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Pesticides are important chemicals or biological agents that deter or kill pests. The use of pesticides has continued to increase as it
is still considered the most effective method to reduce pests and increase crop growth. However, pesticides have other
consequences, including potential toxicity to humans and wildlife. Pesticides have been associated with increased risk of
cardiovascular disease, cancer, and birth defects. Labels on pesticides also suggest limiting exposure to these hazardous
chemicals. Based on experimental evidence, various types of pesticides all seem to have a common effect, the induction of
oxidative stress in different cell types and animal models. Pesticide-induced oxidative stress is caused by both reactive oxygen
species (ROS) and reactive nitrogen species (RNS), which are associated with several diseases including cancer, inflammation,
and cardiovascular and neurodegenerative diseases. ROS and RNS can activate at least five independent signaling pathways
including mitochondrial-induced apoptosis. Limited in vitro studies also suggest that exogenous antioxidants can reduce or
prevent the deleterious effects of pesticides.

1. Introduction

The term pesticide is generally used to identify agrochemi-
cals such as bactericides, fungicides, herbicides, insecticides,
or rodenticides [1]. Pesticides are a group of chemicals, and
sometimes microorganisms (e.g., viruses), that are used for
the eradication of insects, weeds, fungi, and bacteria [1, 2].
Pesticides can be grouped into different chemical families,
such as organochlorines, organophosphates, organofluor-
ines, carbamates, pyrethroids, bipyridyl herbicides, triazine
herbicides, triazoles, and chloroacetanilide herbicides [2].
Globally, about 2 million tons of pesticides are being utilized
each year [3]. China is the largest pesticide-producing
nation, followed by the United States and Argentina [3].
Due to the continuous rise in the worldwide population,
there has been an increase in demand for agricultural prod-
ucts such as pesticides [4].

The World Health Organization has estimated that
about 3 million workers in developing countries experience
severe poisoning from pesticides each year, of which approx-

imately 18,000 of them eventually die [5]. The broad use of
pesticides for agricultural and nonagricultural purposes
(e.g., industrial, commercial, and individual households)
around the world indicates how important these compounds
are, but the adverse risks involved for the environment, wild-
life, and human health are not well investigated [6]. Individ-
uals who apply pesticides in agricultural, occupational, or
residential settings are at a high risk of direct exposure.
However, the general population can also be exposed to pes-
ticides and their degradation products indirectly at low levels
through water, air, dust, and food [7]. Pesticide contamina-
tion of surface waters has been well documented worldwide
and constitutes a major issue that gives rise to concerns at
local, regional, national, and global levels [8]. While these
indirect exposure routes involve low levels of pesticide,
long-term exposure to these routes could be harmful to
human health [7]. At low doses of exposure, pesticides do
not seem to produce any permanent harmful effects to adult
humans [9]. However, individuals who reside close to fields
where pesticides are applied and agricultural workers such as
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mixers, loaders, and applicators, who are in direct contact
with pest control agents, exhibit pesticide poisoning [10,
11]. Other epidemiological studies have suggested that high
levels of pesticide exposure are associated with increased risk
of chronic diseases, including cancers, cardiotoxicity, Par-
kinson’s disease, diabetes mellitus, neurological deficits,
birth defects, and reproductive disorders [12, 13]. The
increased risk of various diseases may be due to pesticides
being absorbed into the body and accumulated in fat, liver,
kidneys, and salivary glands [14].

Prometryn, a triazine herbicide, is relatively persistent
in waters, soil, and even in air near its production or
application sites and was detected at a concentration of
3–6.1μg/L in different rivers and lakes in Europe [8]. Pre-
vious studies have shown that other triazine herbicide was
found at levels as high as 21 ppb in groundwater, 42 ppb
in surface waters, 102 ppb in river basins in agricultural
areas, and up to 224 ppb in Midwestern U.S. streams dur-
ing the summer of 1996. Triazine concentrations of up to
108μg/L have been reported in North America rivers [15].
In addition, all triazine herbicides and their degradation
products are persistent in the environment, especially in
air and water, and these pesticides can damage human
cardiac and immune systems and endanger the health of
humans, animals, and plants [16].

A large number of hazardous organic chemicals are pes-
ticides, and the Stockholm Convention on Persistent
Organic Pollutants states that nine out of the twelve most
dangerous and persistent organic chemicals in the environ-
ment belong to the organochlorine pesticide group [17].
There have been several calls and campaigns for “less pesti-
cides, safer food” around the world especially in the Euro-
pean Union (EU) where over one million EU citizens from
22 member states supported an initiative to ban a broad-
spectrum systemic herbicide called glyphosate due to its
possibly carcinogenic effects on humans. However, pest
resistance, hygiene control, and the unending demand for
agriproducts have resulted in an increase in the formulation
of new, more potent pesticides [18]. Long-term exposures to
pesticides, due to occupational or environmental exposures,
are capable of disrupting the physiology of different organs
in the body, including those of the nervous, endocrine,
immune, reproductive, renal, cardiovascular, and respiratory
systems [19]. Pesticides’ effects could be physiological or
biological, causing changes at the molecular, cellular, or tis-
sue level. Although the underlying molecular mechanisms
of how pesticides induce biochemical changes are not well
understood, investigation of previous research on pesticides
suggest that pesticides all induce oxidative stress. Oxidative
stress is an imbalance between the production of ROS and
the ability of the defense system to actively detoxify and neu-
tralize the excess ROS [20]. The present review focuses on
oxidative stress induced by dominant pesticide groups (e.g.,
organochlorines, organophosphates, carbamates, and tri-
azines) with emphasis on oxidative stress biomarkers and
ROS generation from genetic and biochemical studies. This
review also includes 3 figures and 6 supplementary tables
summarizing the signaling pathways and pesticide concen-
tration levels involved in pesticide-induced oxidative stress.

1.1. Pesticides and Organ Toxicity. Most pesticides investi-
gated seem to damage many animal organs and tissues (sup-
plemental table 1). Investigation of the damaged tissues
suggests a multitarget mechanism, with many different
pathways being affected by the pesticides. However, our
understanding of the targeting of multiple sites and
signaling pathways in cells is limited. While there are very
few studies published discussing the toxic effects of
pesticides at the systematic level, one of the most widely
investigated pesticides, paraquat, is known to cause damage
to the kidneys, lungs, heart, gastrointestinal tract, nervous
system, and the immune system [21–23]. Some studies
have also suggested links between pesticides and cancers.
1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), and
its metabolites have been associated with liver, breast, and
testicular cancers [24–26]. Due to the lack of specific
studies with respect to the many effects of pesticide on
various tissues, it is difficult to determine if specific tissue
injuries caused by pesticides are unique. The current
scientific studies suggest that irrespective of the target
tissue, toxicity caused by pesticides is associated with
oxidative stress. Some common characteristics of oxidative
stress include increased protein oxidation (carbonylation),
lipid peroxidation, nucleic acid oxidation (8-OHdG), and
changes in the levels of antioxidants such as glutathione
and the activities of antioxidant enzymes [27].

1.2. Reactive Oxygen Species (ROS) and Pesticides. Reactive
oxygen species (ROS) is a term commonly mentioned in
biology and medicine. This term can be defined as oxygen-
containing reactive species. ROS is a collective term that
includes superoxide (O2

•−), hydrogen peroxide (H2O2),
hydroxyl radical (●OH), singlet oxygen (1O2), peroxyl radi-
cal (ROO•), alkoxyl radical (RO•), lipid hydroperoxide
(LOOH), peroxynitrite (ONOO−), hypochlorous acid
(HOCl), and ozone (O3) [28]. ROS are byproducts of normal
cellular metabolic processes that are required to generate
energy for life processes [29]. They are produced in the reac-
tions catalyzed by the electron transport chain, NAD(P)H
oxidase, and some other specialized oxidases and are an
inevitable by-product of many redox reactions. However,
the amount of ROS produced in a cell under normal condi-
tions is relatively small. As such, ROS are able to serve as sig-
naling molecules to regulate biological and physiological
processes [30]. Recent evidence also suggests that ROS func-
tion as important physiological regulators of intracellular
signaling pathways [31].

During normoxia, there is a steady-state balance between
ROS and cellular antioxidant systems. However, overpro-
duction of ROS in intra- or extracellular spaces can occur
due to exposure to xenobiotics and other environmental
factors which can result in the onset of cellular dysfunction
and apoptosis [32]. ROS are capable of causing damage to
biomolecules leading to cell and tissue injury [32]. Antioxi-
dants act by reacting with ROS and RNS to neutralize or ter-
minate the chain reaction before key molecules in the body
are affected [20]. The major enzymatic antioxidant defense
mechanisms consist of different forms of superoxide dismu-
tases (SODs), catalase (CAT), and the glutathione
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peroxidases (GPXs). SODs are thought to provide a first line
of defense against oxygen radicals, specifically the superox-
ide anion (O2

•−), which is the major ROS produced by mito-
chondrial respiration and various metabolic reactions. The
SODs remove the potentially dangerous superoxide anions
from biological systems by converting them to H2O2, while
CAT found in peroxisomes catalyzes the conversion of two
molecules of H2O2 to O2 and two molecules of H2O [33].
The most abundant intracellular antioxidant, glutathione
(GSH), is involved in the protection of cells against oxidative
stress [34]. However, exposure to pesticides seem to be asso-
ciated with significantly increased ROS and oxidative stress
induction, beyond what the intrinsic cellular antioxidant
system can reduce to normal physiological levels (Figure 1,
Tables 1 and 2, and Supplemental Tables 1-6).

1.3. Reactive Nitrogen Species (RNS) and Pesticides. Reactive
nitrogen species (RNS) belong to a family of nitrogen moie-
ties that are closely associated with oxygen [35]. The interac-
tion between exogenously and endogenously produced nitric
oxide (NO) with oxidants such as hydrogen peroxide
(H2O2), superoxide anion (O⋅−

2 ), and reductants such as lith-
ium aluminum hydride (LiAlH4) typically gives rise to RNS
[36]. RNS can be classified as nitric oxide-derived com-
pounds, including nitroxyl anion (NO−) (derived from the
reduction of ⋅NO), nitrosonium cation (NO+), higher
oxides of nitrogen (NO2, N2O4, etc.), S-nitrosothiols
(RSNO), and dinitrosyl iron complexes [37]. NO is a ubiqui-
tous intracellular messenger that regulates physiological
functions including neural and cardiovascular activities.
However, under pathologic conditions, NO can become del-
eterious because of its high reactivity with other free radicals,
such as O⋅−

2 [37]. NO
+ is created during the removal of one

electron from ⋅NO. NO+ can react with nucleophilic
centers, producing nitroso compounds. Nitrosyl halides are
liberated when •NO reacts with fluorine, chlorine, or
bromine [35].

Although RNS play vital roles in numerous biological
processes such as the physiological regulation of smooth
muscle cells, cardiomyocytes, platelets, and nervous and jux-
taglomerular cells, they are harmful to the cells if produced
and present in excessive amounts [37, 38]. RNS has pleiotro-
pic properties on cellular targets, including effects even after
both posttranslational modifications and interaction of tar-
gets with ROS [37]. These effects are likely due to increased
levels of RNS reacting with different biomolecules such as
lipids, DNA and RNA bases, metal cofactors, and proteins.
The interplay of RNS with various cellular components leads
to cellular abnormalities, cell injury, and cell death via the
induction of nitrosative stress. Nitrosative stress can occur
when NO or related species are induced during exposure
to certain xenobiotic factors such as pesticides, leading to
the nitrosylation of critical protein cysteine thiols (S-nitros-
ylation) and metallocofactors of proteins. Nitrosylation is
the addition of a nitroso (−NO) group to an active metal
ion center or thiol of a protein [28].

