199 were cognitively normal. Data
from subsequent visits revealed that the rate of receiving a cancer diagnosis was significantly
slower in the DAT group (p < 0.001). Conversely, of the 249 participants who were cognitively
normal at study entry we found that 50 had a history of cancer and 199 did not. Those with a
history of cancer had a slower rate of receiving a DAT diagnosis with time, although this result
did not reach statistical significance at an alpha level of .05 (p = 0.0600). Cox proportional
hazard models indicated that the inverse relationship between cancer and DAT was not
accounted for by demographic factors such as age, sex and education [1]. These results are in
accordance with previous cross-sectional and case-control studies which report a reduced
prevalence of cancer among individuals with AD [3–8].

The incident cancers in the demented and non-demented groups were similar to those in the
general US population [9]; 57% of all neoplasias in our study were skin cancers, most of them
benign, ~80% basal or squamous cell with the analysis of carcinomas. The survival analyses
were repeated examining the association between DAT at study entry and the development of
skin cancer specifically. When skin cancer alone was analyzed as the dependent variable we
found that, as with all cancers, the rate of skin cancer diagnosis was slower for participants
with DAT compared to non-demented individuals in both the log-rank test (p <0.001) and the
Cox proportional hazard models (p < 0.005; hazard ratios associated with DAT versus no
dementia ranged between 0.22–0.26). Other cancer types were too infrequent in our sample to
be analyzed separately. When combining all non-skin cancers into a single group, the rate of
cancer diagnosis was slower with time for the DAT group, although the difference did not
reach statistical significance (all p>0.05; hazard ratios associated with the DAT versus no
dementia ranged between 0.65–0.83) [10].

The relationship of dementia to the different types of cancers individually (other than skin
cancers) remains to be analyzed in detail, as well as the role of environmental factors. However,
there is an interesting possibility that one or more biological mechanisms may link AD and
cancer. If such a mechanism can be identified, it might lead to better understanding of these
two disorders, as well as strategies to protect us from them. The purpose of this speculative
review is to describe some potential biological links between the development of cancer and
AD.

A common biological mechanism with opposing effects?
The neuropathological hallmarks of Alzheimer’s disease include senile plaques, and
neurofibrillary tangles. Senile plaques consist of extracellular deposits mainly composed of
the beta amyloid (Aβ) peptide. Neurofibrillary tangles are intracellular deposits of an
abnormally hyperphosphorylated tau, a microtubule-associated protein which is involved in
axonal transport and other functions. In addition to amyloid plaques and neurofibrillary tangles,
AD is characterized by extensive neuritic and synaptic degeneration and neuronal cell death.
The type of cell death in AD is still controversial, but it is clear that in AD there is progressive
atrophy of the brain due to cell and synaptic loss. The leading explanation for the pathologic
changes associated with AD is the “amyloid hypothesis” which states that neuronal dysfunction
and death, neurofibrillary degeneration, microglial activation and the full manifestation of
Alzheimer pathology are initiated by Aβ deposition [11]. The abnormal phosphorylation of tau
in AD and other neurodegenerative disorders induces a decreased capability of tau to promote
tubulin polymerization and bind to microtubules [12], leading to a generalized loss of
microtubule stability [13] and eventually retrograde neurodegeneration. Although the amyloid
and tau hypotheses are the favored ones, apoptosis, synaptic loss, or neuronal dysfunction prior
to cell death might also play a role in the physiopathology of AD [14,15].
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Normal tissue function requires that the rate of cell loss is matched by the rate of renewal. The
maintenance of tissue homeostasis is achieved by efficient mechanisms that control genomic
stability to prevent aberrant proliferation [16,17,18]. After DNA damage, intracellular stress
pathways which are able to recognize the damage are activated, and either recruit DNA repair
factors to mend the damage, or induce apoptosis or senescence [19]. In cancer this reparative
process is defective, leading to excessive cell growth. To simplify, cancer is a disorder typified
by uncontrolled, excessive cell growth, whereas conversely, AD and other neurodegenerative
disorders are characterized by progressive dysfunction and eventual loss of neuronal loss.

