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INVESTIGATION

A Common Dataset for Genomic Analysis
of Livestock Populations

Matthew A. Cleveland,*,1 John M. Hickey,† and Selma Forni*
*Genus plc, Hendersonville, Tennessee 37075, and †School of Environmental and Rural Science, University of New
England, Armidale NSW 2351, Australia

ABSTRACT Although common datasets are an important resource for the scientific community and can be

used to address important questions, genomic datasets of a meaningful size have not generally been available

in livestock species. We describe a pig dataset that PIC (a Genus company) has made available for comparing

genomic prediction methods. We also describe genomic evaluation of the data using methods that PIC

considers best practice for predicting and validating genomic breeding values, and we discuss the impact of

data structure on accuracy. The dataset contains 3534 individuals with high-density genotypes, phenotypes,

and estimated breeding values for five traits. Genomic breeding values were calculated using BayesB, with

phenotypes and de-regressed breeding values, and using a single-step genomic BLUP approach that

combines information from genotyped and un-genotyped animals. The genomic breeding value accuracy

increased with increased trait heritability and with increased relationship between training and validation. In

nearly all cases, BayesB using de-regressed breeding values outperformed the other approaches, but the

single-step evaluation performed only slightly worse. This dataset was useful for comparing methods for

genomic prediction using real data. Our results indicate that validation approaches accounting for relatedness

between populations can correct for potential overestimation of genomic breeding value accuracies, with

implications for genotyping strategies to carry out genomic selection programs.
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The availability of common datasets is important to the scientific

community. These datasets can be used to compare and benchmark

methods, to provide links between different datasets facilitating meta-

analysis, and to enable researchers who lack such resources to test

hypotheses that address important questions. In human genetics, many

common datasets are available, e.g. International HapMap Project

(The International HapMap Consortium 2003), 1000 Genomes (The

1000 Genomes Project Consortium 2010), Framingham Heart Study

(Dawber et al. 1951), Mouse Genomes Project (Keane et al. 2011), and

have led to numerous discoveries.

Because commercial data may hold economic value, common da-

tasets of meaningful size have in general been unavailable in livestock,

particularly during the genomics era in which organizations have made

large investments in genotypes and phenotypes. Efforts to implement

genomic selection in a number of livestock species have generated da-

tasets that contain multigenerational phenotypes, genotypes, pedigree,

and progeny test-derived estimated breeding values (EBV). Such com-

monly available datasets could be used in numerous ways, in particular

to evaluate new methods to estimate genomic breeding values (gEBV).

Additionally, important questions relating to the nature and properties

of genomic selection (GS) could be assessed with such a dataset, in-

cluding the effect on inbreeding (Daetwyler et al. 2007), the importance

of close relatives when training prediction equations (Habier et al.

2010; Clark et al. 2011), and the dynamics of long-term response to se-

lection (Jannink 2010).

As part of the effort to implement GS in pigs (Sus scrofa), PIC (a

Genus company) created several datasets containing individuals with

phenotypes for a number of traits, high-density genotypes (60k), poly-

genic estimated breeding values (pEBV; no genomic information) for

pure and crossbred traits, and complete pedigree. PIC has imple-

mented several methods for routine genomic evaluation, including

a two-step approach using BayesA/BayesB (Meuwissen et al. 2001)

and the single-step evaluation described by Misztal et al. (2009),

which, based on extensive internal testing, PIC considers current best
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practice for predicting gEBV in a practical setting. Genomic breeding

values from these methods can be routinely predicted through a

process that includes quality checks and data editing, imputation of

missing genotypes, and validation in “selection candidates” when pEBV

accuracies approach progeny test proofs. These validations can be

problematic in pig populations in which the structure of the genetic

improvement program yields few individuals with high accuracy pEBV

across traits. Thus, we require optimal validation procedures that avoid

overestimating the expected accuracy of the gEBV.

This article describes a pig dataset that PIC has made available to

the scientific community for testing and validating alternative methods

for genomic prediction (File S1). In addition, current best-practice

methods were applied to the data to predict and validate gEBV. We

discuss peculiarities particular to the data structure, with an emphasis

on their impact on gEBV accuracy from validation.