A comprehensive study of epidemiologic and toxicologic
literature implicates oxidative stress, ROS, and RNS as cul-
prits in the damage to lipids, DNA, and proteins induced

by pesticides [39, 40]. Figure 2 shows a schematic diagram
summarizing some of the major effects of pesticides that
lead to RNS and subsequent oxidative stress. Diquat
(1,1′-ethylene-2,2′-bipyridinium ion) (DQ), a nonselective
quick-acting herbicide, is used as a contact and preharvest
desiccant to control terrestrial and aquatic vegetation. Fu
et al. found that DQ-induced oxidative stress was caused
by ROS. However, this oxidative stress was also partly
caused by increased RNS generation by peroxynitrite
(ONOO−) generation in hepatocytes [41]. Wang et al.
found that permethrin (PER) may exhibit toxic effects on
animals by NO generation [40]. A study by Jin et al.
revealed that PER significantly increased the mRNA
expression of induced nitric oxide synthase (iNOS) after
exposure of zebrafish to PER [42]. Another study found
increased NO levels in the plasma of rats treated with a
low dose of PER (34.05mg/kg b.w.) [43]. When Afolabi
et al. exposed the insecticide cypermethrin (CYP) to rats,
they found a significant increase in the plasma concentra-
tion of 8-nitroguanine (8-NO2Gua). CYP treatment
resulted in over 200% increase in the level of 8-NO2Gua
when compared with the control [44]. The elevated
plasma 8-NO2Gua level in CYP-exposed rats suggests that
CYP plays a role in nitrosative stress and possesses geno-
toxic and mutagenic potential [44]. The presence of NO
and NO metabolites in blood could be a possible source
for RNS that causes damage to several organs and tissues.

It has been hypothesized that the damage to cellular
macromolecules (nucleic acids, proteins, and lipids) by
increased ROS and RNS caused by long-term pesticide expo-
sure leads to cell death and overall tissue damage [45]. It is
worth highlighting that RNS and ROS usually work together
when they are present in a cell. Under conditions such as
pesticide toxicity, NO is generated via the expression of
iNOS which then reacts with the superoxide radical to form
highly reactive peroxynitrite (ONOO−). ONOO− then
causes cellular damage by interacting with biomolecules.
One such reaction is that of ONOO− with guanine which
results in nitrative and oxidative DNA lesions, such as 8-
NO2Gua and 8-oxodeoxyguanosine (8-OHdG), respectively
[46]. Previous findings have suggested that 8-NO2Gua for-
mation occurred to a greater extent in cancerous tissues than
noncancerous tissues [47]. This supports previous studies
that have linked pesticide exposure with cancer [48, 49].
Although RNS is not as well studied as ROS, the experimen-
tal data for RNS suggests that RNS can cause tissue damage
and should be investigated to a greater extent, especially to
determine if all pesticides can cause RNS.

1.4. Pesticides and Oxidative Stress Generation. The low
molecular weight and high liposolubility of pesticides
increases their absorption and toxicity level [50]. Organo-
phosphate (OP) and carbamate pesticides produce their
effects through the inhibition of carboxyl ester hydrolases,
in particular acetylcholinesterase, which leads to acetylcho-
line accumulation [50]. Moreover, some studies have sug-
gested that acetylcholinesterase enzyme inhibition is
associated with the increase in ROS in agricultural workers
exposed to OP pesticides and bipyridyl herbicides (e.g.,
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paraquat (PQ)). Oxidative stress can be induced by an
increase in lipid peroxidation and a decrease in antioxidant
capacity [51, 52]. Herein, some of the major classes of pesti-
cides and the roles they play in oxidative stress generation
are discussed.

1.5. Organophosphorus Pesticides. Quinalphos (QP), an
organophosphorus (OP) pesticide, is used to control pests
on various crops such as vegetables, fruits, cereals, rice,
wheat, maize, coconut, tobacco, coffee, tea, sugarcane, jute,
and cotton. Dwivedi et al. found that QP enhanced all the
levels of adult rat hepatic antioxidant components, namely,
SOD, CAT, GPx, and GSH-reductase, which take care of
ROS generated in vivo. They also found a significant induc-
tion of hepatic P450 [53]. A list of OP pesticides and their
effects on oxidative stress in different tissues is summarized
in supplemental table 4.

Chlorpyrifos (CPF), a crystalline-kind OP insecticide,
acaricide, and miticide, is mainly used to control foliage
and soil-borne pests on a variety of food and feed crops
[54]. Studies have implicated CPF and its derivatives in car-
cinogenesis [55]. Jung et al. demonstrated in their study that

methyl parathion and CPF induced the production of
inflammatory cytokines, such as tumor necrosis factor-α
(TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β)
in human hepatocellular carcinoma (HepG2) cells [56].
With regard to examining the deleterious effects of pesti-
cides, Binukumar et al. found that rats chronically exposed
to dichlorvos, another OP insecticide, displayed microglial
activation with the induction of NADPH oxidase and proin-
flammatory cytokines (TNF-α, IL-1β, and IL-6) [57]. In
vitro studies on human keratinocytes revealed the insecticide
monocrotophos significantly increased NO, lactate dehydro-
genase (LDH), malondialdehyde (MDA), nuclear changes,
proinflammatory cytokines (TNF-α, IL-6, and IL-8), and
ROS generation [58]. Several other studies conducted in rats
exposed to OP pesticides have displayed similarly increased
levels of proinflammatory cytokines [59–61].

Pesticides such as DQ do not bind covalently to macro-
molecules (i.e., lipids, proteins, and nucleic acids). However,
they cause oxidative stress by generating ROS intracellularly
via the reduction–oxidation (redox) cycling processes. DQ
can easily cross the cell membrane and enter the cell through
the dopamine transporter (DAT). While in the cell, DQ is
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Figure 1: Schematic representation of signaling pathways involved in pesticide-induced reactive oxygen species (ROS) and oxidative stress.
Pesticides increase NADPH oxidases (NOXs) and superoxide (O2

•−) levels, which leads to an increase in ROS signaling in the cell. Increased
ROS may induce lipid, protein, and DNA oxidation, leading to various toxicities. These stressors lead to activation of TNFR1/TNF-α,
MAPKs, NF-κB, and the mitochondrial apoptosis pathways. Continued stress leads to cell apoptosis and inflammation.
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Table 1: The effects of the most commonly used pesticides in the agricultural market sector in 2012 on oxidative stress in different tissues.

Pesticide Cell type/model system ROS SOD GSH CAT GST GPx DD LP PC AOC MMP Reference

Glyphosate

Human skin keratinocyte HaCaT
cells

↑ ↓ [178]

Human liver carcinoma (HepG2)
cells

↓ ↑ ↓ [179]

Rat heart H9c2 cells ↓ [180]

Adult albino male rats (liver) ↓ ↑ [181]

Caenorhabditis elegans ↑ ↓ [182]

Chlorella kessleri ↑ ↑ ↑ ↑ [183]

Atrazine (ATR)

Male and female Balb/c mice ↑ ↓ [184]

Male mice (liver and kidney) ↓ ↓ ↓ ↑ ↓ [185]

Male Wistar rats (erythrocytes) ↑ ↓ ↑ ↑ ↑ [155]

Adult male Wistar rats (testes and
epididymis)

↓ ↓ ↓ ↑ [186]

Male Wistar rats ↓ ↓ ↓ ↑ [187]

Adult male albino rats ↓ ↓ ↓ ↓ ↑ [188]

Female Wistar rats ↓ ↓ ↑ [189]

Murine microglial cells (BV-2) ↑ [190]

Albino rats ↓ ↑ ↑ ↑ ↑ [191]

Metolachlor-S

Scenedesmus obliquus (green
algae)

↑ ↑ ↑ [192]

Parachlorella kessleri (microalga) ↑ ↑ ↑ [193]

Wheat (Triticum aestivum L.) ↑ ↑ ↓ ↑ [194]

2,4-
Dichlorophenoxyacetic
acid (2,4-D)

Umbelopsis isabelline (Fungus)
pea (Pisum sativum L.)

↑ ↑ ↑ ↑
[195,
196]

Pea (Pisum sativum L.) ↑ ↑ ↑ ↑ [196]

Nongreen potato tuber callus ↑ ↑ ↑ [197]

Male 7-week-old Kunming mice ↓ ↓ ↑ [198]

Goldfish gills, Carassius auratus ↑ ↑ ↑ ↑ ↑ [199]

Cnesterodon decemmaculatus ↑ ↑ ↑ ↑ [200]

Acanthospermum hispidum D.C.,
Asteraceae weed

↑ [201]

Rat cerebellar granule cells ↑ ↓ ↓ ↑ [202]

Wistar rats ↓ ↓ ↓ ↓ ↑ [203]

Wistar Albino rats ↓ ↓ ↓ ↓ ↓ ↑ ↑ [204]

Male Wistar rats (liver) ↑↓ ↓ ↓ ↑ [205]

Male Wistar albino rats—plasma,
liver, kidney, erythrocytes

↓ ↓ ↓ ↑ [206]

Male Wistar rats (liver) ↓ [207]

Female B6C3F1 mice peritoneal
macrophages

↓ [208]

Metam Soil bacteria ↑↓ ↑ [209]

Acetochlor

Bufo raddei tadpole liver ↑ ↑ ↓ [210]

Female zebrafish ↑ ↑ ↑ ↑ [211]

Male C57BL/6 mice (testis) ↓ ↓ ↑ [212]

GC-1 spermatogonia cell ↓ ↓ ↑ [212]

Human liver carcinoma cells
(HepG2)

↑ ↓ ↓ ↓ [213]

Zebrafish ↑ ↑ [214]

Primary human corneal epithelial
(HCE) cells

↑ ↑ ↑ [215]
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Table 1: Continued.

