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Abstract. In this paper, we prove a common fixed point theorem for two self-mappings satisfying certain
conditions over the class of partial metric spaces. In particular, the main theorem of this manuscript extends
some well-known fixed point theorems in the literature on this topic.

1. Introduction

Recently, studies on the existence and uniqueness of fixed points of self-mappings on partial metric
spaces have gained momentum (see e.g., [1] - [4],[7], [14]-[? ],[26, 33]). The idea of partial metric space,
a generalization of metric space, was introduced by Mathews [25] in 1992. When compared to metric
spaces, the innovation of partial metric spaces is that the self distance of a point is not necessarily zero [24].
This feature of partial metrics makes them suitable for many purposes of semantics and domain theory in
computer sciences. In particular, partial metric spaces have applications on the Scott-Strachey order-theoretic
topological models [32] used in the logics of computer programs.

Mathews [25] proved the analog of Banach contraction mapping principle in the class of partial metric
spaces. This remarkable paper of Mathews [25] constructed another important bridge between the domain
theory in computer science and fixed point theory in mathematics. Thus, it becomes feasible to transform
the tools from Mathematics to Computer Science.

A self-mapping T on a metric space X is called contraction if there exists a constant k ∈ [0, 1) such that
d(Tx,Ty) ≤ kd(x, y) for each x, y ∈ X. Banach contraction mapping principle, which states that a contraction
has a fixed point, is one of the most important result in nonlinear analysis. This crucial result has been
studied continuously since it was first published (See e.g. [1]-[23],[26]-[30]). As a generalization of this
fundamental principle, Kirk-Srinivasan-Veeramani [23] developed the cyclic contraction. A contraction
T : A ∪ B → A ∪ B on non-empty set A,B is called cyclic if T(A) ⊂ B and T(B) ⊂ A hold for closed subsets
A,B of a complete metric space X. In the last decade, many authors (see e.g.[21, 22, 27–29, 34]) reported
some fixed point theorems for cyclic operators.

Rus [29] introduced the following definition which is a further generalization of a cyclic mapping.
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Definition 1.1. Let X be a nonempty set, m be a positive integer and T : X → X be a mapping. X = ∪m
i=1Ai

is said to be a cyclic representation of X with respect to T if

(i) Ai, i = 1, 2, · · · ,m are nonempty sets.

(ii) T(A1) ⊂ A2, · · · ,T(Am−1) ⊂ Am,T(Am) ⊂ A1.

Remark 1.2. For convenience, we denote by F the class of functions ϕ : [0,∞)→ [0,∞) nondecreasing and
continuous satisfying ϕ(t) > 0 for t ∈ (0,∞) and ϕ(0) = 0.

We recall the following definition.

Definition 1.3. (See e.g.[? ]) Let (X, d) be a metric space, m be a positive integer, A1,A2, · · · ,Am be nonempty
subsets of X and X = ∪m

i=1Ai. An operator T : X→ X is a cyclic weak (ϕ − ψ)-contraction if

(i) X = ∪m
i=1Ai is a cyclic representation of X with respect to T,

(ii) ϕ(d(Tx,Ty)) ≤ ϕ(d(x, y)) − ψ(d(x, y)), for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, · · · ,m, where Am+1 = A1 and
ϕ,ψ ∈ F .

The main result of [22] is the following.

Theorem 1.4. (Theorem 6 of [22]) Let (X, d) be a complete metric space, m be a positive integer, A1,A2, · · · ,Am be
nonempty subsets of X and X = ∪m

i=1Ai. Let T : X→ X be a cyclic (ϕ−ψ)-contraction with ϕ,ψ ∈ F . Then T has a
unique fixed point z ∈ ∩m

i=1Ai.

In this paper, we proved a common fixed point of two self-mappings T, 1 : X → X on a partial metric
space X under certain conditions.

We start some definitions and results needed in the sequel.
A partial metric on a nonempty set X is a mapping p : X × X→ [0,∞) such that

(PM1) x = y if and only if p(x, x) = p(x, y) = p(y, y),

(PM2) p(x, x) ≤ p(x, y),

(PM3) p(x, y) = p(y, x),

(PM4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).

for all x, y, z ∈ X. A pair (X, p) is said to be partial metric space.
Notice also that if p is a partial metric on X, then the functions dp, dm : X × X→ R+ given by

dp(x, y) = 2p(x, y) − p(x, x) − p(y, y), (1)

p(x, y) − p(x, x), p(x, y) − p(y, y) (2)

are equivalent (usual) metrics on X. For details see e.g.[? ].