One possible explanation for why AD and cancer appear to be inversely associated is that both
diseases arise via malfunction of an underlying common mechanism that regulates cell
survival. This hypothetical mechanism could regulate the capability of the cells of switching
the cell machinery from a prone-to-death state (AD phenotype) to a prone-to-survive/grow
state (cancer phenotype). If cells are in the prone-to die state, then neurons will be more
susceptible to cell death under stressors such as Aβ, tau hyperphosphorylation, oxidation,
inflammation, or other unknown risk factors (the AD phenotype). At the same time, cells will
respond to initiating cancer stimuli (UV radiation, for example) by death, reducing cancer
susceptibility. Conversely, if cells are shifted to a survival/growth state, neurons would have
a greater likelihood of surviving if subjected to stressors, while concomitantly becoming more
susceptible to cancer development. Genetic polymorphisms in several key molecules that
determine changes in their activity or variance in their DNA methylation could explain such
opposing effects [20]. Here we discuss the possible involvement of the tumor suppressor p53,
of Pin1 and the Wnt signaling pathway in the pathophysiology of both cancer and AD.

Tumor suppressors in cancer and aging
In tissues with the capability of renewal the repair or regeneration of cells has evolved as an
advantage in terms of increased longevity compared to postmitotic tissues which lack this
capability. However, this versatility to regenerate has the inherent risk of hyperproliferation,
among which the most dangerous is cancer. Thus, together with the renewal capacity that poses
increased longevity there evolved mechanisms to suppress tumor formation [21]. Tumor
suppressors are the main actors of the surveillance mechanism to avoid aberrant proliferation
under normal conditions. Tumor suppressors were given this name because, as regulators of
diverse cellular activities, their loss enhances tumor formation. They regulate cell cycle
checkpoint responses, detection and repair of DNA damage, protein ubiquitination and
degradation, mitogenic signaling, cell specification, differentiation and migration, and
angiogenesis [16]. Tumor suppressors can either eliminate potential cancer cells by inducing
programmed cell death (apoptosis), or alternatively, they can induce permanent withdrawal
from the cell cycle (cellular senescence). Apoptosis could give rise to a depletion of
irreplaceable postmitotic cells in nonrenewable tissues; and in depletion of proliferating or
stem cell pools in renewable tissues. In the same way, senescence could deplete tissues of
proliferating or stem cell pools, resulting in the accumulation of senescent cells. Thus, tumor
suppressor mechanisms may be an example of evolutionary antagonistic pleiotropy [21,22,
23], that is, they promote early-life survival by preventing the development of cancer, but
eventually limiting longevity.

The p53 gene is the prototypical tumor suppressor and its pathway is inactivated in most human
cancers [18]. p53 is at the hub of numerous signaling pathways that are triggered in response
to particular stresses and in this way is a major regulator of cellular stress. p53 can be described
as a stress response gene; its product (the p53 protein) acts to induce apoptosis or cell-cycle
arrest in response to DNA damage, thereby maintaining genetic stability in the organism by
transcriptional and nontranscriptional mechanisms [18]. Mice engineered to be deficient in
p53 are developmentally normal, but susceptible to spontaneous tumors [24]. In addition,

Behrens et al. Page 3

Curr Alzheimer Res. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



knocked out p53 mice (p53−/−) have a significantly higher number of proliferating cells, as
assessed by the incorporation of the nucleotide analogue bromodeoxyuridine in the lateral
ventricle wall, compared to wild-type littermates [25].

As mentioned above, the anticancer roles of p53 may come at the cost of proliferative reserve
and thereby compromise tissue repair and promote the aging phenotype [23,26–28]. Tyner et
al [26] created transgenic mice with a p53-mutation that confers phenotypes consistent with
an activated form of p53. The animals had very few cancers, but developed several features of
aging and showed reduced longevity. Further support for the role of p53 in accelerating aging
comes from a report showing that transgenic mice that overexpress p44 (a protein that enhances
p53 activity) have a shortened lifespan and accelerated aging, and an extraordinary low
incidence of cancer compared to wild-type mice [29]. Additional support for the concept that
hyperactivation of the tumor suppressor p53 may be related to accelerated aging comes from
a study showing that mice deficient in Zmpste24, a metalloproteinase involved in the
maturation of lamin A, show a senescence phenotype at the cellular level and accelerated aging
at the organism level, together with a marked upregulation of p53 target genes [28]. If p53
enhancement leads to aging and reduced longevity, the opposite should be expected in p53
knockout mice. Until recently, no effect of p53 on longevity had been detected, because the
predisposition to tumors precluded an analysis of the role of p53 in longevity. However,
genetically manipulated mice showing increased activity of the Arf/p53 pathway but
conserving the normal regulation of p53, show both cancer resistance and decreased aging
[30], which is what would be expected if cancer, a major cause of death in mice, is prevented.
Also, transgenic mouse models with elevated p53 activity, but under normal regulatory control,
show reduced tumor formation without accelerated aging [31,32]. Therefore, the regulation of
p53 activity is crucial to determine the role that p53 will assume. For example, depending on
the tissue, the same acetylation of the Lys amino acid at position 320 of p53 can promote neurite
outgrowth in neuronal cells [33] or cell cycle arrest in other tissues [34].