MATERIALS AND METHODS

Data

The dataset consisted of 3534 animals from a single PIC nucleus pig

line with genotypes from the Illumina PorcineSNP60 chip (Ramos

et al. 2009) and a pedigree including parents and grandparents of

the genotyped animals (N ¼ 6473). The majority of genotyped animals

were selected for the genomic evaluation of a specific trait, and the

remaining were added as part of a strategy to “fill-in”missing herd sires

and sows to calculate genomic breeding values for selection candidates.

The sample consisted of male and female pigs born since 2000, with

varying pedigree relationships among animals, although the original

selection avoided sampling multiple members of full-sib families.

Phenotypes: Genotyped animals had phenotypes for five purebred

traits (phenotypes in a single nucleus line), with heritability ranging

from 0.07 to 0.62 (Table 1), which represent a small number of

phenotypes that are routinely collected from birth in the genetic nu-

cleus. Each phenotype was either corrected for environmental factors

(e.g. year of birth or farm) and rescaled by correcting for the overall

mean (traits 3, 4, and 5) or was a rescaled, weighted mean of corrected

progeny phenotypes (traits 1 and 2), for which many animals have no

individual performance data. Each genotyped animal also had pEBV

and accuracies from single-trait pedigree-based BLUP evaluations.

The models to calculate corrected phenotypes and the models to pre-

dict pEBV included the full PIC pedigree and all data used in a typical

production run for each trait, excluding any genomic information.

Accuracy was of the form 1 2 PEV
s
2
A

, where PEV is the prediction

error variance and s2
A is the additive genetic variance. The distribution

of accuracy for all traits is depicted in Figure 1. Animals were origi-

nally selected to maximize the pEBV accuracy of trait 2.

Genotypes: Genotypes available from the PorcineSNP60 chip (N ¼

64,233) were filtered for extreme minor allele frequency (,0.001) and

proportion missing genotypes by SNP (.10%). Additionally, markers

on the X or Y chromosome were excluded, yielding 52,842 total SNP.

The overall missing genotype rate was less than 1%, but many GS

methods require complete nonmissing genotypes. AlphaImpute

(Hickey et al. 2011) was used to calculate probabilities of each parental

allele, which are combined to fill in any missing genotypes. An im-

puted genotype based on a probability score [the sum of the allele

probabilities (SAP) yields a non-integer genotype ranging from 0 to 2]

was used to replace missing information. SNP with both known and

unknown position were included and imputed, but the map order was

randomized and SNP identity was recoded.

Genotyping strategy: The original selection of animals for genotyping

aimed to minimize pedigree connections between selected individuals,

but a high level of relatedness remained due to the breeding schemes

used in genetic nucleus pig lines (Table 2). The populations in the

nucleus are relatively small by line, and the turnover in breeding

animals can be rapid, which makes it difficult to identify animals with

high-accuracy breeding values to construct a training set. The animals

selected for genotyping tend to be used widely and have more close

relatives than others in the population. One advantage of applying GS

in pig populations, though, is the high levels of relatedness between

genotyped and phenotyped training animals and genotyped selection

candidates. The gEBV accuracy in selection candidates can therefore

be maintained through incremental increases to the existing training

dataset by adding small numbers of herd boars (and potentially sows)

to sustain connections across generations. This structure, however,

makes validation of SNP effects in a less-related population problem-

atic, and thus inferences about the usefulness of alternative methods in

other livestock species may be difficult.

Genomic breeding value prediction

Prediction of gEBV in PIC has taken two forms since the development

of and subsequent large-scale genotyping on the PorcineSNP60 chip.

Breeding animals in major lines have been routinely genotyped for

60k SNP and used as training populations to estimate SNP effects and

to identify important markers for traits of interest using de-regressed

breeding values and Bayesian analysis approaches [e.g. GenSel; Fernando

and Garrick (2009)]. Based on results from training populations,

a large number of selection candidates have been genotyped for

smaller trait-specific panels. The resulting gEBV have then been

blended with the polygenic breeding value, using an approach sim-

ilar to VanRaden et al. (2009), and incorporated into the overall

index for selection. Alternatively, the single-step approach of Misztal

et al. (2009) has been implemented to reduce the computational and

logistical requirements of the multistage Bayesian approaches. This

method uses all available SNP to construct a genomic relationship ma-

trix among genotyped individuals, which is then combined with the

standard numerator relationship matrix that includes all un-genotyped

individuals. Genomic breeding values are then predicted for all ani-

mals, regardless of genotyping status. In this situation, selection can-

didates can be genotyped for a small panel (e.g. ,1,000 SNP) and 60k

genotypes imputed to improve the predictive power.