Example 1.5. (See e.g. [1, 3, 20, 24]) Consider X = [0,∞) with p(x, y) = max{x, y}. Then (X, p) is a partial
metric space. It is clear that p is not a (usual) metric. Note that in this case dp(x, y) =

∣∣∣x − y
∣∣∣.

Example 1.6. (See e.g. [24]) Let X = {[a, b] : a, b,∈ R, a ≤ b} and define p([a, b], [c, d]) = max{b, d} −min{a, c}.
Then (X, p) is a partial metric spaces.

Lemma 1.7. (See e.g. [14, 15]) Let (X, p) be a PMS. Then

(A) If p(x, y) = 0 then x = y,
(B) If x , y, then p(x, y) > 0.
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Example 1.8. (See e.g.[? ]) Let (X, d) and (X, p) be a metric space and a partial metric space, respectively.
Mappings pi : X × X −→ [0,∞) (i ∈ {1, 2, 3}) defined by

p1(x, y) = d(x, y) + p(x, y)
p2(x, y) = d(x, y) +max{ω(x), ω(y)}
p3(x, y) = d(x, y) + a

induce partial metrics on X, where ω : X −→ [0,∞) is an arbitrary function and a ≥ 0.

We notice also that each partial metric p on X generates a T0 topology τp on X which has a family of
open p–balls

{Bp(x, ε) : x ∈ X, ε > 0},

as a base where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

Definition 1.9. (See e.g. [24]) Let (X, p) be a partial metric space.

(i) A sequence {xn} in X converges to x ∈ X whenever lim
n→∞

p(x, xn) = p(x, x),

(ii) A sequence {xn} in X is called Cauchy whenever lim
n,m→∞

p(xn, xm) exists (and finite),

(iii) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges, with respect to τp, to a point
x ∈ X, that is, lim

n,m→∞
p(xn, xm) = p(x, x).

We define L(xn) = {x|xn → x}where {xn} is a sequence in a partial metric space (X, p). The example below
shows that a convergent sequence {xn} in a partial metric space may not be a Cauchy. In particular, it shows
that the limit of a convergent sequence is not unique.

Example 1.10. (See e.g.[? ]) Let X = [0,∞) and p(x, y) = max{x, y}. Let

xn =

{
0, n = 2k,
1, n = 2k + 1.

Then clearly it is convergent sequence and for every x ≥ 1 we have lim
n→∞

p(xn, x) = p(x, x), therefore L(xn) =
[1,∞). But lim

n,m→∞
p(xn, xm) does not exist.

We state a lemma that shows the limit of a convergent sequence {xn} in a partial metric space is unique.

Lemma 1.11. (See e.g.[? ]) Let {xn} be a convergent sequence in partial metric space X such that xn → x and
xn → y. If

lim
n→∞

p(xn, xn) = p(x, x) = p(y, y),

then x = y.

Lemma 1.12. (See e.g.[? ]) Let {xn} and {yn} be two sequences in partial metric space X such that

lim
n→∞

p(xn, x) = lim
n→∞

p(xn, xn) = p(x, x),

and

lim
n→∞

p(yn, y) = lim
n→∞

p(yn, yn) = p(y, y),

then lim
n→∞

p(xn, yn) = p(x, y). In particular, lim
n→∞

p(xn, z) = p(x, z) for every z ∈ X.
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Lemma 1.13. (See e.g. [24],[26]) Let (X, p) be a partial metric space.

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space (X, dp).
(b) A partial metric space (X, p) is complete if and only if the metric space (X, dp) is complete. Furthermore,

lim
n→∞

dp(xn, x) = 0 if and only if

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

Lemma 1.14. (See e.g.[? ]) If {xn} is a convergent sequence in (X, dp), then it is a convergent sequence in the partial
metric space (X, p).

In this paper, we prove a common fixed point theorem on the class of the partial metric spaces as a
generalization of Theorem 1.4 and the main theorem of [31].

2. Main Result

We start this section with the following definition for two self-mappings T, 1 : X→ X.

Definition 2.1. Let X be a nonempty set, m be a positive integer and T, 1 : X → X be two mappings.
X = ∪m

i=1Ai is said to be a cyclic representation of X with respect to (T − 1) if

(i) Ai, i = 1, 2, · · · ,m are nonempty sets.

(ii) T(A1) ⊂ 1(A2), · · · ,T(Am−1) ⊂ 1(Am),T(Am) ⊂ 1(A1).