Taken together these results show that the regulation of p53’s actions in cells is extremely
important to determine the fate of the cells or tissues. p53 is activated and integrates the different
incoming signals that sense different forms of cellular stress. Therefore, it is conceivable that
small deregulations towards one or the other side, could favor survival/regeneration or death/
senescence of the cells. The inactivation of p53 is implicated in the development of cancer,
and p53 activation might play a role in promoting aging. Elevated p53 levels have been detected
in the central nervous system of patients diagnosed with neurodegenerative diseases, such as
Huntington’s disease and Amyotrophic Lateral Sclerosis [35,36] and in mouse models [37]
and in the brains of Parkinson’s disease patients [38]. The intracellular expression of the Aβ
protein under a neuron-specific promoter led progressively to degeneration and death of
neurons in the brains of transgenic mice and Aβ accumulation was correlated with activation
of p53 [39]. Also, elevated levels of p73, a member of the p53 family, have been described in
mice injected with fibrils of Aβ and in mice models of AD [40]. In neuroblastoma cell lines,
intracellular Aβ42 directly activated the p53 promoter, resulting in p53-dependent apoptosis
[41]. Intracellular Aβ40 had a similar but smaller effect in the same study [41]. Several reports
have described upregulation of p53 in the brains of patients with AD [41,42,43]. The presenilins
(PS1 and PS2) form part of the gamma secretase complex that cleaves the amyloid precursor
protein (APP) to generate Aβ. Mutations in the presenilins cause familial forms of AD and
have also been shown to trigger p53-dependent cell death [44,45]. The intracellular C-terminal
fragments of the gamma secretase cleavage of APP trigger the activation of caspase-3 and an
increase in p53activity and mRNA [45].

Another important tumor suppressor pathway is the pRB/p16 pathway. The p16 gene functions
as a negative regulator of cell cycle and is therefore considered to represent a tumor suppressor.
As with p53, deletion of p16 is frequently observed in cancer cell lines and some malignant
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tumors including acute lymphoblastic leukemia of childhood, melanomas, gliomas, as well as
carcinoma of the pancreas, esophagus, lung, bladder, head, and neck [46,47]. On the other
hand, increased levels of p16 expression and of the incidence of p16-positive cells are
associated with age in many mouse and rat tissues [48,49]. Until recently however, there was
no evidence that enhanced pRB function accelerated aging. Three reports show that increased
levels of p16 contribute to aging by limiting self-renewal of regenerative cells in different
tissues such as brain, endocrine pancreas and bone marrow [50–53].

Alterations in p53, or other tumor suppressors, could play a role in explaining the opposing
results we found with regard to the development of cancer and DAT (Figure 1). Patients with
slight increases in the activity of tumor suppressor proteins would have lower risks of
developing cancers, but instead would be at higher risk of developing AD because of an
increased susceptibility to cell death or senescence against stressors such as Aβ, tau
hyperphosphorylation, and/or oxidative stress. These slight alterations could be due to
polymorphisms or differences in DNA methylation in tumor suppressors that confer an
increased risk across the lifespan. Augmented levels of tumor suppressors could also limit the
renewal capacity of stem cells, and in this way induce AD by preventing, in the long run, the
replenishment of apoptotic neurons, or the reparation of dendrites and spines in damaged
neurons, processes which are compatible with the slow course of the disease. Similarly, the
low incidence of AD in the cancer group could be explained by the presence of an inactivated
form of a tumor suppressor, which in addition to favoring previous cancer development, could
also favor a decreased susceptibility to neuronal death, conferring protection against AD.
Additional support for a role of tumor suppressors in aging and AD comes from a microarray
study, in which an up-regulation of a disproportionately high number of tumor suppressors or
tumor suppressor co-factors, including several of the retinoblastoma (Rb) family, were found
in the CA1 region of the hippocampus of AD patients [54].