To predict gEBV using these general approaches, the data were

further filtered to exclude genotypes with extreme minor allele

frequency (,0.02) and large values for the Pearson chi-squared test

statistic (.300), indicating extreme deviation from the expected ge-

notype proportions. A total of 48,866 SNP remained for analysis. To

evaluate the accuracy of methods to predict gEBV, a 6-fold cross-

validation procedure was used (XVal), in which all animals appear

in the training set and in the validation set. Animals were randomly

n Table 1 Summary of phenotype data

Trait N Mean SD h2a Var(a)a

T1 2804 20.045 1.21 0.07 0.22
T2 2715 0.005 1.12 0.16 2.11
T3 3141 0.706 0.96 0.38 0.66
T4 3152 21.073 2.33 0.58 4.93
T5 3184 37.989 60.45 0.62 3459.09

h2, heritability; var(a), additive variance.
a
Heritability and additive variance estimated from the full PIC production
dataset.
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assigned an integer from the set (1,6) for assignment to a fold. Each

analysis was performed to predict gEBV for the validation set using all

remaining individuals as the training set. This was repeated so that

each animal was in the validation set one time and in the training set

five times. The training set can be defined as animals with phenotypes

and high-density genotypes, whereas animals in the validation set have

only high-density genotypes. Each training set, therefore, consisted of

2945 genotyped animals (reduced to the number of animals with phe-

notypes in that set), with the remaining in validation where phenotypes

were removed. Genomic breeding values were estimated using BayesB

(as implemented in GenSel) on both phenotype (BayesB_ph) and de-

regressed pEBV (BayesB_ebv) of genotyped animals and using pheno-

types in the single-step approach (SStep). Additionally, a standard

BLUP using phenotypes but no genomic information was performed

(BLUP). EBV and gEBV were calculated for all genotyped animals.

Genomic breeding value validation

Accuracy was estimated as the correlation between gEBV and high

accuracy pEBV, which is a substitute for the true breeding value. In this

case, many animals did not have accuracies that could be considered

high (e.g. .0.90); therefore, a subset of each validation set was selected

based on pEBV accuracy. The top 75 animals by pEBV accuracy for

each trait and cross-validation were selected (N ¼ 450) to correlate

with the pEBV. The mean pEBV accuracy (r2) for animals used to

determine the gEBV accuracy is in Table 3. The validation subset was

then further divided into categories based on genotyping of relatives in

the training set. Validation animals were identified as having at least

one parent (P), a least one parent and at least one offspring (PO), at

least one offspring (O), or no parent and no offspring (N) genotyped in

the training set. Accuracies of gEBV were then evaluated based on these

categories, which is similar in principle to Habier et al. (2010). Addi-

tionally, genomic relationship coefficients were calculated between train-

ing and validation animals [using VanRaden (2008)], and the number

of coefficients exceeding a threshold of 0.45 in each validation an-

imal was determined, indicating the number of animals with which

an individual was considered highly related. This value was then

used as an additional categorization of the gEBV accuracy to de-

termine the impact of knowing the actual relationship between the

validation and training sets vs. knowing only the average relation-

ship from the pedigree. The results of the 6-fold cross-validation

were then compared with an approach where young animals with

no progeny in the data compose the validation set (N ¼ 509) and

their parents (and other older animals) are in the training set

(YoungVal). This approach is commonly used to validate gEBV in

other livestock species in which progeny-tested pEBV are routinely

available (e.g. Hayes et al. 2009; VanRaden et al. 2009). Accuracies of

gEBV were estimated using the animals with the highest pEBV

accuracies for each trait (N ¼ 30). Because of very low pEBV accu-

racies (Table 3), Traits 1 and 2 were not included.

