A common fixed point theorem for cyclic operators on partial metric spaces

Erdal Karapınar ${ }^{\text {a }}$, Nabi Shobkolaei ${ }^{\text {b }}$, Shaban Sedghi ${ }^{\text {c }}$, S. Mansour Vaezpour ${ }^{\text {d }}$
${ }^{a}$ Department of Mathematics, Atılım University, 06836, İncek, Ankara, Turkey
${ }^{b}$ Department of Mathematics, Islamic Azad University, Science and Research Branch 1477893855 Tehran, Iran
${ }^{c}$ Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
${ }^{d}$ Department of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, Tehran 15914, Iran

Abstract

In this paper, we prove a common fixed point theorem for two self-mappings satisfying certain conditions over the class of partial metric spaces. In particular, the main theorem of this manuscript extends some well-known fixed point theorems in the literature on this topic.

1. Introduction

Recently, studies on the existence and uniqueness of fixed points of self-mappings on partial metric spaces have gained momentum (see e.g., [1] - [4],[7], [14]-[?],[26, 33]). The idea of partial metric space, a generalization of metric space, was introduced by Mathews [25] in 1992. When compared to metric spaces, the innovation of partial metric spaces is that the self distance of a point is not necessarily zero [24]. This feature of partial metrics makes them suitable for many purposes of semantics and domain theory in computer sciences. In particular, partial metric spaces have applications on the Scott-Strachey order-theoretic topological models [32] used in the logics of computer programs.

Mathews [25] proved the analog of Banach contraction mapping principle in the class of partial metric spaces. This remarkable paper of Mathews [25] constructed another important bridge between the domain theory in computer science and fixed point theory in mathematics. Thus, it becomes feasible to transform the tools from Mathematics to Computer Science.

A self-mapping T on a metric space X is called contraction if there exists a constant $k \in[0,1)$ such that $d(T x, T y) \leq k d(x, y)$ for each $x, y \in X$. Banach contraction mapping principle, which states that a contraction has a fixed point, is one of the most important result in nonlinear analysis. This crucial result has been studied continuously since it was first published (See e.g. [1]-[23],[26]-[30]). As a generalization of this fundamental principle, Kirk-Srinivasan-Veeramani [23] developed the cyclic contraction. A contraction $T: A \cup B \rightarrow A \cup B$ on non-empty set A, B is called cyclic if $T(A) \subset B$ and $T(B) \subset A$ hold for closed subsets A, B of a complete metric space X. In the last decade, many authors (see e.g.[21, 22, 27-29, 34]) reported some fixed point theorems for cyclic operators.

Rus [29] introduced the following definition which is a further generalization of a cyclic mapping.

[^0]Definition 1.1. Let X be a nonempty set, m be a positive integer and $T: X \rightarrow X$ be a mapping. $X=\cup_{i=1}^{m} A_{i}$ is said to be a cyclic representation of X with respect to T if
(i) $A_{i}, i=1,2, \cdots, m$ are nonempty sets.
(ii) $T\left(A_{1}\right) \subset A_{2}, \cdots, T\left(A_{m-1}\right) \subset A_{m}, T\left(A_{m}\right) \subset A_{1}$.

Remark 1.2. For convenience, we denote by \mathcal{F} the class of functions $\phi:[0, \infty) \rightarrow[0, \infty)$ nondecreasing and continuous satisfying $\phi(t)>0$ for $t \in(0, \infty)$ and $\phi(0)=0$.

We recall the following definition.
Definition 1.3. (See e.g.[?]) Let (X, d) be a metric space, m be a positive integer, $A_{1}, A_{2}, \cdots, A_{m}$ be nonempty subsets of X and $X=\cup_{i=1}^{m} A_{i}$. An operator $T: X \rightarrow X$ is a cyclic weak $(\phi-\psi)$-contraction if
(i) $X=\cup_{i=1}^{m} A_{i}$ is a cyclic representation of X with respect to T ,
(ii) $\phi(d(T x, T y)) \leq \phi(d(x, y))-\psi(d(x, y))$, for any $x \in A_{i}, y \in A_{i+1}, i=1,2, \cdots, m$, where $A_{m+1}=A_{1}$ and $\phi, \psi \in \mathcal{F}$.