Pesticide Cell type/model system ROS SOD GSH CAT GST GPx DD LP PC AOC MMP Reference

Chloropicrin

Human retinal pigment epithelial
cells (ARPE-19)

↑ [216]

Human lung epithelial cells
(A549)

↑ [217]

Gill tissues of Pacific oyster
(Crassostrea gigas), blue mussels

(Mytilus edulis)
↑ ↑ ↑ ↑ ↑ [218]

Chlorothalonil

Polychaete Laeonereis acuta ↑ ↓ [219]

Fish Danio rerio (gills) ↑ ↑ ↑ [220]

Fish Danio rerio (liver) ↑ ↑ [220]

Isolated rat hepatocytes ↓ ↑ [221]

Botryllus schlosseri hemocytes ↓ [222]

Male Wistar rats (liver) ↑ [223]

Fresh water fish, Channa
punctatus

↓ ↓ ↓ ↑ [224]

Pendimethalin

Male Wistar rats (liver and
kidney)

↓ ↓ ↓ ↓ ↑ ↑ ↑ [225]

Human lymphocytes ↑ ↑ [226]

Rat bone marrow cells ↑ ↓ ↓ ↑ ↑ [226]

Clarias batrachus (liver) ↑ ↑ ↑ [227]

Fish Channa punctatus (brain) ↓ ↓ ↓ ↓ ↑ ↑ [228]

Fish Channa punctatus (gills,
liver, kidney)

↓ ↓ ↓ ↓ ↑ ↑ [229]

Chinese hamster lung fibroblast
(V79) cells

↑ ↑ [230]

Male mice (spleen and thymus) ↔ ↓ ↓ ↓ ↑ [145]

Ethephon

3T3 murine embryonic fibroblast
(MEF) cells

↑ ↑ ↑ [231]

Spinach (Spinacia oleracea L.) ↑ [232]

Ipomoea cairica (Linn.) sweet ↑ [233]

Carassius auratus goldfish blood
and gills

↑ ↑ ↑ ↑ ↑ [234]

Mancozeb

Carassius auratus Goldfish—liver
and kidney

↑ ↑ ↑ ↑ ↑ [235]

Carassius auratus Goldfish—brain ↑ ↑ [235]

Cassia angustifolia ↑ ↑ ↑ ↑ [236]

Caenorhabditis elegans ↑ ↑ ↓ [237]

Caenorhabditis elegans ↑ ↑ ↓ [238]

Drosophila melanogaster ↑ ↓ ↓ ↑ ↑ ↑ [239]

Rat-1 fibroblasts, peripheral blood
mononucleated cells (PBMC)

↑ ↑ [240]

Male NMRI mice ↓ ↓ ↓ ↓ ↑ ↑ ↓ [241]

Rat thymocytes ↑ ↓ [242]

Human gastric adenocarcinoma
(AGS) cells

↑ ↓ [243]

Immortalized murine
mesencephalic dopaminergic

(N27) cells
↑ ↓ ↑ ↓ [80]
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Table 1: Continued.

Pesticide Cell type/model system ROS SOD GSH CAT GST GPx DD LP PC AOC MMP Reference

Chlorpyrifos

Lund human mesencephalic
(LUHMES) cells

↑ ↑ ↓ [80]

Human neuroblastoma SH-SY5Y
cells

↑ [244]

Rat adrenal pheochromocytoma
(PC12) cells

↑ ↑ [245]

Rat erythrocytes ↓ ↓ ↓ ↑ [156]

Male Wistar rats ↓ ↓ ↑ ↑ [63]

Male Wistar rats (aorta, liver,
plasma, and kidney)

↑ ↑ [246]

Male Swiss albino adult rats ↓ ↓ ↓ ↓ ↑ [247]

Adult male Wistar rats ↑ [248]

Male Wistar rats ↑ ↑ ↓ ↓ ↑ [249]

Male Kunming mice ↑ ↓ ↓ ↓ ↓ ↑ [250]

Male Wistar rats (liver) ↓ [251]

Metolachlor

Soil bacteria ↓↑ ↑ [209]

Lettuce, bean, and pea seeds and
leaves

↓ ↓ ↓ [252]

8-week-old male rats ↓ ↓ ↓ ↓ ↑ [253]

Propanil

Wistar rats, liver ↓ ↓ ↓ ↓ ↑ [151]

Albino rats, liver ↓ ↓ ↑ [254]

Common carp (Cyprinus carpio)
brain

↓ ↓ ↓ ↑ ↑ [255]

Isolated mitochondria from
potato tubers (Solanum

tuberosum)
↓ [256]

Dicamba

Nongreen potato tuber callus ↑ ↑ ↑ [197]

Cnesterodon decemmaculatus ↑ ↑ ↑ ↑ [200]

Isolated mitochondria
Arabidopsis

↑ [257]

Chinese hamster lung fibroblast
(V79) cells

↑ ↑ [230]

Trifluralin
Male Wistar albino rats—kidney,

ureter, urinary bladder
↓ ↓ ↑ ↑ [258]

Chlamydomonas mexicana ↑ ↑ [259]

Acephate

Drosophila melanogaster ↑ ↑ ↑ ↑ ↑ ↑ [260]

Male albino rats (plasma and
liver)

↓ ↓ ↓ ↑ ↑ [261]

Male rats (erythrocytes) ↓ ↑ ↑ [262]

Albino rats ↓ ↓ ↓ ↑ [263]

Human sperm ↑ [264]

Chinese hamster ovary (CHO-K1)
cells

↑ ↑ ↑ [265]

Porcine kidney proximal tubule
cell line (LLC-PK)

↑ ↑ [266]

Human dopaminergic
neuroblastoma cells (SK-N-SH)

↑ ↑ ↓ [267]
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reduced by receiving a single electron from NADPH, which
serves as the main source of reducing equivalents in cells.
This reaction forms NADP+ and a highly unstable DQ+●,
which, in turn, transfers an electron to molecular oxygen
(O2) to generate O2

•−. This process goes on continuously,
even in small amounts, to generate large quantities of O2

•−

and these oxygen radicals are neutralized spontaneously or
enzymatically via SOD to produce H2O2. However, with
the large increase in ROS production, the cellular protective
mechanisms, either nonenzymatic components (e.g. GSH,
thioredoxin, selenium, and vitamins C and E) or antioxidant
enzymes (e.g., SOD, GPx, glutathione peroxidase (GR), and
CAT), become overwhelmed, resulting in oxidative stress
and, consequently, apoptosis [62].

Uchendu et al. indicated that CPF and deltamethrin ((S)
a-cyano-3-phenoxybenzyl-(1R)-cis-3-(2.2-dibromovinyl)-
2,2-dimethylcyclopropane carboxylate (DM)), which belong
to the OP and pyrethroid pesticide groups, respectively,
induced oxidative stress due to the generation of free radicals
and alteration in antioxidant defense mechanisms. They
used a mixture of OP and pyrethroid insecticides, which
are common insecticides used by farmers and stored near
grains in some countries such as Nigeria [63]. The Uchendu
et al. study showed that rats exposed to CPF and deltameth-
rin, either individually or in combination, had significantly
lower levels of CAT, SOD, and GPx and significantly
increased levels of MDA compared to the control group
[63]. It was suggested that the elevated MDA concentration
was due to increased lipid peroxidation, which was induced
by excessive production of ROS. The decreased activities of
the antioxidant enzymes in the rats exposed to OP and pyre-
throid pesticides may be due to the direct deleterious effects
of ROS [63].

Another study conducted by Ojha and Gupta indicated
that commonly used OP pesticides such as CPF, methyl
parathion (MPT), and malathion (MLT) induced apoptosis
and DNA interstrand crosslink formation [64]. Ojha and
Gupta showed that all OP pesticides significantly increased
caspase-3 and caspase-9 activities in rat lymphocytes [64].
Their findings support the suggestion that elevated pro-
grammed cell death or apoptosis arises in the presence of
oxidative stress and activated caspase-3 and caspase-9 play
a role in the breakdown of several cellular components
related to DNA repair and regulation during apoptosis [64].

Multiple studies have explored the tendency of OPs to
cause cytotoxicity, DNA damage, and disturb oxidative bal-
ance, which leads to oxidative stress. In one study, Lu and
Yu evaluated the effects of profenofos (PFF) on rat adrenal
pheochromocytoma (PC12) cells. They found that PFF and
its enantiomers significantly increased intracellular ROS
and MDA levels in treated PC12 cells when compared to
the control [65]. Their results showed that PFF treatment
resulted in a significant increase in the expression of cop-
per/zinc superoxide dismutase (Cu-ZnSOD), glutathione-s-
transferase (GST), and CAT. They also found a significant
upregulation in heat shock protein (HSP 70 and HSP 90)
mRNAs in PC12 cells exposed to PFF. This suggests that
the increased HSPs were playing a protective role against
oxidative damage [65].

A common feature of all of these publications is that
organophosphorus pesticides activates ROS cellular defenses
(such as increased SOD, CAT, and GST) in many cell types
and tissues. However, the antioxidant protective pathways
do not seem to be enough to prevent cell and tissue damage
as apoptosis is a common outcome of treatment with these
pesticides (supplemental table 2).

Table 1: Continued.

Pesticide Cell type/model system ROS SOD GSH CAT GST GPx DD LP PC AOC MMP Reference

Paraquat (PQ)

Rat lung slices ↑ [268]

Rat organotypic midbrain slice
cultures

↑ [269]

Rat primary mesencephalic
cultures

↑ [270]

Rat primary mesencephalic
cultures

↑ [79]

Human neural progenitor cells
(hNPCs)

↓ ↓ ↑ [135]

Human neural progenitor cells
(hNPCs)

↑ [271]

Human plasma ↑ ↓ [51]

Rat brain mitochondria ↑ [79]

Nongreen potato tuber callus ↑ ↑ [197]

Amaranthus palmeri ↑ ↑ ↑ [272]

Glufosinate
Horseweed, palmer amaranth,

kochia
↑ ↑ ↑ ↑ [273]

Chlorella vulgaris ↑ ↑ ↑ [274]

ROS: reactive oxygen species; SOD: superoxide dismutase; GSH: glutathione; CAT: catalase; GST: glutathione-S-transferase; GPx: glutathione peroxidase; DD:
DNA damage; LP: lipid peroxidation; PC: protein carbonylation; AOC: antioxidant capacity; MMP: mitochondrial membrane potential; ↑: increased; ↓:
decreased.
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Table 2: Effects of commonly used conventional pesticide active ingredients in the home and garden market sector in 2012 on oxidative
stress in different tissues.

Pesticide Cell type/model system Concentration/dose Oxidative stress markers Reference

Carbaryl

Cantareus apertus
(digestive gland)

1μM
Increased lipid peroxidation, increased activities of
CAT, SOD, GPx, and GR, and decreased total

oxyradical scavenging capacity
[275]

Calothrix brevissima
10, 20, 30, and 40mg/

L
Increased lipid peroxidation and increased SOD,

CAT, and APX activities
[276]

Caenorhabditis elegans 0.5, 1, and 1.5mM
Decreased SOD activity and increased CAT and GPx

activities
[277]

Mouse neuroblastoma
cells (neuro 2A)

10μM

Increased ROS level, loss of mitochondrial membrane
potential, increased proapoptotic gene Bax and

caspase-3 expression, and decreased antiapoptotic
gene Bcl-2 expression

[278]

Rat adrenal
pheochromocytoma

(PC12) cells
100μg/mL

Increased lipid peroxidation, increased SOD activity,
decreased GSH content, and decreased mitochondrial

membrane potential
[279]

Water buffalo (Bubalus
bubalis)

1mg/kg
Increased lipid peroxidation, increased activities of
GPx, GR, GST, SOD, and CAT, and decreased GSH

level
[280]

Permethrin (PER)

Rat polymorphonuclear
neutrophils (PMNs)

PER (10 μM)
Increased apoptosis, protein carbonyl, and conjugated

diene formation in lipids
[69]

PER metabolites (3-
PBAlc, PBAld, and 3-

PBA) (10 μM)

Increased apoptosis, protein carbonyl, and conjugated
diene formation in lipids

[69]

Rat adrenal
pheochromocytoma

(PC12) cells

PER (10, 20, and
30mg/L)

PER induced enantioselective oxidative stress and
cytotoxicity

[281]

1R-trans-PER (10, 20,
and 30mg/L)

Increased ROS generation and MDA level and
decreased the activity of SOD, CAT, and GSH

[281]

1S-trans-PER (10, 20,
and 30mg/L)

The toxic effect on PC12 cells induced by 1R-trans-
PER was approximately 1.6 times higher than by 1S-

cis-PER
[281]

Thymic cells from
C57BL/6 mice

PER (150, 300, 600,
and 1000μM

Induced O2
•− and H2O2 [282]

Lindane (37.5, 50, 75,
150, and 200μM)

PER and lindane mixtures increased SOD activity, had
no effect on CAT levels, and inhibited GPx and GSH-

R-specific activities
[282]

Wistar rats 34.05mg/kg
Increased Nurr-1, Nrf2, and NF-κB p65 mRNA levels

in the cerebellum
[91]

Wistar rats 34.05mg/kg Increased plasma lipid peroxidation [92]

Male and female 500-
day-old rats

4mL/kg
Increased calcium and Nrf2 gene expression levels in

old age
[134]

Cypermethrin
Wistar rats 25mg/kg

Increased lipid peroxidation and protein oxidation,
increased plasma IL-6 and TNF-α levels, and

increased 8-NO2Gua levels
[44]

Wistar rats 1.5–15mg/kg Increased lipid peroxidation [283]

Deltamethrin

Sprague–Dawley rats
(hippocampi)

3.125mg/kg and
12.50mg/kg

Increased reactive free radical formation in the brain,
increased nuclear Nrf2 expression, and increased HO-

1 mRNA levels
[136]

Rat adrenal
pheochromocytoma

(PC12) cells
10, 100 μM Increased intracellular ROS production [136]

Male Wistar rats 6.25mg/kg
Decreased CAT activity, SOD activity, and GPx

activity. Increased lipid peroxidation
[63]
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Table 2: Continued.