Definition 2.2. Let (X, p) be a partial metric space, m be a positive integer, A1,A2, · · · ,Am be nonempty
subsets of X and X = ∪m

i=1Ai. Two operators T, 1 : X→ X are cyclic (ϕ − ψ)-contraction if

(i) X = ∪m
i=1Ai is a cyclic representation of X with respect to (T − 1),

(ii) ϕ(p(Tx,Ty)) ≤ ϕ(p(1x, 1y)) −ψ(p(1x, 1y)), for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, · · · ,m, where Am+1 = A1 and
ϕ,ψ ∈ F .

Our main result is the following.

Theorem 2.3. Let (X, p) be a complete partial metric space, m be a positive integer, A1,A2, · · · ,Am be nonempty
subsets of X and X = ∪m

i=1Ai. Let T, 1 : X→ X be two cyclic (ϕ−ψ)-contraction such that 1(Ai) closed subsets of X.
i) If g is one to one then there exists z ∈ ∩m

i=1Ai such that 1z = Tz.
ii) If the pair (T, 1) are weakly compatible,

then T and 1 has a unique common fixed point z ∈ ∩m
i=1Ai.

Proof. Let x1 be an arbitrary point in A1. By cyclic representation of X with respect to pair (T, 1), we choose
a point x2 in A2 such that Tx1 = 1x2. For this point x2 there exists a point x3 in A3 such that Tx2 = 1x3, and
so on. Continuing in this manner we can define a sequence {xn} as follows

Txn = 1xn+1,

for n = 1, 2, · · · . We prove that {1xn} is a Cauchy sequence. If there exists n0 ∈ N such that 1xn0+1 = 1xn0

then, since 1xn0+1 = Txn0 = 1xn0 , the part of existence of the coincidence point of T and 1 is proved. Suppose
that 1xn+1 , 1xn for any n = 1, 2, · · · . Then, since X = ∪m

i=1Ai, for any n > 0 there exists in ∈ {1, 2, · · · ,m} such
that xn−1 ∈ Ain and xn ∈ Ain+1 . Since (T, 1) are cyclic (ϕ − ψ)-contraction, we have

ϕ(p(1xn, 1xn+1)) = ϕ(p(Txn−1,Txn))
≤ ϕ(p(1xn−1, 1xn)) − ψ(p(1xn−1, 1xn))
≤ ϕ(p(1xn−1, 1xn)) (3)
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From (3) and taking into account that ϕ is nondecreasing we obtain

p(1xn, 1xn+1) ≤ p(1xn−1, 1xn) for any n = 2, 3, · · ·

Thus {p(1xn, 1xn+1)} is a nondecreasing sequence of nonnegative real numbers. Consequently, there exists
γ ≥ 0 such that lim

n→∞
p(1xn, 1xn+1) = γ. Taking n→∞ in (3) and using the continuity of ϕ and ψ, we have

ϕ(γ) ≤ ϕ(γ) − ψ(γ) ≤ ϕ(γ),

and, therefore, ψ(γ) = 0. Since ψ ∈ F , γ = 0, that is,

lim
n→∞

p(1xn, 1xn+1) = 0.

Since p(1xn, 1xn) ≤ p(1xn, 1xn+1) and p(1xn+1, 1xn+1) ≤ p(1xn, 1xn+1), hence

lim
n→∞

p(1xn, 1xn) = lim
n→∞

p(1xn+1, 1xn+1) = lim
n→∞

p(1xn, 1xn+1) = 0. (4)

Since

dp(1xn, 1xn+1) = 2p(1xn, 1xn+1) − p(1xn, 1xn) − p(1xn+1, 1xn+1).

This shows that lim
n→∞

dp(1xn, 1xn+1) = 0.

In the sequel, we prove that {1xn} is a Cauchy sequence in the metric space (X, dp).
First, we prove the following claim.
Claim: For every ϵ > 0 there exists n ∈N such that if b, q ≥ n with b − q ≡ 1(m) then dp(xb, xq) < ϵ.
In fact, suppose the contrary case. This means that there exists ϵ > 0 such that for any n ∈ N we can

find bn > qn ≥ n with bn − qn ≡ 1(m) satisfying

dp(1xqn , 1xbn ) ≥ ϵ. (5)

Now, we take n > 2m. Then, corresponding to qn ≥ n use can choose bn in such a way that it is the
smallest integer with bn > qn satisfying bn − qn ≡ 1(m) and dp(1xqn , 1xbn ) ≥ ϵ. Therefore, dp(1xqn , 1xbn−m ) ≤ ϵ.
Using the triangular inequality

ϵ ≤ dp(1xqn , 1xbn ) ≤ dp(1xqn , 1xbn−m ) +
m∑

i=1

dp(1xbn−i , 1xbn−i+1 ) < ϵ +
m∑

i=1

dp(1xbn−i , 1xbn−i+1 ).