Propyl isomerase (Pin1)
Variations in factors upstream of p53 that ultimately result in its altered activity could also
contribute to the observed opposing presentation of cancer and AD phenotypes. One such
mechanism could involve the action of Pin1. Pin1 (protein interacting with NIMA 1) is a
ubiquitous enzyme that catalyses cis/trans isomerization of phosphorylated serine or threonine
residues that immediately precede a proline [55–58]. Pin1 is conserved from yeast to humans
and has been shown to regulate a diverse array of cellular processes of cell proliferation and
differentiation, such as cell-cycle control, transcription and splicing regulation, DNA
replication checkpoint control, DNA damage response, neuronal survival, and germ cell
development [55]. Aberrant Pin1 function has been implicated in both cancer and AD [57,
58]. Investigations show that Pin1 binds to and isomerizes hyperphosphorylated tau,
specifically at the Thr231-Pro site, to restore the ability of tau to bind microtubules and promote
their assembly and facilitate tau dephosphorylation [59–61]. Furthermore, in addition to this
role on tau, Pin1 is also involved in regulating APP processing and Aβ production. Pastorino
et al [62] have shown that Pin1 binds to APP and accelerates its cis/trans isomerization.
Overexpression of Pin1 reduces Aβ secretion from cell cultures, whereas Pin1 KO increases
its secretion. In addition, Pin1 KO alone, or in combination with overexpression of mutant
APP in mice selectively elevates insoluble brain Aβ 42 in an age-dependent manner. Therefore,
deletion of the Pin1 gene alone in mice causes progressive deposition of tau and Aβ, and
neuronal degeneration [56,60]. Pin1 expression is induced during neuronal differentiation and
is highly expressed in most neurons in the brain [61–63]. In accordance with these results down-
regulation of Pin1 has been reported in the hippocampus of AD patients [64]. However, a
compensatory activation or up-regulation of Pin1 may also be induced in AD brains [65]. The
complex regulation of Pin1 is strengthened by recent studies showing opposite effects of Pin1
on tau protein stability and tauopathy phenotype depending on whether the tau is wild-type
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(WT) or has the P301L mutation [65]. Pin1 knockdown or KO increased stability of WT tau
protein stability and Pin1 overexpression suppressed the tauopathy phenotype in WT tau
transgenic mice. In contrast, the opposite was found with mutant P301L tau; Pin1 knockdown
or KO decreased P301L tau protein stability and abolished its robust tauopathy phenotype in
the mutant mice, whereas its overexpression exacerbated the tauopathy phenotype in P301L
tau mice [65]. Pin1 promoter polymorphisms appear to associate with reduced Pin1 levels and
increased risk for late-onset Alzheimer’s disease [66–69], but not all case-control studies agree
(70,71]. Evidence for a participation of Pin1 in ALS has also been reported [72].

A prevalent overexpression of Pin1 has been shown in most human cancers including prostate,
breast, lung, colon and liver [73–76], but not in others such as renal cancer [77]. Pin1 is
important for the activation of multiple oncogenic pathways involved in tumorigenesis, such
as cyclin D1, Wnt/β-catenin, NF-κB, p53, and p73 [73,76,78–83]. Accumulating evidence
suggests that Pin1 regulates the timing of p53 activation, modulating its interaction with DNA
and cofactors [84]. In response to toxic stimuli, the interaction between p53 and Pin1 markedly
increases with phosphorylation of a subset of Ser/Thr-Pro motifs of p53 and its subsequent
isomerization. Cells lacking Pin1 fail to efficiently stabilize p53 and are then able to escape
cell cycle arrest and apoptotic responses [83,85], thus promoting the ‘prone to cancer’ direction
in figure 1. Also, a role of Pin1 in promoting the mitochondrial apoptotic machinery has been
described in neurons [86,87]. Taken together, these data suggest that alterations in Pin1 activity
could explain an inverse association between cancer and AD. Patients with less active Pin1
would be at a greater risk of developing AD and not cancer and, conversely, those with an
active Pin1 would be more prone to develop cancer and not AD.