RESULTS

Comparison of methods

The gEBV accuracy generally increased with increasing heritability of

the trait (Figure 2 and Table 1), corresponding to an increase in the

mean pEBV accuracy for the validation samples (Table 3). The max-

imum accuracy was observed for trait (T)4 and the minimum for T1,

across all methods (Figure 2). All correlations (between gEBV and

pEBV) were different than zero (results not shown), but the low

mean pEBV accuracy, especially for T1, suggests that the gEBV accu-

racy for this trait may be somewhat underestimated. The gEBV ac-

curacy for T2 was nearly as high as the accuracy for T4, which was

unexpected due to the lower mean EBV accuracy and the lower her-

itability of T2.

Across methods, the gEBV accuracy generally increased as additional

information was implicitly utilized by the different approaches. Accu-

racies for all traits improved using SStep, compared with BayesB_ph, and

n Table 2 Percentage of genotyped individuals with relatives
genotyped in dataset, by category of relative

Genotyped Relatives Category % Genotyped Relatives

Sire 62
Dam 40
Sire 1 Dam 29
PGS 1 PGD 24
MGS 1 MGD 21
PGS 1 PGD 1 MGS 1 MGD 8
Offspring 34
Offspring 1 Ancestora 30

PGD, paternal grand-dam; PGS, paternal grand-sire; MGD, maternal grand-
dam; MGS, maternal grand-sire.
a
At least one offspring and at least one ancestor are genotyped.

Figure 1 Accuracy (r2) of estimated breeding values for genotyped
animals (N ¼ 3534).
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improved again using BayesB_ebv, except for T5, in which there was

a small decrease. The BayesB_ebv approach used information from

progeny and a multigenerational pedigree to generate a higher accuracy

“phenotype” (in the form of a de-regressed EBV), whereas the SStep

approach used phenotypes much less representative of the additive value

but included genomic relationships. The difference in accuracy between

the two methods was generally small, with the exception of T1. The dif-

ference between methods differed across traits, with only small changes

when the accuracy was higher but much larger changes with lower

starting accuracies (and trait heritability). The addition of genomic data

was expected to increase accuracy in all cases, compared with BLUP, but

the phenotype-based BayesB_ph analysis resulted in accuracies that were

actually lower (or nearly the same) than the standard analysis using

pedigree alone.

Relatedness between training and validation

The gEBV accuracies increased with an increase in the relatedness

between the two datasets (Figure 3). The change in accuracy with

higher relatedness tended to be smaller as the trait heritability in-

creased, as did the differences between methods. Very high gEBV

accuracies were evident for some traits (e.g. T1) when including off-

spring in the training set, where accuracies approached 0.90. A gEBV

accuracy of this magnitude is substantially larger than what would

generally be expected, especially for a lowly heritable trait. An addi-

tional separation of accuracy by number of parents genotyped in

training for T4 (Figure 4) shows that much of the accuracy increase

is being driven by having both parents genotyped in the training

population, which can be an advantage for populations that routinely

genotype both sires and dams.

The evaluation of relatedness using an index of the genomic

relationship coefficients showed an increase in the gEBV accuracy for

T4 for all methods as the magnitude of the genomic relationship

increased (Figure 5). The other traits showed the same general trend

but were slightly less consistent (results not shown). The minimum

accuracies were lower and maximums higher when evaluating actual

genomic relationships compared with the same approach using ped-

igree relationships (e.g. Figure 4), indicating that a more precise def-

inition of the relationship between training and validation can impact

the estimation of expected gEBV accuracy.

In the validation using young animals (YoungVal), there was an

increase in gEBV accuracy moving from BLUP to BayesB_ebv (Figure

6), similar to the trend observed in XVal (Figure 2), although the

correlations (accuracies) for BLUP were not different than zero

(P . 0.05) in this case. The ranking of traits for gEBV accuracy was

equivalent to the XVal for BLUP and BayesB_ebv, but reversed for

BayesB_ph and SStep. Overall, the gEBV accuracies were shifted

downward compared with XVal, likely due to a combination of lower

accuracy pEBV and a reduction in the level of relatedness between

training and validation sets. The gEBV accuracy for BayesB_ebv on T4

was similar to the accuracy obtained from the (N) and (P) categories

in XVal (Figure 3), which was expected based on the relationships

between the datasets in this validation, but the gEBV accuracies using

BayesB_ph and SStep were much lower (�0.20 compared with�0.70).