Pesticide Cell type/model system Concentration/dose Oxidative stress markers Reference

Bifenthrin

Human colon
carcinoma (HCT116)

cell

1/4 IC50, 1/2 IC50, 3/
4 IC50, and IC50

Increased ROS production levels, increased lipid
peroxidation, increased DNA damage, decreased
mitochondrial membrane potential, and increased

caspase-3 activity and MAPK activation

[284]

Male ICR mice 1S-cis-BF (5mg/kg)

Increased hepatic ROS level, increased serum and
hepatic lipid peroxidation, decreased GSH activity,
increased CAT activity, increased SOD activity, and

increased Cat and Ho-1 mRNA levels

[285]

Human umbilical vein
endothelial cells

(HUVECs)
15, 30 μM Increased apoptosis [286]

Zebrafish 15, 30 μM Increased intestinal ROS level [286]

2-Methyl-4-
chlorophenoxyacetic
acid (MCPA)

Human erythrocytes 250, 500 ppm Decreased GSH level [287]

Human erythrocytes 2.0mM, 4.0mM Increased lipid peroxidation [288]

Ramalina fraxinea 20, 50, 100mg/L Increased lipid peroxidation [289]

Malathion

Thymic cells from
C57BL/6 mice

37.5, 75, 150, 300μM Induced O2
•− and H2O2 [282]

Rat erythrocytes 0.13mg/kg
Increased lipid peroxidation, increased SOD and CAT

activities, and increased total-SH content
[146]

Male Wistar rats
(cortex, striatum,

cerebellum,
hippocampus)

25, 50, 100, and
150mg/kg

Increased lipid peroxidation, increased protein
carbonylation, increased/decreased CAT activity, and

increased/decreased SOD activity
[290]

Prepubertal male mice 200mg/kg

Increased lipid peroxidation, increased ROS level,
decreased SH group, reduced CAT and GPx activities
in the liver and kidney, decreased total SOD, Cu/Zn-

SOD, and Mn-SOD activities in the liver, and
decreased total SOD and Mn-SOD activities in the

kidney

[291]

Male Swiss mice 500mg/kg

Increased lipid peroxidation, increased ROS level,
increased SH group content, and increased testicular
activities of SOD, Cu/Zn-SOD, Mn-SOD, Fe-SOD,

and CAT

[292]

Male Wistar rats 250mg/kg
Increased lipid peroxidation and decreased testicular

total antioxidant capacity
[293]

Male Swiss albino mice 27mg/kg
Increased lipid peroxidation, decreased testicular

activities of SOD, CAT, and GPx, and decreased GSH
level

[294]

Wistar male rats 250mg/kg

Increased 8-hydroxy-2′-deoxyguanosine (8-OHdG)
level, increased NO level, decreased total antioxidant
capacity (TAC), increased total oxidant status (TOS),
decreased CAT and SOD activities, and increased

DNA damage

[295]

Sprague Dawley rats 200mg/kg
Increased lipid peroxidation, increased NO level, and

decreased GSH level
[296]

Human liver carcinoma
cell (HepG2)

6–24mM
Increased lipid peroxidation and increased oxidative

DNA damage
[297]

Porcine cumulus-oocyte
complexes

750 and 1000 μM

Increased ROS level, increased lipid peroxidation,
increased protein carbonylation, increased Cu/Zn-

SOD, GST, and G6PD expression levels, and
decreased CAT and GPx expression levels

[298]

Male Wistar rats
25, 50, 100, and

150mg/kg

Increased mitochondrial superoxide production in the
hippocampus, increased lipid peroxidation in the
hippocampus and striatum, and decreased complex

IV activity in the hippocampus

[299]
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1.6. Pyrethroid Insecticides. Permethrin (PER) is a type 1
pyrethroid insecticide. It is the most commonly used pyre-
throid in the US and many other countries because of its
high activity as an insecticide and its low mammalian toxic-

ity [66]. PER can be used as a fungicide or insecticide for
wood preservation purposes and can be found in lice sham-
poos or scabies treatment which increases their potential to
cause harm to human health due to their widespread use

Table 2: Continued.

Pesticide Cell type/model system Concentration/dose Oxidative stress markers Reference

Rohu (Labeo rohita)
liver

5μg/L
Increased intracellular ROS level, increased lipid

peroxidation, increased activities of CAT, SOD, POD,
GSH, GR, GST, and GPx, and increased DNA damage

[300]

Human erythrocytes 25, 75, 200 μM
Increased lipid peroxidation, decreased SOD, CAT,

and GPx activities
[301]

Female Wistar rats
(ovary)

50mg/kg
Increased lipid peroxidation and decreased GSH

content
[302]

Allium cepa
0.05, 0.13, 0.26, 0.39,

and 0.52 g/L

Increased lipid peroxidation, increased CAT, GST,
and SOD activities, decreased APX and GR activities,

and increased DNA damage
[303]

Male Kunming mice 10−5 M

Increased lipid peroxidation, increased •OH level,
decreased SOD, GPx, and CAT activities, decreased
GSH content, and increased levels of Bax, Bcl-2, and

p53 in splenic T cells

[250]

Pesticides (cypermethrin,
permethrin)
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Figure 2: Schematic representation of signaling pathways involved in pesticide-induced reactive nitrogen species (RNS) signaling and
oxidative stress. Pesticides including cypermethrin and permethrin increase nitric oxide (NO) and Ca2+ levels which increases reactive
RNS signaling, thereby increasing oxidative stress in the cell. Pesticides can also lead to Keap1/Nrf2/ARE activation as well as the NF-κB
pathway. Increased RNS may induce lipid, protein, and DNA oxidation, resulting in mitochondrial dysfunction and apoptosis.
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around humans [67]. Due to the worldwide use of permeth-
rin, humans and animals may have had exposure to this
compound [67]. Studies have shown that pesticides in the
pyrethroid family have a role in weakening the immune sys-
tem because they can induce leukocytosis, decrease natural
killer (NK) cell counts, and increase the cluster of differenti-
ation antigen 4/cluster of differentiation antigen 8 (CD4
+/CD8+) ratio [68]. A study by Gabbianelli et al. showed
that 10μM of PER and its metabolites, 3-phenoxybenzyl
alcohol (3-PBAlc), 3-phenoxybenzaldehyde (PBAld), and
3-phenoxybenzoic acid (3-PBA), significantly increased apo-
ptosis in rat polymorphonuclear neutrophils (PMNs) [69].
Moreover, pyrethroids could alter the metabolism of cate-
chol estrogens through the action of peroxidases, leading to
the production of semiquinones and quinones, which are
capable of forming DNA adducts [70]. In addition, quinones
potentially affect DNA topoisomerase II, an enzyme that
participates in DNA repair and recombination, which could
lead to breaks in certain susceptible sites of the genome
(breakpoint cluster regions of certain genes), modifying
DNA topology through the induction of double-strand
breaks (DSB) that need to be rejoined [70]. Furthermore,
there are genes, such as mixed lineage leukemia (MLL), with
particular susceptibility to the breakage by DNA topoisom-
erase II; the inhibition of this enzyme produces ruptures in
this gene which participates in diverse oncogenic fusions
driving the leukemogenic process [70] (Figure 3).

Like organophosphorus pesticides, pyrethroid insecti-
cides also increase the levels of antioxidant enzymes and
induces apoptosis (supplemental table 2). The lack of
detailed studies with respect to the effects of many
pesticides on the immune system limits what can be
concluded from pyrethroid pesticide studies. However,
the current data suggests that pyrethroid pesticides may
have a greater effect on weakening the immune system
than other pesticides.

1.7. Organochlorine (OC) Pesticides. Organochlorine (OC)
pesticides are synthetic pesticides that belong to a group of
chlorinated hydrocarbon derivatives, which are widely used
in the chemical industry and in agriculture [1]. The chemi-
cals identified as OC pesticides have been classified as persis-
tent organic pollutants (POPs) because they have high
persistence in the environment [1]. Despite their effective
control of malaria and typhus fever, the majority of OC pes-
ticides have been banned in most highly developed countries
due to their high toxicity, slow degradation, and bioaccumu-
lation [71]. OC insecticides such as dichloro-diphenyl-
trichloroethane (DDT), hexachlorocyclohexane (HCH),
aldrin, and dieldrin are among the most widely used pesti-
cides in developing countries of Asia and Africa [1]. Dieldrin
is a highly persistent OC insecticide that was widely used to
control soil pests such as grasshoppers, locusts, termites,
beetles, and textile pests in the agriculture field [72]. It was
also effective in controlling tsetse flies, which are the vector
that caused African sleeping sickness (African trypanosomi-
asis) and other tropical diseases including malaria, yellow
fever, Chagas disease, Oroya fever, river blindness, and fila-
riasis. The United States Environmental Protection Agency

(USEPA) banned and restricted the use of dieldrin in 1974
due to its possible carcinogenicity to human and animal
health after many years of widespread use. Since some devel-
oping countries are still using this pesticide, humans are still
exposed to dieldrin mainly through contaminated foods
[72]. Several postmortem studies have suggested that expo-
sure to dieldrin has the likelihood of increasing the incidence
of Parkinson’s disease because significant levels of dieldrin
were detected in the brains from Parkinson’s patients, while
no dieldrin was detected in age-matched control brains [72].
A list of other pesticides, including some not discussed in the
text, and their effects on cell types or model systems are
shown in supplemental table 5.

Like with organophosphorus and pyrethroid pesticides,
organochlorine pesticides that are currently used can be
found at low levels in the environment. The organochlorine
pesticides show cellular effects that are similar to other clas-
ses of pesticides further suggesting that most pesticides may
be causing some or most of their deleterious effects via
excessive ROS production.