Wnt signaling pathway
The Wnt (wingless-type murine-mammary tumour virus integration site) signaling pathway is
important for many developmental and adult processes, such as gastrulation, axis formation,
cell polarity, organ development and maintenance of stem cell pluripotency and is remarkably
conserved in a wide range of organisms, from Caenorhabditis elegans to humans [88]. In the
canonical pathway, wnt proteins bind to cell-surface receptors composed of members of the
Frizzled family and a low density lipoprotein receptor 5/6 (LRP 5/6). The receptor complex in
turn is associated with a large cytoplasmic protein complex comprised of axin, (axis inhibition
protein), APC (adenomatosis polyposis coli), CK1α (casein kinase 1 alpha), GSK-3β (glycogen
synthase kinase 3 beta) and GβP/frat [88]. The activation of the pathway by the binding of Wnt
proteins ultimately stabilizes cytoplasmic β-catenin that translocates to the nucleus and is
involved in gene expression regulation that promotes several physiological functions, among
them cell survival and proliferation, through the binding to TCF/LEF transcription factors and
the expression of wnt-target genes. In the absence of Wnt binding GSK-3β phosphorylates β-
catenin molecules which are then directed to the ubiquitin-mediated degradation pathway, thus
preventing their survival-promoting action.

The Wnt signaling pathway has been related to cancer and neurodegeneration [88–91]. Several
components of the Wnt pathway have been implicated in carcinogenesis. Perturbations of the
Wnt signaling pathway are best known to be involved in colorectal cancer [92,93] and are
associated with several other cancers including lung, prostate, breast [92–96]. Recent evidence
also shows that an upregulation of the Wnt signalling pathway is a key step in skin cancers,
both for melanomas and for basal and squamous cell carcinomas [97–102].

A role of the Wnt signaling pathway has also been implicated in AD [91,103–108]. The initial
work of Inestrosa and collaborators found a relationship between Aβ-induced neurotoxicity
and a loss of the wnt signaling pathway activity, with decreased cytoplasmic levels of β-catenin.
They demonstrated that inhibition by lithium of GSK-3β, a central modulator of the Wnt
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pathway, protected rat hippocampal neurons from Abeta-induced damage [109]. Also, pre-
treatment of neurons with wnt-3a conditioned media preserved neurons from the neurotoxic
effect of Aβ [110]. In primary cultures of cortical and hippocampal neurons Aβ neurotoxicity
increases the activation of GSK-3β, the hyperphospholylation of tau proteins, and loss of
microtubule network [111,112]. Wnt ligands are able to prevent the Aβ-induced decrease in
the number of neurites on hippocampal primary cultures [113]. Therefore, defects in wnt
signaling have been proposed in the pathogenesis of AD [90,114,115]. The role of β-catenin
as a survival element in AD is reinforced by results showing that phosphorylation of tau
stabilizes beta catenin, antagonizing apoptosis, and the knock down of β-catenin produces an
increase in the number of apoptotic cells [116].

In accordance with a role of Wnt signaling in AD, a recent study among bipolar patients Nunes
et al [117] reported a lower incidence of AD in those patients who had been taking lithium than
in those without lithium therapy, suggesting that the inhibition of GSK3 might also have effects
in clinical grounds. In a recent report they show a dose dependent reduction of GSK3β
expression in hippocampal cells in culture and in the brain and leucocytes of rats treated with
lithium [118]. β-catenin levels are markedly reduced in AD patients carrying presenilin-1
(PS-1) inherited mutations [119]. Furthermore, recent studies have shown that Apolipoprotein
E4, known to be a risk factor for AD, inhibits the Wnt signaling pathway in PC12 cells [120],
and an association between a highly conserved LRP6 polymorphism and the risk of developing
late-onset Alzheimer’s disease in ApoE 4 allele carriers was found in a case-control and a large
family-based study of AD patients [121]. LRP5/6 is a component of the receptor complex on
Wnt, and interestingly, functional analyses revealed that the associated polymorphism of LRP6
has decreased β-catenin signaling in HEK293T cells [121].

In all, these results suggest that a deregulation of the Wnt signaling pathway could possibly
explain our inverse association between cancer and AD. A subtle deregulation favoring Wnt
activation could explain a greater tendency to develop tumors, and at the same time protect
against degeneration, favoring neuronal survival. On the other hand, a small change towards
suppression of Wnt signaling could explain a greater susceptibility to neuronal death or loss
of dendritic spines, while at the same time protect against the development of cancer (Fig 2).
Polymorphisms or perturbations of the epigenome [20] in key molecules in the pathway that
might favor or unfavor the activity of the pathway could determine the chances of developing
a cancer, thus avoiding neurodegeneration, or development of AD, and avoiding
hyperproliferation.