The accuracies for T3 and T5 were more similar, but smaller than the

cross-validation (XVal).

DISCUSSION
A dataset was created and a strategy developed to evaluate the

accuracy of genomic selection approaches in livestock populations,

especially when targeting populations where progeny-tested breeding

values are not available on large numbers of individuals. The dataset

was established for the purpose of implementing genomic selection in

a production environment and so research utilizing the data can have

direct implications for the application of genomic tools in breeding

programs. These, and similar, data have been extensively analyzed

within PIC and have been used to show the potential value of

genomics in pig breeding, in terms of increased EBV accuracy at an

early age (Cleveland et al. 2010; Forni et al. 2010; Deeb et al. 2011), to

describe the genetic architecture of a commercial pig population

(Deeb et al. 2010), and to develop alternative methodologies for ge-

nomic prediction (Forni et al. 2011; González-Recio and Forni 2011).

The structure of this dataset allows for testing approaches considering

varying levels of pedigree and/or genomic relationships because ani-

mals from multiple generations and both sexes have high-density gen-

otypes. The structure also highlights the need to develop methods to

account for a distribution of EBV accuracies when validating the ac-

curacy of gEBV. Genus plc encourages researchers who wish to explore

this (and other) datasets further to discuss potential collaborations.

The dataset enabled the testing of popular genomic prediction

methods using real data, while the availability of both phenotypes and

progeny-tested pEBV allowed for inferences about the value of sources

of phenotypic information to different methods. The BayesB approach

using de-regressed pEBV (BayesB_ebv) outperformed the other methods

across almost all traits, which was not unexpected due to the nature of

the data. Because they result from a production genetic evaluation using

all available data, the pEBV contain information on the individual

and its relatives in the full PIC pedigree. The SStep approach yielded

n Table 3 Mean accuracy (r2) of estimated breeding values for
individuals in the validation sets of the 6-fold cross-validation
(XVal) and the validation using young animals (YoungVal), for all
traits

XVal YoungVal

Trait Mean SD Mean SD

T1 0.753 0.104 0.420 0.029
T2 0.813 0.055 0.590 0.032
T3 0.920 0.023 0.858 0.049
T4 0.945 0.016 0.906 0.032
T5 0.951 0.013 0.914 0.030

Figure 2 Genomic breeding value accuracy of the 6-fold cross-validation
(XVal), for all traits, using a standard polygenic BLUP (BLUP), BayesB with
phenotypes (BayesB_ph), the single-step approach (SStep), and BayesB
with estimated breeding values (BayesB_ebv).
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accuracies similar to BayesB_ebv, but smaller in most cases. No strong

evidence exists to support the existence of major QTL for these traits,

and therefore, BayesB would not be expected to have a large advantage

(results not shown). For traits affected by large numbers of loci (genes),

the expectation is that a genomic BLUP approach should perform

similarly to BayesB (Luan et al. 2009; Habier et al. 2010). In SStep,

however, genomic relationships are augmented by pedigree relationships

between genotyped and un-genotyped animals for a more accurate

modeling of individual relationships, especially when only a subset of

the population is genotyped (Legarra et al. 2009). Assuming no large

QTL exist, any large differences between BayesB_ebv and SStep may be

due to differences in the information content of the phenotypes used by

each method and to differences in the training set size relative to differ-

ences in effective heritability. SStep outperformed BLUP, indicating that

genomic information was useful, but only when the heritability was high.

These findings, taken together, highlight the need for additional geno-

typing to improve lowly heritable traits using genomics, particularly

when only phenotypes are available.

Including genomic information in a genetic evaluation is expected

to increase the accuracy of the EBV, but the results presented here

(Figure 2) illustrate the potential to actually decrease the accuracy

when analyzing phenotypes, especially when the heritability is low.