1.7.1. Paraquat.One pesticide that has been well investigated
relative to others is paraquat. Exposure to paraquat is associ-
ated with the increased risk of pulmonary fibrosis, as well as
lung, brain, and heat injuries [73, 74]. Paraquat can generate
several types of ROS intracellularly, including O2

•−, H2O2,
and •HO [75]. Paraquat can interact with nicotinamide ade-
nine dinucleotide phosphate (NADPH) oxidase (NOX) and
inducible nitric oxide synthase (iNOS) generating ROS and
RNS in the cytosol [76]. Paraquat induced NOX type 1-
(NOX1-) mediated ROS generation in dopaminergic cells
[77], while it activates NOX type 2 (NOX2) in microglia
[78]. High levels of NO can react with superoxide ions to
form highly toxic peroxynitrite anions (ONOO–). Paraquat
can also disrupt the oxidation of NAD(P)H to NAD(P)+ that
occurs by the mitochondrial electron transport chain (ETC)
complex I, by accepting electrons to form a charged version
of paraquat (PQ+). PQ+ can generate superoxide radicals
(O2

•−) which can lead to other ROS products such as HO•.
Brain mitochondria ETC complex III was also shown to
affect the H2O2 levels induced by paraquat [79].

1.8. Signaling Mechanisms through Which Pesticides Induce
ROS. Although the precise molecular mechanism by which
acute or chronic exposure to pesticides induces oxidative
stress and damage remains currently unknown, several
events involving different cell signaling pathways such as
changes in gene expression, activation, and/or inhibition
occur. Understanding the cellular and molecular level
changes is needed to elucidate the major pathways involved
in pesticide-induced oxidative stress and develop potential
protective agents or therapies.

1.9. Signal Transducers and Activators of Transcription
(STAT).OP pesticides are amongst the most commonly used
pesticides in the US. Several studies have reported that CPF
increases the production of free radicals and superoxide by
disrupting mitochondrial electron transport chain (ETC)
complex I activity depleting the antioxidant defenses [80].
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Singh et al. reported that CPF induced a dose-dependent
increase in cell death and contributed to oxidative stress by
upregulating ROS generation and decreasing GSH levels in
dopaminergic neuronal and human mesencephalic cells
[80]. Based on the results of CPF-induced dopaminergic cell
death, the group hypothesized that signal transducers and
activators of transcription 1 (STAT1) regulate CPF-
induced ROS production and that elevated ROS eventually
leads to apoptotic cell death [80]. STAT proteins belong to
a family of latent cytoplasmic transcription factors that play
a major role in proliferation, growth, apoptosis, and differ-
entiation within different cell types [81]. Janus kinase-
(JAK-) STAT signaling is critical for both neuronal survival
and cell death [80]. Upon the binding of ligands to their
receptors, activation of JAK takes place and, in turn, phos-
phorylates STAT1 on tyrosine 701 and serine 727 residues.
The phosphorylated STAT1 dimerizes and translocates into
the nucleus, where STAT1 binds to the gamma interferon-
activated site/interferon-stimulated response element
(GAS/ISRE) present on the promoter region of specific tar-
get genes that regulate proinflammatory cytokines, NADPH

oxidase (NOX), apoptosis, and cell cycle arrest regulators,
such as caspases, Fas, and Bax [80]. STAT1 regulates cell
death through both transcriptional-dependent expressions
of proapoptotic genes and nontranscriptional signaling
pathways [81]. In another study, OP pesticides induced a
66% decrease in intracellular ROS levels in STAT1 knock-
down (KD) dopaminergic cells in comparison with scram-
bled small interfering RNA- (siRNA-) transfected cells
exposed to the same pesticides [80]. NOX-1, a superoxide-
generating NADPH-oxidase isoform, has been shown to
regulate ROS generation in some cell types, including, but
not limited to, monocytes, macrophages, vascular endothe-
lial cells, and smooth muscle cells [82]. NOX-1 is the main
ROS-producing enzyme during inflammation [83]. OP
pesticides increased the recruitment of STAT1 to the endog-
enous NOX-1 promoter suggesting that NOX-1 is transcrip-
tionally regulated by STAT1 [80]. STAT1 plays an important
role in regulating ROS generation and antioxidant GSH
levels in a NOX-1-dependent manner in neuronal cells
treated with CPF, an OP pesticide. Mangum et al. found that
OC insecticides induced NOX-dependent ROS generation in
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human monocytic cells [84]. Together, these data suggest
that STAT1 activation of NOX is important for ROS gener-
ation in OP pesticide-induced oxidative stress.

1.10. TNFR1/TNF-α Pathway. Some reports suggest that the
death receptor pathway is one of the possible mechanisms
that induce oxidative stress. The ligation of cell surface death
receptors, such as the tumor necrosis factor receptor
(TNFR), enables communication signals of tumor necrosis
factor-alpha (TNF-α), which leads to the activation of
caspase-8 that cleaves effector caspase-3, either directly or
indirectly via the mitochondrial route [40]. TNF-α is a pow-
erful and potent proinflammatory cytokine produced by
macrophages/monocytes during acute inflammation and is
responsible for different signaling events within cells, leading
to necrosis or apoptosis [85]. The inflammatory responses
induced by TNF-α are mediated by its interaction with two
cell surface receptors, TNFR1 and TNFR [86]. TNF-α is also
involved in the induction of cytokine production, the activa-
tion and expression of adhesion molecules, and growth stim-
ulation [87]. Pacheco et al. showed that increased TNF-α
levels by itself could induce ROS generation and oxidative
stress in the L929 mouse fibrosarcoma cell line [86]. A study
in rats exposed to permethrin showed that an increase in the
TNF-α levels increases ROS generation and decreases the
antioxidant defense system, which leads to oxidative stress
[40]. Additionally, Jin et al. found that permethrin increased
TNF-α mRNA expression in a concentration-dependent
manner when exposed to zebrafish for 72 hours of postferti-
lization [42]. Zebrafish is considered a good model for inves-
tigating cytokine genes such as TNF-α [88]. A study
conducted by Tyagi et al. that focused on idiopathic preterm
birth documented that significantly higher levels of β-HCH
(beta-hexachlorocyclohexane) and p,p′-DDE (para, para-
dichlorodiphenyldichloroethylene) were observed in mater-
nal blood of preterm birth cases (n = 30) as compared to
term delivery (n = 30) from July 2012 to June 2013 in Delhi,
India [89]. Tyagi et al. found that TNF-α mRNA expression
was 2.31-fold higher in preterm birth cases in comparison to
term delivery [89]. This suggests that pesticides might be
involved in the induction of proinflammatory pathway genes
such as TNF-α.

1.11. Nurr1 and the NF-κB pathway. Orphan nuclear
receptor-related 1 (Nurr1) is a transcription factor that
belongs to the nuclear receptor subfamily 4 group A member
2 (NR4A2) family of proteins and plays an important role in
the metabolism of dopaminergic neurons [40]. Emerging
evidence indicates that impaired Nurr1 function might con-
tribute to the pathogenesis of Parkinson’s disease [90].
Nurr1 exhibits anti-inflammatory actions due to its inhibi-
tory activity towards the transcription factor NF-κB in brain
tissue [40]. Carloni et al. reported in their study that
permethrin induced an increase in the expression of the pro-
inflammatory NF-κB transcription factor and a decrease in
Nurr1 gene expression [91]. Another study conducted by
Fedeli et al. showed that permethrin increased proinflamma-
tory cytokine TNF-α expression and decreased IL-1β, IL-2,
and IL-13 expression in the oldest treated rats [92]. These

results suggest that TNF-α, Nurr1, and NF-κB pathways
may be partly responsible for some of the mechanisms
related to oxidative stress caused by pesticides.

1.12. Protein Kinase C Signaling Pathway. Kitazawa et al.
reported that caspase-3-mediated proteolytic cleavage of
protein kinase C (PKC) δ contributed to apoptosis of dopa-
minergic PC12 cells following exposure to dieldrin [72].
PKC can be grouped into a family of serine/threonine kinase
enzymes that belong to the AGC (cAMP-dependent, cGMP-
dependent, and protein kinase C) superfamily of protein
kinases [93]. They are protein kinase enzymes that are able
to change enzyme activity, cellular location, or association
with other proteins via phosphorylation of hydroxyl groups
on serine and threonine residues, resulting in a functional
change of the target protein [94]. Kitazawa et al. found that
exposure of PC12 cells to dieldrin triggered both a dose-
dependent release and a time-dependent release of cytosolic
cytochrome C which is consistent with previous literature
that suggests that increased ROS production induces or trig-
gers mitochondrial cytochrome C release into cytosol [72].
Additionally, one of the most studied caspases that plays a
critical role in execution of apoptosis, caspase-3, was found
to be significantly activated following dieldrin exposure. Fur-
thermore, exposure to dieldrin resulted in the proteolytic
cleavage of native PKCδ over a period of 5 hours [72]. Kita-
zawa et al. suggest that the proposed mechanism for
dieldrin-induced apoptosis in dopaminergic cells was that
ROS production triggers cytochrome C release, which acti-
vates caspase-9 and caspase-3 and in turn cleaves PKCδ,
resulting in apoptotic cell death. These results implicate
PKC as a signaling pathway involved in pesticide-induced
oxidative stress. Further studies on PKC involvement in
pesticide-induced cellular changes are needed.

1.13. NF-κB Signaling Pathway. Another OP that was exten-
sively used before it was banned and globally phased out due
to high toxicity is endosulfan. Endosulfan is primarily used
to control a number of insects on food crops like tea, fruits,
and vegetables and on grains and can be used as a wood pre-
servative. Endosulfan can be released into the air, water, and
soil in areas where it is applied as a pesticide [95]. A mortal-
ity study reported an increased incidence of Parkinson’s
mortality in rural California counties with high use of agri-
cultural pesticides [96]. Jia et al. examined endosulfan and
zineb individually and in combination for their potential to
stimulate oxidative stress in human neuroblastoma cells
(SH-SY5Y) in vitro [97]. They found that exposure to endo-
sulfan and zineb significantly increased intracellular H2O2
and O∙−

2 and production in neuroblastoma cells in a dose-
and time-dependent manner which indicates that both
pesticides induce oxidative stress [97]. Jia et al. also showed
that the caspase-3 activity was significantly elevated in cells
treated with endosulfan and zineb when compared with that
of the control cells. The activity and expression of NF-κB, a
ubiquitous transcription factor, which serves as an indicator
of oxidative stress, had significantly higher levels in neuro-
blastoma cells treated with endosulfan and zineb individu-
ally or in combination [97]. These results suggest that the
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oxidative stress induced by pesticide exposure to cells
contributes, at least in part, to the activation of the NF-κB
signaling pathway. It can be partly extrapolated from this
study that combination or exposure to two or more pesti-
cides causes great harm to the health of farmers, workers,
and other individuals who are at a higher disposition to
pesticide exposure.

1.14. Endoplasmic Reticulum (ER) Stress. The ER serves
many functions including the assembly, folding, posttransla-
tional modification, and transport of proteins. In addition,
the ER stores calcium which is essential for muscle contrac-
tion. ER stress occurs when the protein folding capacity of
the ER is overwhelmed, and cells with ER stress are char-
acterized by an accumulation of misfolded proteins inside
the lumen of the ER. ER stress could be induced by
several conditions including hypoxia, nutrient deprivation,
and pesticides. If the ER stress is severe or extended, apo-
ptosis could be induced [18]. Several pesticides such as
chlorpyrifos, 2,4-dichlorophenol, deltamethrin, and para-
quat have been shown to induce ER stress. Many of these
pesticides also induce apoptosis but research suggests that
pesticides induce ER stress and apoptotic cell death via
different pathways.