Letting n→∞ in the last inequality and taking into account that
limn→∞ dp(1xn, 1xn+1) = 0, we obtain

lim
n→∞

dp(1xqn , 1xbn ) = ϵ =⇒ lim
n→∞

p(1xqn , 1xbn ) =
ϵ
2

(6)

Again, by the triangular inequality

ϵ ≤ dp(1xqn , 1xbn )
≤ dp(1xqn , 1xqn+1 ) + dp(1xqn+1 , 1xbn+1 ) + dp(1xbn+1 , 1xbn ) (7)
≤ dp(1xqn , 1xqn+1 ) + dp(1xqn+1 , 1xqn )
+ dp(1xqn , 1xbn ) + dp(1xbn , 1xbn+1 ) + dp(1xbn+1 , 1xbn )
= 2dp(1xqn , 1xqn+1 ) + dp(1xqn , 1xbn ) + 2dp(1xbn , 1xbn+1 )

Letting n→∞ in (6) and taking into account that lim
n→∞

dp(1xn, 1xn+1) = 0 and (6), we get

lim
n→∞

dp(1xqn+1 , 1xbn+1 ) = ϵ.
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Hence

lim
n→∞

p(1xqn+1 , 1xbn+1 ) =
ϵ
2
. (8)

Since 1xqn and 1xbn lie in different adjacently labeled sets Ai and Ai+1 for certain 1 ≤ i ≤ m, using the fact
that T and g are cyclic (ϕ − ψ)-contraction, we have

ϕ(p(1xqn+1 , 1xbn+1 )) = ϕ(p(Txqn ,Txbn )
≤ ϕ(p(1xqn , 1xbn )) − ψ(p(1xqn , 1xbn ))
≤ ϕ(p(1xqn , 1xbn )).

Taking into account (6) and (8) and the continuity of ϕ and ψ, letting n→∞ in the last inequality, we obtain

ϕ(
ϵ
2

) ≤ ϕ(
ϵ
2

) − ψ(
ϵ
2

) ≤ ϕ(
ϵ
2

)

and consequently, ψ( ϵ2 ) = 0. Since ψ ∈ F , then ϵ = 0 which is contradiction. Therefore, our claim is proved.
In the sequel, we will prove that {1xn} is a Cauchy sequence in metric space (X, dp). Fix ϵ > 0. By the

claim, we find n0 ∈N such that if b, q ≥ n0 with b − q ≡ 1(m)

dp(1xb, 1xq) ≤ ϵ
2
. (9)

Since lim
n→∞

dp(1xn, 1xn+1) = 0 we also find n1 ∈N such that

dp(1xn, 1xn+1) ≤ ϵ
2m

(10)

for any n ≥ n1.
Suppose that r, s ≥ max{n0,n1} and s > r. Then there exists k ∈ {1, 2, · · · ,m} such that s − r ≡ k(m).

Therefore, s − r + j ≡ 1(m) for j = m − k + 1. So, we have

dp(1xr, 1xs) ≤ dp(1xr, 1xs+ j) + dp(1xs+ j, 1xs+ j−1) + · · · + dp(1xs+1, 1xs).

By (9) and (10) and from the last inequality, we get

dp(1xr, 1xs) ≤
ϵ
2
+ j

ϵ
2m
≤ ϵ

2
+m

ϵ
2m
= ϵ.

This proves that {1xn} is a Cauchy sequence in metric space (X, dp). Since (X, p) is complete then from
Lemma 1.13, the sequence {1xn} converges in the metric space (X, dp), say lim

n→∞
dp(1xn, x) = 0 for some x ∈ X.

Therefore, by Lemma 1.13 we have

p(x, x) = lim
n→∞

p(1xn, x) = lim
n,m→∞

p(1xn, 1xm).

That is, there exists x ∈ X such that limn→∞ 1xn = x in partial metric (X, p). Since 1(Ai) are closed subsets of
X, we have x ∈ 1(Ai) for every i ∈ {1, 2, · · · ,m}. That is, x ∈ ∩m

i=11(Ai). Hence, there exists zi ∈ Ai such that
1zi = x. Since g is one to one we have

1(z1) = 1(z2) = · · · = 1(zm) = x =⇒ z1 = z2 = · · · = zm = z.