When heritability is not high, large numbers of genotyped and phe-

notyped animals are needed to achieve even moderate gEBV accuracy

(Goddard 2009; Goddard and Hayes 2009). Such numbers were not

available in this dataset. Alternatively, the heritability of the trait can

be increased by using de-regressed progeny test EBV as phenotypes, in

which the effective heritability is proportional to the pEBV accuracy

(Garrick et al. 2009). The expected accuracy of the gEBV will then be

based on this higher heritability (e.g. BayesB_ph vs. BayesB_ebv).

Often, the number of available genotyped samples is based on prac-

tical or budgetary considerations, and the decision to incorporate

Figure 3 Genomic breeding value accuracy of
the 6-fold cross-validation (XVal) for individuals
with at least one parent (P), at least one offspring
(O), at least one parent and one offspring (PO),
or no parents or offspring (N) genotyped in the
training set. All traits were analyzed with BayesB
with phenotypes (BayesB_ph), the single-step
approach (SStep), and BayesB with estimated
breeding values (BayesB_ebv).

Figure 4 Genomic breeding value accuracy of the 6-fold cross-validation
(XVal) for individuals with one parent (1P), both parents (2P), at least one
offspring (O), at least one parent and one offspring (PO), or no parents or
offspring (N) genotyped in the training set, for T4. The trait was analyzed
with BayesB with phenotypes (BayesB_ph), the single-step approach
(SStep), and BayesB with estimated breeding values (BayesB_ebv).
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genomic information for a particular trait and the method that will be

used depends on the heritability and the availability of progeny and

pedigree information.

The gEBV accuracy based on relatedness between training and

validation sets increased with an increase in pedigree relationship

(Figures 3 and 4). Using a count of genomic coefficients exceeding

a threshold showed this relationship even more clearly (Figure 5).

These results indicate that expected gEBV accuracies from validation

could be biased when highly related individuals are in both training

and validation. This relatedness may cause an overestimation of

expected accuracies when the target application consists of less-related

samples (Habier et al. 2010). In practice, the population used for

training is often composed of the parents and ancestors of the indi-

viduals for which gEBV are required. A certain amount of relatedness

between populations is appropriate, but the validation should aim to

simulate the application as closely as possible. Interpretation of the

accuracy of gEBV without knowledge of the pedigree relationships

within the population is not optimal.

For pig populations, where genomic predictions of young selection

candidates within a single line are often desired, creating a validation

dataset using young animals with high accuracy pEBV is difficult due

to the structure of the breeding program. Because relatively few

individuals have large amounts of progeny information, it is generally

impossible to high-density genotype large numbers of individuals with

high-accuracy pEBV. The younger animals in the dataset that may be

used in validation are typically not suitable because of low-accuracy

pEBV for many traits, which would provide a poor estimate of gEBV

accuracy. Using older animals in this role would require removing

their progeny from the training set, reducing the training set size to

unacceptable levels. The small test performed here resulted in gEBV

accuracies from YoungVal (Figure 6) that were smaller than those in

XVal (Figure 2), but when accuracies were evaluated in XVal consid-

ering pedigree and genomic relationships, they were similar to those

from YoungVal. These results suggest that when it is not possible to

simulate the application of a genomic evaluation for validation pur-

poses, such as for T1 and T2 in this study, a k-fold cross-validation

can provide appropriate estimates of gEBV accuracy when specifying

the relatedness between training and validation. Additionally, genomic

relationships may help determine the bounds of potential gEBV ac-

curacy given the projected relatedness between datasets.

Implications

The results of this study indicate that the differences between methods

to predict gEBV depend primarily on the information content of the

phenotype, rather than on the relationship between training and

validation, as expressed by the minimal level of reranking between

methods. The conclusions drawn concerning the impact of relatedness

on expected accuracies from validation can also be applied to geno-

typing strategies for implementing genomic selection programs. The

relatedness between the training and prediction populations will in-

fluence the gEBV accuracy, and therefore, high levels of relatedness

are desirable for breeding program design. Such high levels are most

easily accomplished by genotyping both parents of prediction animals,

but more selective genotyping may be possible by maximizing

genomic relationships between the populations in which more distant

pedigree relationships may be useful.
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