The main result of [22] is the following.
Theorem 1.4. (Theorem 6 of [22]) Let (X, d) be a complete metric space, m be a positive integer, $A_{1}, A_{2}, \cdots, A_{m}$ be nonempty subsets of X and $X=\cup_{i=1}^{m} A_{i}$. Let $T: X \rightarrow X$ be a cyclic $(\phi-\psi)$-contraction with $\phi, \psi \in \mathcal{F}$. Then T has a unique fixed point $z \in \cap_{i=1}^{m} A_{i}$.

In this paper, we proved a common fixed point of two self-mappings $T, g: X \rightarrow X$ on a partial metric space X under certain conditions.

We start some definitions and results needed in the sequel.
A partial metric on a nonempty set X is a mapping $p: X \times X \rightarrow[0, \infty)$ such that
(PM1) $x=y$ if and only if $p(x, x)=p(x, y)=p(y, y)$,
(PM2) $p(x, x) \leq p(x, y)$,
(PM3) $p(x, y)=p(y, x)$,
(PM4) $p(x, y) \leq p(x, z)+p(z, y)-p(z, z)$.
for all $x, y, z \in X$. A pair (X, p) is said to be partial metric space.
Notice also that if p is a partial metric on X, then the functions $d_{p}, d_{m}: X \times X \rightarrow \mathbb{R}^{+}$given by

$$
\begin{align*}
& d_{p}(x, y)=2 p(x, y)-p(x, x)-p(y, y) \tag{1}\\
& p(x, y)-p(x, x), p(x, y)-p(y, y) \tag{2}
\end{align*}
$$

are equivalent (usual) metrics on X. For details see e.g.[?].
Example 1.5. (See e.g. $[1,3,20,24]$) Consider $X=[0, \infty)$ with $p(x, y)=\max \{x, y\}$. Then (X, p) is a partial metric space. It is clear that p is not a (usual) metric. Note that in this case $d_{p}(x, y)=|x-y|$.

Example 1.6. (See e.g. [24]) Let $X=\{[a, b]: a, b, \in \mathbb{R}, a \leq b\}$ and define $p([a, b],[c, d])=\max \{b, d\}-\min \{a, c\}$. Then (X, p) is a partial metric spaces.

Lemma 1.7. (See e.g. $[14,15])$ Let (X, p) be a PMS. Then
(A) If $p(x, y)=0$ then $x=y$,
(B) If $x \neq y$, then $p(x, y)>0$.

Example 1.8. (See e.g.[?]) Let (X, d) and (X, p) be a metric space and a partial metric space, respectively. Mappings $p_{i}: X \times X \longrightarrow[0, \infty)(i \in\{1,2,3\})$ defined by

$$
\begin{aligned}
& p_{1}(x, y)=d(x, y)+p(x, y) \\
& p_{2}(x, y)=d(x, y)+\max \{\omega(x), \omega(y)\} \\
& p_{3}(x, y)=d(x, y)+a
\end{aligned}
$$

induce partial metrics on X, where $\omega: X \longrightarrow[0, \infty)$ is an arbitrary function and $a \geq 0$.
We notice also that each partial metric p on X generates a T_{0} topology τ_{p} on X which has a family of open p-balls

$$
\left\{B_{p}(x, \varepsilon): x \in X, \varepsilon>0\right\}
$$

as a base where $B_{p}(x, \varepsilon)=\{y \in X: p(x, y)<p(x, x)+\varepsilon\}$ for all $x \in X$ and $\varepsilon>0$.
Definition 1.9. (See e.g. [24]) Let (X, p) be a partial metric space.
(i) A sequence $\left\{x_{n}\right\}$ in X converges to $x \in X$ whenever $\lim _{n \rightarrow \infty} p\left(x, x_{n}\right)=p(x, x)$,
(ii) A sequence $\left\{x_{n}\right\}$ in X is called Cauchy whenever $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$ exists (and finite),
(iii) (X, p) is said to be complete if every Cauchy sequence $\left\{x_{n}\right\}$ in X converges, with respect to τ_{p}, to a point $x \in X$, that is, $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)=p(x, x)$.

We define $L\left(x_{n}\right)=\left\{x \mid x_{n} \rightarrow x\right\}$ where $\left\{x_{n}\right\}$ is a sequence in a partial metric space (X, p). The example below shows that a convergent sequence $\left\{x_{n}\right\}$ in a partial metric space may not be a Cauchy. In particular, it shows that the limit of a convergent sequence is not unique.
Example 1.10. (See e.g.[?]) Let $X=[0, \infty)$ and $p(x, y)=\max \{x, y\}$. Let

$$
x_{n}= \begin{cases}0, & n=2 k \\ 1, & n=2 k+1\end{cases}
$$

Then clearly it is convergent sequence and for every $x \geq 1$ we have $\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=p(x, x)$, therefore $L\left(x_{n}\right)=$ $[1, \infty)$. But $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$ does not exist.