1.15. Nonmitochondrial Apoptosis Pathway. Apoptosis is a
form of programmed cell death that is used to remove
unwanted cells. This process is generally characterized by
morphology changes including DNA fragmentation, cell
shrinkage, and mRNA decay. Pesticides have been docu-
mented to induce apoptosis by triggering several different
signaling pathways including intrinsic pathways involving
the mitochondria and DNA damage as well as extrinsic
pathways such as modulation of death receptors [98, 99].
Organophosphorus pesticides like monocrotophos, profeno-
fos, chlorpyrifos, and acephate induce apoptosis in cultured
human peripheral blood lymphocytes [100]. Chlorpyrifos
and cypermethrin induce apoptosis in human SH-SY5Y
neuroblastoma cells [101], while malathion induces apopto-
tic cell death in N2 neuroblastoma cells [102]. Chlorpyrifos
action may be via FAS/TNF signaling pathways [101].
Although pesticides are typically in low concentrations in
rivers, lakes, and surface water, these low concentrations
have been documented to induce DNA damage and apopto-
sis in fish. Pyrethroid pesticides are known to be up to 1000
times more toxic in fish than in mammals and birds because
of its high absorption into the gills [103].

1.16. Mitochondrial Apoptosis Pathway. A common dysfunc-
tion associated with oxidative stress is mitochondrial dys-
function [104]. In some cases, mitochondrial dysfunction
causes ROS, while in some cases, ROS could cause mito-
chondrial dysfunction. The complexes in mitochondria are
the main site for ROS production, and many pesticides have
been shown to inhibit mitochondrial complexes [105, 106].
As such, it is likely that a major contributor to oxidative
stress is the ROS produced by dysfunctional mitochondria.
In mammals and fish, mitochondrial dysfunction is often
associated with ER stress and apoptosis [103, 107].

Pentachlorophenol (PCP) and its metabolite, tetra-
chlorohydroquinone (TCHQ), decreased the antioxidant
GSH level in the mouse liver and drastically increased
lipid peroxidation via the abundant production of urinary
8-iso-prostaglandin F2α (8-iso-PGF2α) [108]. Taking into
consideration existing and emerging evidence, the mito-
chondrial apoptosis pathway is another possible mecha-
nism that is involved in pesticide-induced oxidative
stress. B cell lymphoma 2 (Bcl-2) and BCL2-associated X
(Bax) are the main mitochondrial integrity regulators in
this pathway. They also influence cytochrome c release
and caspase activation. Bcl-2 and Bax are two well-
known proteins associated with cell death but possess
opposite function. The Bcl-2 protein functions as a sup-
pressor where it prevents apoptosis by its antioxidative
activity, while the Bax protein functions as a promoter of
apoptosis [40]. After mitochondrial damage, Bax is trans-
located from the cytosol to the mitochondria and a signif-
icant decrease in Bcl-2 expression also occurs. Due to high
levels of ROS from pesticide exposure, mitochondrial cyto-
chrome c is released into the cytoplasm, which is a critical
apoptotic event [40]. Chen et al. found that TCHQ
increased the expression of Hsp 70 but decreased the
expression of the Bcl-2/Bax ratio and cellular apoptosis
susceptibility (CAS), the genes that play a role in apoptotic
and necrotic processes, in liver cells. The ratio of Bcl-2/
Bax protein may account for the survival or death of
intoxicated cells [108]. Their results corroborate the
involvement of the mitochondrial apoptotic pathway in
pesticide-induced oxidative stress.

1.17. Autophagy. Autophagy is a normal process that irre-
versibly degrades damaged or unwanted eukaryotic cell
components. Like apoptosis, it is a form of programmed cell
death but autophagy involves different pathways from apo-
ptosis [109]. In mammals, the autophagy process involves
the formation of autophagosomes (vesicles) that fuse with
the lysosome. Autophagy is important in reducing the effects
of oxidative stress on cells [110].

Several pesticides have been shown to increase autoph-
agy. CPF, which was described earlier to increase apoptosis,
induces autophagy in neuronal cells [111]. In one study, pre-
treatment of SH-SY5Y neuronal cells with rapamycin
(autophagy inducer) resulted in reduced CPF toxicity (less
cell death) while inhibition of autophagy resulted in
increased CPF toxicity [111]. In another study in SY5Y neu-
ronal cells, Dai et al. found that CPF induced PTEN-induced
putative kinase 1 (PINK1)/parkin-regulated mitophagy (a
selective form of autophagy) [112]. Experiments using the
pesticide fipronil suggest that autophagy is important in
reducing the effects of pesticides. In one study, autophagy
was found to increase the viability of cells treated with fipro-
nil [113]. The mechanism of action for improved cell viabil-
ity may be decreased caspase 3 levels resulting in low levels
of fipronil-induced apoptosis [113]. Several investigations
also suggest that paraquat induces autophagy. In an interest-
ing study, knockout of the innate proinflammatory mediator
Toll-like receptor 4 (TLR4) lessened paraquat-induced car-
diac dysfunction [114]. A potential mechanism for the
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reduced paraquat-induced cardiac dysfunction may be via
the regulation of AMPK-mediated cardiac autophagy
[114]. In rat adrenal pheochromocytoma PC12 cells, rapa-
mycin significantly decreased paraquat-induced cellular tox-
icity suggesting that basal autophagy has a protective role in
cytotoxicity caused by paraquat [115].

1.18. Mitogen-Activated Protein Kinases (MAPKs). The
mitogen-activated protein kinases (MAPKs) are serine/thre-
onine-specific protein kinases that phosphorylate their own
dual-serine and threonine residues (autophosphorylation)
or those found on their substrates, to activate or deactivate
their target [116]. They are involved in regulating cellular
processes such as proliferation, stress response, energy
metabolism, gene expression, differentiation, proinflamma-
tion, mitosis, cell survival, apoptosis, and immune defense
[117]. Chen et al. showed that exposure of TCHQ activated
c-Jun NH2-terminal kinase (JNK) and p38 in NIH3T3 fibro-
blast cells [108]. Herein, this further demonstrates that the
cascades of the MAPK (JNK, p38 MAPK, and extracellular
signal-regulated protein kinase (ERK)) signaling pathway is
involved in TCHQ-induced oxidative stress. Pentachloro-
phenol (PCP) is a restricted use OC pesticide, used industri-
ally as a wood preservative for railroad ties, utility poles, and
wharf pilings and used extensively as a biocide in the leather
and textile industries [118]. It is highly effective against
decay from fungus and damage from wood-boring insects
in timbers [119]. Its molecular structure is that of a phenol
group (aromatic ring) with five chlorine atoms which makes
it a persistent organic pollutant. PCP has been detected in
food and several consumable products. PCP has also been
found in groundwater in micromolar concentrations. Even
higher levels of PCP (0.7mM) have been reported in the
vicinity of industrial point sources of chlorophenols [120].
Due to the difficulty in the degradation of PCP in the envi-
ronment, its use has been banned by countries which signed
the Stockholm Convention with exception to the US. The
IARC (International Agency for Research on Cancer) cate-
gorized PCP as carcinogenic to humans (group 1) based on
epidemiological studies that showed that exposure to PCP
causes non-Hodgkin lymphoma in humans [108]. Several
studies have reported that exposure to PCP increases the risk
of nasal carcinoma and soft tissue sarcoma and induces
hepatocellular carcinomas/adenomas, hemangiosarcomas,
and pheochromocytomas in a chronic tumorigenesis mouse
animal model [121, 122]. Wispriyono et al. found that 20μM
of PCP and its metabolite, TCHQ, markedly increased the
number of apoptotic cells and induced DNA fragmentation
in Jurkat human T cells after 10 hours of incubation. Nota-
bly, they discovered that after 1 hr of incubation, 20μM of
TCHQ phosphorylated all the MAPKs examined (i.e., extra-
cellular signal-regulated protein kinase (ERK), p38, and c-
Jun NH2-terminal kinase (JNK)). They went on to show that
TCHQ-induced apoptosis disappeared almost completely
when treated with both the p38 inhibitor (SB203580) and
MAPK/ERK kinase inhibitor (U0126) at the same time.
Wispriyono et al. came to the conclusion that p38 and
ERK are likely important signal transduction pathways
involved in apoptosis in the human T cell line exposed to

PCP metabolite [123]. CPF (50μM) induced redox imbal-
ance altering the antioxidant defense system in breast cancer
cells as well as increased formation of intracellular ROS and
RNS. Finally, it was demonstrated by Ventura et al. that
the main mechanism involved in the inhibition of CPF-
induced cell proliferation is an increment of p-ERK1/2
levels mediated by H2O2 in breast cancer cells [124]. Apo-
ptosis signal-regulating kinase 1 (ASK1) is a member of
the mitogen-activated protein kinase (MAPK) family.
ASK1 activates c-jun N-terminal kinase (JNK) and p38
in response to various stimuli including oxidative stress,
endoplasmic reticulum stress, proinflammatory cytokines,
infection, and calcium influx. ASK1 activates JNK and
p38 by directly phosphorylating, and thereby activating,
their respective MAP2Ks (also called mitogen-activated
kinase kinase (MKK)), MKK4(SEK1)/MKK7, and MKK3/
MKK6 [125]. Meijles et al. found that activation of cardiac
ASK1 is ROS dependent in neonatal rat cardiomyocytes
from perfused hearts where H2O2 activated ASK1 which
suggests that ASK1 is selectively activated by ROS [126].
When Niso-Santano et al. exposed human neuroblastoma
SH-SY5Y cells to 100μM PQ for 24 h, they found that
paraquat increased ASK1 expression and nuclear apoptosis
was significantly increased in PQ-treated cells [127].

1.19. Keap1/Nrf2/ARE Pathway and Ca2+ Signaling. The
Keap1/Nrf2/ARE pathway plays a major role in the regula-
tion of cytoprotective responses to endogenous and exoge-
nous stresses caused by ROS [128]. There are four
components involved in the Nrf2/Keap1 pathway; they are
(a) the nuclear factor erythroid2-related factor 2 (Nrf2), (b)
the actin-binding Kelch-like ECH-associated protein 1
(Keap1), (c) a group of small musculoaponeurotic fibrosar-
coma (Maf) proteins, (d) and antioxidant response element
(ARE) which are important for the antioxidant response in
this pathway [116]. Nrf2 is a transcription factor that binds
to the antioxidant responsive element (ARE) in DNA that
induces the expression of a group of detoxing enzymes and
antioxidant proteins/enzymes. Gene expression of heme
oxygenase-1 (HO-1) and NAD(P)H dehydrogenase and
others are regulated by Nrf2 [74–77]. Animal models that
have increased Nrf2 levels show increased protection against
oxidative stress [129, 130], while Nrf2 gene knockout mice
have a higher susceptibility to oxidative damage [131, 132].
Keap1, a cysteine-rich protein, acts as an adaptor protein
for a Cul3-dependent E3 ubiquitin ligase complex and sup-
ports ubiquitination of Nrf2 which then gets degraded by
the ubiquitin proteasome system [116]. Consequently, the
gene knockout of Keap1 results in constitutively hyperactive
Nrf2 signaling.