Since the inverse association between cancer and AD that was found in our study was present
in cancers of different organs, a speculative biological mechanism should be applicable to all
cells in the organism. That is, the alteration in the survival mechanisms that theoretically could
protect from AD should be present in neurons as well as in other cells in the body, that would
be then be more predisposed to develop cancer. And vice versa, defects in survival mechanisms
that would favor AD development would protect against cancer development in all the cells in
the organism. In favor of a systemic deregulation of cell survival mechanisms, it has been
reported that lymphocytes from AD patients are more susceptible to cell death caused by
apoptosis-inducing factors, compared to a similarly-aged control group [122]. Also,
lymphocytes and fibroblasts from AD patients show increased levels of p53 compared to
healthy controls of comparable age [123]. Furthermore, fibroblasts derived from the p53-
mutated mice with enhanced p53 activity were more resistant to transformation by activated
ras plus myc oncogene [26].

A hypothetical common biological mechanism explaining an inverse association between the
development of cancer and AD could be extended to other neurodegenerative diseases
characterized by increased cell death. A “prone to die” status of cells could favor all those
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diseases characterized by progressive neurodegeneration, such as Parkinson’s disease (PD),
frontotemporal dementia and other tauopathies. In support of this, two longitudinal studies and
a case control study suggest that overall cancer mortality risk and tumor frequency are reduced
in individuals with PD, for both smoking-related and non-smoking related cancers [124–
126]. Interestingly, several of the genes that are now known to be associated with PD were
studied in cancer research before their involvement in PD was recognized [127,128]. In
frontotemporal lobar degeneration loss-of-function mutations have been recently identified in
progranulin in chromosome 17 [129/132]. Progranulin is a multifunctional protein expressed
in peripheral tissues and in the central nervous system, both in neurons and glia, involved in
wound healing and inflammation. Interestingly, it contributes to tumorigenesis in diverse
cancers when overexpressed, including breast cancer, clear cell renal carcinoma, invasive
ovarian carcinoma and glioblastoma, [133]. Not just neuronal cells would be in the prone-to-
die state, but also cells in other tissues could be more susceptible to degeneration. Following
this idea, it is conceivable to speculate that other degenerative systemic disorders, such as
osteoarthritis or osteoporosis, could also be associated with a reduced risk of cancer, and vice
versa, patients with a history of cancer could have a reduced risk of systemic degenerative
disorders.

Concluding remarks
The finding of an inverse association between cancer and AD opens up several avenues of
investigation that may lead to clues about the nature of both AD and cancer. A putative common
biological mechanism that inversely operates in the two disorders, one leading to increased
cell growth or survival, and the other to a higher risk of cell death, could explain these results.
Understanding the basis of the association between cancer and AD is made more imperative
considering that treatments currently under investigation to prevent and treat Alzheimer’s
disease might lead to a greater risk of cancer development, and inversely, treatments to prevent
cancer could predispose to the development of AD. Although much work remains to be done
to determine whether cancer and AD are in fact linked via a common biological mechanism,
the eventual identification of such a mechanism may provide insight into therapeutic strategies
that could aid in preventing both disorders.
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Figure 1.
Role of p53 in cancer and AD. In response to toxic or stress signals, p53 is activated through
a number of post-translational modifications and induces cell cycle arrest among other
functions. The decision is made whether to induce DNA repair or apoptosis of damaged cells
to maintain genomic stability. If the cell machinery in the whole organism were shifted to high
p53 in response to stressors, the cells would be more prone to cell death and AD could develop.
If, on the contrary, the cell machinery were shifted to low or no p53, the cells would be more
prone to develop a cancer. ROS, reactive oxygen species.
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Figure 2.
The wnt signaling pathway involvement in cancer and neurodegeneration. When wnt binds to
the LRP-frizzled receptor in the surface of the cell,β-catenin is stabilized promoting expression
of wnt target genes and proliferation. Subtle disequilibrium in any step of the pathway in a
manner that determines activation of the pathway, such as increased expression or
polimorphisms that induce activation of wnt or β-catenin would favor cancer development,
preventing neurodegeneration. On the contrary, conditions that induce inactivation of the
pathway would favor the development of Alzheimer’s disease or other degenerative disorder,
and as a consequence protect from cancer development.
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