Therefore, 1(z) = x for z ∈ ∩m
i=1Ai . In fact, lim

n→∞
1xn = 1z.On the other hand since the sequence {1xn} has

infinite terms in each Ai for i ∈ {1, 2, · · · ,m}, we take a subsequence {1xnk } of {1xn}with 1xnk ∈ 1(Ai−1) where
xnk ∈ Ai−1. Using the contractive condition, we can obtain

ϕ(p(1xnk+1 ,Tz)) = ϕ(p(Txnk ,Tz))
≤ ϕ(p(1xnk , 1z)) − ψ(p(1xnk , 1z))
≤ ϕ(p(1xnk , 1z)).
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Since 1xnk → 1z and ϕ and ψ belong to F , letting k→∞ in the last inequality, we have

ϕ(p(1z,Tz)) ≤ ϕ(p(1z, 1z)) − ψ(p(1z, 1z)) ≤ ϕ(p(1z, 1z)).

Moreover, we obtain p(1z,Tz) = p(1z, 1z), because ϕ is nondecreasing and p(1z, 1z) ≤ p(1z,Tz). Hence, if
p(1z, 1z) , 0 then by the last inequality we have,

ϕ(p(1z, 1z)) = ϕ(p(1z,Tz))
≤ ϕ(p(1z, 1z)) − ψ(p(1z, 1z))
< ϕ(p(1z, 1z)),

which is contradiction. Since ϕ ∈ F , then, p(Tz,Tz) = p(1z, 1z) = p(1z,Tz) = 0, it follows that, Tz = 1z = x.
ii) Since 1 and T are two weakly compatible mappings, we have TTz = T1z = 1Tz = 11z. That is Tx = 1x.

Next, we prove that Tx = x. Since Tz ∈ X hence there exists some i such that Tz ∈ Ai. By z ∈ ∩m
i=1Ai we have

z ∈ Ai−1, by using the contractive condition we obtain

ϕ(p(Tz,TTz)) ≤ ϕ(p(1z, 1Tz)) − ψ(p(1z, 1Tz))
≤ ϕ(p(1z, 1Tz)) = ϕ(p(Tz,TTz)),

from the last inequality we have

ψ(p(Tz,TTz)) = 0.

Since ψ ∈ F , p(Tz,TTz) = 0 and, consequently, x = Tz = TTz = Tx = 1x.
Finally, in order to prove the uniqueness of a fixed point, we have y, z ∈ X with y and z common fixed

points of T and 1. The cyclic character of T − 1 and the fact that y, z ∈ X are common fixed points of T and
1, imply that y, z ∈ ∩m

i=1Ai. If p(y, z) , 0 then by using the contractive condition we obtain

ϕ(p(y, z)) = ϕ(p(Ty,Tz)) ≤ ϕ(p(1y, 1z)) − ψ(p(1y, 1z))
< ϕ(p(1y, 1z)) = ϕ(p(y, z)),

which is a contradiction. Since ϕ ∈ F , p(y, z) = 0 and, consequently, y = z. This finishes the proof.

Corollary 2.4. Let (X, p) be a complete partial metric space, m be a positive integer, A1,A2, · · · ,Am be nonempty
closed subsets of X and X = ∪m

i=1Ai. Let T : X→ X be a cyclic weak (ϕ − ψ)-contraction. Then T has a unique fixed
point z ∈ ∩m

i=1Ai.

Proof. Take 1(x) = x in Theorem 2.3.

Corollary 2.5. Let (X, p) be a complete partial metric space, m be a positive integer, A1,A2, · · · ,Am be nonempty
closed subsets of X. Suppose that T : X → X is a self-mapping and X = ∪m

i=1Ai is a cyclic representation of X with
respect to T. Further, T satisfies d(Tx,Ty) ≤ d(x, y) − ψ(d(x, y)), for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, · · · ,m, where
Am+1 = A1 and ψ ∈ F . Then T has a unique fixed point z ∈ ∩m

i=1Ai.

Proof. Take ϕ(t) = t in Corollary 2.4.

Example 2.6. Let X = [0, 1] and 1,T : X → X such that Tx = x2

12 and 1x = x
3 . Suppose that ψ,ϕ : [0,∞) →

[0,∞) are defined as follows ψ(t) = t
2 and ψ(t) = t

3 . For Ai = [0, 1], (i = 1, 2, ...,m) all conditions of Theorem
2.3 are satisfied. It is clear that x = 0 is the common fixed point of T and 1.
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