The generation of excessive ROS from exposure to pesti-
cides leads to the progression of oxidative stress in cells
resulting in an increase in the oxidation or conjugation of
key cysteine residues in Keap1. These modifications typically
weaken its ability to act as an E3 ligase adaptor. As a result,
Keap1 loses its ability to promote ubiquitination and degra-
dation of Nrf2. Ultimately, Nrf2 dissociates from Keap1,
leading to decreased proteasomal degradation of Nrf2, accu-
mulation of free Nrf2 in the cytosol, and translocation of
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Nrf2 into the nucleus. Following Nrf2 translocation into the
nucleus, it heterodimerizes with small Maf-binding proteins
and binds to ARE. This binding ultimately activates ARE-
dependent gene expression and initiates the transcription
of antioxidant genes [116, 128]. These genes include
NAD(P)H: quinine oxidoreductase 1 (Nqo1), heme
oxygenase-1 (HO-1), γ-glutamylcysteine ligase (Gcl), micro-
somal epoxide hydrolase (Eh-1), GSTs, sulfiredoxin 1
(Srxn1), multidrug resistance-associated proteins (Mrps),
bile salt efflux pump (Bsep), and carboxylesterases (Ces)
[128, 133]. In a study conducted by Carloni et al., PER
increased Nrf2 gene expression in the cerebellum of rats
[91]. Another study found increased mRNA expression of
Nrf2 (1.62-fold) and the intracellular Ca2+ influx in rat heart
cells from 500-day-old rats exposed to PER during their
early life (6th to 21st day of life) [134]. This suggests that
the Keap1/Nrf2/ARE and Ca2+ signaling pathways might
be involved in the toxic effect induced by PER. The overex-
pression of Nrf2 and the increased Ca2+ level might be due
to epigenetic mechanisms that sustain the memory of pesti-
cide contact, despite the fact that the exposure has ended
[134]. Dou et al. found that the Nrf2/ARE pathway is
involved in oxidative stress when induced by PQ in human
neural progenitor cells (hNPCs) [135]. They detected signif-
icant upregulation in cytoplasmic and nuclear Nrf2 expres-
sion in hNPCs when exposed to 10μM of PQ. As a result
of Nrf2 increase, they examined Nrf2-ARE-dependent genes
and found that HO-1 and Nqo1 mRNA expression was sig-
nificantly increased at 10 and 100μM after PQ treatment for
24 hours [135].

Deltamethrin ((S) a-cyano-3-phenoxybenzyl-(1R)-cis-3-
(2.2-dibromovinyl)-2,2-dimethylcyclopropane carboxylate
(DM)), one of the most potent pyrethroid insecticides with
a cyano substituent [136], is used to control apple and pear
suckers, plum fruit moth, caterpillars on brassicas, pea moth,
aphids (apples, plums, and hops), winter moth (apples and
plums), codling and tortrix moths (apples), and numerous
insect pests of field crops [137]. DM plays a key role in con-
trolling malaria vectors and is used in the manufacturing of
long-lasting insecticidal mosquito nets [138]. It acts as a
neurotoxin causing a prototypical type II neurological syn-
drome characterized by jerking leg movements and progres-
sive writhing convulsions [136]. Treatment with DM
increased free radicals in the hippocampus of rats and
increased ROS in PC12 cells suggesting that DM exposure
resulted in oxidative damage. The authors showed that DM
caused a significant increase in cytoplasmic and nuclear
Nrf2 protein expression in the cerebral cortex and hippo-
campus tissue. HO-1 mRNA levels were significantly ele-
vated in tissue from both cerebral cortex and hippocampus
tissues when exposed to DM [136]. Hence, they detected a
marked increase in Nrf2 protein, HO-1 mRNA, and free
radicals in vivo in response to DM. Their findings show
that Nrf2 translocation from the cytoplasm to nucleus is
initiated in vivo and is most likely a response to the
DM-dependent induction of free radicals (Figure 2).
Although the role of Ca2+ signaling in pesticide-induced
cellular changes needs to be more thoroughly investigated,
the Keap1/Nrf2/ARE pathway involvement in cytoprotec-

tive responses to pesticides is well supported by the cur-
rent experimental data.

1.20. Possible Signaling Mechanisms through Which
Pesticides Induce RNS. Kanthasamy et al. reported that diel-
drin can cross the blood-brain barrier and can also be stored
in adipose tissue with a half-life in humans of approximately
300 days, due to its lipophilicity [139]. Dieldrin targets neu-
ronal ion channels in the brain through inhibition of the
GABA(A) receptor, which results in hyperexcitation and a
massive influx of Ca2+ via glutamate receptor channels. This
Ca2+ influx can induce neuronal NOS, further increasing the
production of ROS/RNS in the brain. Ca2+ plays an impor-
tant role in numerous cellular processes including mediating
cellular proliferation, apoptotic processes, the induction of
oxidative stress, and physiological functions (Figure 2)
[140, 141]. The detection of 3-nitrotyrosine residues on
intracellular proteins exposed to different pesticides such as
maneb, rotenone, and dieldrin suggests a role of RNS in dis-
eases such as Parkinson’s disease [45].

1.21. Possible Mechanisms to Reduce Oxidative Stress
Induced by Pesticides. One of the major mechanisms that
the body implements in fighting external toxic and harmful
agents involves the immune system. The immune response
consists of the antigen-non-specific response (innate) and
the antigen-specific response (adaptive) [9]. Several experi-
mental studies have reported that exposure to pesticides
can exert damaging effects on the immune system [19, 42,
68, 85]. Immunocompetent cells secrete inflammatory medi-
ators, such as cytokines, chemokines, ROS, and RNS. In par-
ticular, cytokines can regulate innate or adaptive immunity,
hematopoiesis, inflammatory processes, and many other cel-
lular activities through specific binding to their respective
receptors [9].

Sometimes, the endogenous antioxidant system becomes
incompetent and cannot scavenge the induced oxidative
stress [142]. Several studies have reported the potential
protective effect of exogenous antioxidant vitamins and
minerals against pesticide-induced toxicity in animal
models that exhibit alterations in their enzymatic antioxi-
dant system [4, 143–147]. It is important to study the
potentially harmful effects of pesticide exposure and vari-
ous significant methods to mitigate these adverse effects.
This section briefly documents the protective role of anti-
oxidant vitamins like vitamins C and E, minerals like zinc,
and other naturally occurring antioxidants like N-acetyl
cysteine and epicatechin, against pesticide-induced oxida-
tive stress in animal models.

1.22. Vitamin C. Vitamin C (ascorbic acid) is a water-soluble
antioxidant. It has been shown to react directly with super-
oxide and hydroxyl radicals to neutralize ROS and reduce
oxidative stress [4]. It has been suggested that vitamin C acts
as a chain-breaking antioxidant that stops the propagation
of peroxidative processes, thereby reducing lipid peroxida-
tion caused by pesticides. Vitamin C can also do a one-
electron reduction of lipid hydroperoxyl radicals via the
vitamin E redox cycle [4]. A study conducted with male
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albino Wistar rats by Rai et al. found that vitamin C treat-
ment prevented oxidative stress induced by carbofuran in
the erythrocytes of rats [148]. Jaiswal et al. showed that pre-
treatment of vitamin C with carbofuran provided significant
recovery in ameliorating the altered levels of oxidative stress
biomarkers. They observed that the levels of MDA, total
thiols, and GSH as well as the activities of SOD, CAT, and
GST were close to those of the untreated control which sug-
gest that vitamin C is able to provide significant protection
from the pesticide’s intoxication in the rat heart [149].

El-Gendy et al. studied the protective effect of vitamin C
(200mg/kg b.w.) before and after administration of imida-
cloprid (a neonicotinoid) in male Swiss albino mice. Their
study showed that oral administration of 14.976mg/kg imi-
dacloprid caused significant elevation of lipid peroxidation
levels and the activities of antioxidant enzymes including
CAT, SOD, GPx, and GST [147]. However, they reported
that vitamin C might ameliorate imidacloprid-induced oxi-
dative damage by decreasing lipid peroxidation levels (mea-
sured by thiobarbituric acid-reactive substances (TBARS))
and altering antioxidant defense systems in the liver [147].

Vitamin C treatment of CPF-intoxicated mice decreased
the lipid peroxidation level and GST activity, normalized
CAT, SOD, and glucose-6-phosphate dehydrogenase activi-
ties, and increased the GSH level [150]. In addition, coad-
ministration of propanil with vitamin C ameliorated the
harmful effects of propanil in most of the tested oxidative
stress parameters in mice liver tissues. Their study suggested
that vitamin C could be an important dietary component
based on its ability to attenuate propanil-induced hepatotox-
icity [151]. All of these studies suggest a clear protective role
of vitamin C against pesticide-induced toxicity. Hence, it is
likely that other compounds with antioxidant properties
can also have significant beneficial effects against pesticide-
induced toxicity.

1.23. Vitamin E. Vitamin E, present in a biologically active
form as α-tocopherol, performs as an antioxidant. It is a
major lipid-soluble antioxidant present in all cellular mem-
branes and protects against lipid peroxidation [152]. It can
act directly with a variety of oxygen radicals, including the
peroxyl radical (ROO•), trichloromethyl radial (CCl3), and
peroxide (HO•) production. Vitamin E acts by rapidly trans-
ferring its phenolic hydrogen atom to lipid peroxyl radicals
resulting in the formation of two molecules that are unreac-
tive toward polyunsaturated lipids [4].

Yousef et al. showed that when rats intoxicated with del-
tamethrin were exposed to vitamin E, the levels of GST and
SOD were elevated and the levels of lipid peroxidation were
decreased. Thus, vitamin E alleviated the harmful effects of
deltamethrin that were observed, exhibiting its beneficial
effects in male Sprague Dawley rats [153]. In male Wistar
rats, vitamin E has shown its ameliorating effects by restor-
ing the levels of endogenous antioxidant enzymes such as
SOD, CAT, GPx, and GST, suggesting its potential antioxi-
dant role against atrazine-induced oxidative stress [154,
155]. A study conducted by John et al. found that treatment
of rats with dimethoate and malathion increased the levels of
lipid peroxidation in erythrocytes; however, pretreatment of

rats with vitamin E before administering dimethoate and
malathion showed decreased levels of lipid peroxidation in
erythrocytes. Their results display that vitamin E may ame-
liorate dimethoate- and malathion-induced oxidative stress
by decreasing lipid peroxidation and altering antioxidant
defense systems in erythrocytes [146]. Ben Amara et al.
showed that exposure of rats to dimethoate for 30 days
showed pronounced oxidative stress due to an increased
lipid peroxidation level and decreased GSH and nonprotein
thiol levels [144]. A decrease in GPx, SOD, and CAT activi-
ties was also observed, but coadministration of selenium
and/or vitamin E through diet in rats improved the altered
oxidative stress biomarkers [144]. These results suggest that
the use of the antioxidant vitamin E may prevent or reduce
many of the damaging effects of some pesticides.

1.24. Zinc. Zinc (Zn) is one of the most abundant trace ele-
ments in the body and can upregulate various transcription
factors and detoxifying molecules (glutathione, SOD, gluta-
thione S-transferase, and hemeoxygenase-1) [4]. Zn also
induces the nuclear factor erythroid 2-related factor 2
(Nrf2) to act as an antioxidant and is required for enzymes
involved in lipid synthesis and lipoprotein excretion [4].
Saad-Hussein et al. conducted a cross-section comparison
study, comparing 80 pesticide sprayers from a small village
located within an agricultural area in Upper Egypt with 80
control subjects not occupationally exposed to pesticides
[142]. Their subjects had no medical history of chronic dis-
eases, and the pesticide sprayer group had been exposed to
pesticides for more than 15 years (15–30 years), without
wearing any personal protective equipment. Interestingly,
they found that Zn (110mg) supplementation for 1 month
significantly decreased MDA levels and increased SOD,
GPx, and Zn levels in pesticide sprayers [142]. Goel et al.
showed that zinc treatment to CPF-intoxicated male
Sprague-Dawley rats normalized the raised levels of lipid
peroxidation to within normal limits [158]. Moreover, they
found that Zn treatment in these animals resulted in an ele-
vation in GSH, CAT, and GST levels. Additionally, they
found a significant decrease in the levels of SOD. However,
results of studies from male and female rats revealed that
Zn had greater ameliorating effects in female CPF-
intoxicated rats, when compared to males, in reducing
oxidative stress parameters [156, 157]. Overall, these results
demonstrate the potential protective role of Zn in alleviating
the hepatic toxicity, as well as emphasize a role for antioxi-
dants in reducing pesticide toxicity [158]. Differences
between females and males are now beginning to be investi-
gated, but the current data suggests that female and male
animals show unique differences with regard to pesticide
and antioxidant treatments. As such, more targeted research
is needed to help determine the differences between males
and females.

1.25. N-Acetylcysteine. N-Acetylcysteine (NAC) is a nutri-
tional supplement derived from L-cysteine amino acid.
NAC is a well-tolerated mucolytic drug that moderates
clinging mucous secretions and supports glutathione S-
transferase (GST) activity. When administered orally,
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deacetylation of NAC occurs while passing along the small
intestine as well as the liver. Thus, its bioavailability is
decreased to 4–10%. NAC stimulates glutathione biosynthe-
sis, promotes detoxification, and acts directly as a scavenger
of free radicals, especially oxygen radicals. It is a powerful
antioxidant and a potential treatment option for diseases
characterized by the generation of free oxygen radicals
[159]. Tebuconazole (TEB), a triazole fungicide, is widely
used to control fungal growth in vegetables, fruits, and seeds.
It can also be used as a biocide preservative for industrial
and construction material [160]. Ben Othmène et al. found
that TEB increased lipid peroxidation, DNA damage, and
p53 and p21 protein levels after 24 h in H9c2 cardiomyo-
blasts. They also suggested that TEB might induce oxidative
stress in cardiac cells via the mitochondrial apoptotic path-
way due to the loss of mitochondrial transmembrane poten-
tial (ΔΨm), an increase in the Bax/Bcl-2 ratio, an activation
of caspase-9 and caspase-3, a cleavage of poly (ADP-ribose)
polymerase (PARP), and an increase in mitochondrial
superoxide (measured by MitoSOX). However, when they
treated cardiomyocytes with the ROS scavenger NAC, there
was a decrease in TEB-induced DNA damage and activation
of the mitochondrial pathway of apoptosis [161].

Dorval and Hontela showed that rainbow trout (Onco-
rhynchus mykiss) pretreated with NAC following exposure
to endosulfan had significantly higher levels of GSH and
decreased levels of lipid hydroperoxides (LOOH) [162].
Another study conducted by Cankayali et al. using male
Wistar rats cotreated with dichlorvos and NAC found that
NAC might prevent lipid peroxidation and decrease the risk
of oxidative stress [163]. Finally, Yurumez et al. found that
male NMRI mice treated with 250–500mg/kg Mancozeb
(MZB) for 40 days exhibited significantly increased lipid
peroxidation, increased protein carbonyl concentration in
the testes, and decreased activities of antioxidant enzymes
(SOD and CAT). The total antioxidant capacity and GSH
content were found to be significantly less in the testes of
MZB-exposed mice [60]. However, cotreatment of MZB-
exposed mice with NAC reversed the changes in oxidative
stress indices found earlier with MZB. They found signifi-
cantly decreased levels of lipid peroxidation, and the activities
of antioxidant enzymes SOD and CAT were maintained near
control levels following NAC +MZB cotreatment [60]. As
with other antioxidants discussed earlier, NAC seems to also
have strong antioxidative stress properties.

1.26. Epicatechin. Flavonoids are a large group of natural
phenolic compounds with different subclasses that have
been described as powerful antioxidants from previous
in vitro studies [164]. The antioxidant properties of flavo-
noids are largely dependent on their structure, and the major
contributing factor is the presence of 3′,4′-dihydroxycate-
chol, which has reducing capabilities and influence on the
intracellular redox status [165]. Epicatechin is a flavan-3-
ol, a subclass of the flavonoids found in green tea, grape,
apples, and cocoa [166]. Tea extracts and/or its constituents
have been reported to possess pharmacological effects such
as anti-inflammatory, antibacterial, antiviral, antioxidant,
antitumor, antihyperlipidemic, anticarcinogenic, and cyto-

protective effects. Also, it was shown that green tea extract
can scavenge nitric oxide (NO) and O2

•− very effectively
[167]. Moreover, Afolabi et al. found that cotreatment of
CYP-exposed rats with epicatechin significantly reduced
the formation of nitrosative nucleic acids by 51% [44].
Another study conducted to investigate the effects of cate-
chin against PCP-induced cytotoxicity in human erythro-
cytes found that PCP significantly decreased GSH levels,
total sulfhydryl (SH) content, and cellular antioxidant
power. PCP treatment also lowered the activity of antioxi-
dant enzymes and inhibited enzymes of glucose metabolism.
However, prior treatment with catechin before incubation
with PCP increased the GSH level and total SH content in
erythrocytes [120]. Maheshwari and Mahmood reported
that prior treatment of catechin prevented the oxidative
damage of membrane lipids and lowered malondialdehyde
and lipid hydroxyperoxide levels to 1.6- and 1.56-fold rela-
tive to control values. Finally, they found that catechin
decreased intracellular ROS and RNS levels in PCP-treated
erythrocytes [120]. In addition, Spencer et al. showed that
epicatechin and its in vivo metabolite, 3′-O-methyl epicate-
chin, protected human fibroblasts from hydrogen peroxide-
induced oxidative stress by inhibiting caspase-3 activation
[165]. These studies suggest that epicatechin significantly
mitigates pesticide-induced oxidative modifications in a
concentration-dependent manner while not exhibiting any
deleterious effect on its own. Catechin may be a potential
chemoprotectant against pesticide toxicity, and other struc-
turally related compounds to catechin may also be beneficial,
but further experimentation is needed.

2. Conclusions

The current experimental evidence from research studies
suggests that all classes of pesticides induce oxidative stress,
RNS, and ROS in different cell types and animal models and
that oxidative stress is one of the most important mecha-
nisms of pesticide toxicity. Albeit not exhaustive due to the
large number of pesticides available, this review covers the
major classes of commonly used pesticides in the United
States and the rest of the world. Pesticide exposure could
come from occupational routes as well as from food, water,
air, and dust. What is typically lacking in previous reviews
and research publications are the molecular mechanisms
involved in pesticide toxicity because of the complexity of
mechanisms that may be involved with different classes of
pesticides. A search of the Internet for publications that
attempted to explain the mechanisms involved in pesticide
toxicity revealed only two publications with one figure each.

The higher levels of oxidative stress eventually cause cell
apoptosis through several pathways: the mitochondrial apo-
ptosis pathway, Keap1/Nrf2/ARE, Ca2+, TNFR1/TNF-α,
Nurr1, STAT1, ASK1, MAPKs, and NF-κB pathways
amongst others. Increased levels of ROS and RNS may also
affect the ubiquitin proteasome system (UPS) that degrades
altered and misfolded proteins [168]. Numerous reports sug-
gest that Kelch-like ECH-associated protein-1 (Keap1), a
substrate adaptor protein for a cullin-3 E3-ubiquitin ligase
(Cul3)/Ring-Box- (Rbx1-) dependent complex, plays a
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critical role in the ubiquitination and degradation of Nrf2,
IKKβ, and Bcl-2/Bcl-xL. ROS disrupts Keap1 via modifying
reactive cysteines (Cys273, Cys288, and Cys151) and then
inducing a conformational change that leads to the release
of Nrf2, IKKβ, and Bcl-2/Bcl-xL from Keap1 and the
suspending of their ubiquitination and degradation
[169–172]. UPS dysfunction could lead to various cellular
malfunctions including proteotoxicity, mitochondrial
dysfunction, and apoptosis.

Even though we are starting to understand the mecha-
nisms involved in pesticide toxicity, more research is needed
as it is crucial to better understand the molecular mecha-
nisms by which pesticides induce oxidative stress. Interest-
ingly, the T-2 toxin, which is not a pesticide, shows
molecular mechanisms for toxicity similar to pesticides.
The T-2 toxin induces oxidative stress in numerous cell lines
causing oxidative damage to lipids, proteins, and DNA
[173]. The T-2 toxin increases MDA content (lipid peroxi-
dation representative) and CAT and SOD activities as well
as decreases GSH-Px activity in rat anterior pituitary GH3
cells. Caspase-3, -8 and -9 are significantly induced by the
T-2 toxin in a dose-dependent manner. While these T2
toxin-induced mechanisms are similar to pesticides, the T2
toxin also increases the mRNA levels of IL-6, IL-11, and
IL-1β and inhibits the synthesis and secretion of GH. It is
possible that pesticides could be working in a similar man-
ner to T-2 toxin in regard to the induction of interleukins
and growth hormone deficiency [174]. Both PCP and DDT
increase IL-6 production [175]. Also, previous research
found that people regularly exposed to pesticides, such as
women and children raised in agricultural areas, had low
levels of insulin-like growth factor-1 (IGF-1), which plays
an important role in childhood growth. This makes the chil-
dren at higher risk of developing growth disorders [176].
While studies suggest that antioxidants may be beneficial
for reducing pesticide toxicity, further studies should focus
on the possible ways to ameliorate the side effects of pesti-
cide exposure not just via exogenous antioxidants but by
influencing the signaling pathways involved in pesticide-
induced oxidative stress. More studies are urgently needed
to determine how sex differences may be involved in
pesticide-induced toxicity, as well as if any other cellular
pathways are involved in pesticide-related toxicity.

2.1. Limitations of Previous Studies. Many of the clinical
studies on humans have relatively low sample sizes compli-
cating the interpretation of the data as well as the reliability
of that data to make generalized conclusions for different
populations. Experimental data on gender-specific effects
has not been well investigated, but experimental data suggest
that xenobiotics affect males and females differently, so pes-
ticides are likely to have gender-specific effects [156, 157]. It
would be of great interest to the public to understand the
variations in the response of male and female animals to pes-
ticide exposure. It would also be important to determine if
there are gender-specific differences in the possible effects
of exogenous antioxidants in the mitigation of pesticide-
induced oxidative stress biomarkers (lipid peroxidation,

lipid oxidation, and protein oxidation), DNA fragmentation,
and apoptosis.

Oxidative modification of proteins and proteolytic path-
ways compromise the protein quality and cell viability due to
oxidative stress that arose from the increased ROS level
when exposed to pesticides. These events may be among
the most relevant in driving protein toxicity in several
pathologies such as neurodegenerative diseases, cardiovascu-
lar diseases, cancer, reproductive diseases, and birth defects.
However, the experimental data on the role of protein toxic-
ity and the UPS in pesticide toxicity is very limited [177].
Finding novel ways to prevent pesticide toxicity may require
understanding the role of the UPS pathway in this process to
increase the capacity of proteolytic systems to remove intra-
cellular oxidized proteins.
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