We state a lemma that shows the limit of a convergent sequence $\left\{x_{n}\right\}$ in a partial metric space is unique.
Lemma 1.11. (See e.g.[?]) Let $\left\{x_{n}\right\}$ be a convergent sequence in partial metric space X such that $x_{n} \rightarrow x$ and $x_{n} \rightarrow y$. If

$$
\lim _{n \rightarrow \infty} p\left(x_{n}, x_{n}\right)=p(x, x)=p(y, y)
$$

then $x=y$.
Lemma 1.12. (See e.g.[?]) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences in partial metric space X such that

$$
\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=\lim _{n \rightarrow \infty} p\left(x_{n}, x_{n}\right)=p(x, x)
$$

and

$$
\lim _{n \rightarrow \infty} p\left(y_{n}, y\right)=\lim _{n \rightarrow \infty} p\left(y_{n}, y_{n}\right)=p(y, y)
$$

then $\lim _{n \rightarrow \infty} p\left(x_{n}, y_{n}\right)=p(x, y)$. In particular, $\lim _{n \rightarrow \infty} p\left(x_{n}, z\right)=p(x, z)$ for every $z \in X$.

Lemma 1.13. (See e.g. [24],[26]) Let (X, p) be a partial metric space.
(a) $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space $\left(X, d_{p}\right)$.
(b) A partial metric space (X, p) is complete if and only if the metric space $\left(X, d_{p}\right)$ is complete. Furthermore, $\lim _{n \rightarrow \infty} d_{p}\left(x_{n}, x\right)=0$ if and only if

$$
p(x, x)=\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right) .
$$

Lemma 1.14. (See e.g.[?]) If $\left\{x_{n}\right\}$ is a convergent sequence in $\left(X, d_{p}\right)$, then it is a convergent sequence in the partial metric space (X, p).

In this paper, we prove a common fixed point theorem on the class of the partial metric spaces as a generalization of Theorem 1.4 and the main theorem of [31].

2. Main Result

We start this section with the following definition for two self-mappings $T, g: X \rightarrow X$.
Definition 2.1. Let X be a nonempty set, m be a positive integer and $T, g: X \rightarrow X$ be two mappings. $X=\cup_{i=1}^{m} A_{i}$ is said to be a cyclic representation of X with respect to $(T-g)$ if
(i) $A_{i}, i=1,2, \cdots, m$ are nonempty sets.
(ii) $T\left(A_{1}\right) \subset g\left(A_{2}\right), \cdots, T\left(A_{m-1}\right) \subset g\left(A_{m}\right), T\left(A_{m}\right) \subset g\left(A_{1}\right)$.

Definition 2.2. Let (X, p) be a partial metric space, m be a positive integer, $A_{1}, A_{2}, \cdots, A_{m}$ be nonempty subsets of X and $X=\cup_{i=1}^{m} A_{i}$. Two operators $T, g: X \rightarrow X$ are cyclic $(\phi-\psi)$-contraction if
(i) $X=\cup_{i=1}^{m} A_{i}$ is a cyclic representation of X with respect to $(T-g)$,
(ii) $\phi(p(T x, T y)) \leq \phi(p(g x, g y))-\psi(p(g x, g y))$, for any $x \in A_{i}, y \in A_{i+1}, i=1,2, \cdots, m$, where $A_{m+1}=A_{1}$ and $\phi, \psi \in \mathcal{F}$.

Our main result is the following.
Theorem 2.3. Let (X, p) be a complete partial metric space, m be a positive integer, $A_{1}, A_{2}, \cdots, A_{m}$ be nonempty subsets of X and $X=\cup_{i=1}^{m} A_{i}$. Let $T, g: X \rightarrow X$ be two cyclic $(\phi-\psi)$-contraction such that $g\left(A_{i}\right)$ closed subsets of X.
i) If g is one to one then there exists $z \in \cap_{i=1}^{m} A_{i}$ such that $g z=T z$.
ii) If the pair (T, g) are weakly compatible,
then T and g has a unique common fixed point $z \in \cap_{i=1}^{m} A_{i}$.
Proof. Let x_{1} be an arbitrary point in A_{1}. By cyclic representation of X with respect to pair (T, g), we choose a point x_{2} in A_{2} such that $T x_{1}=g x_{2}$. For this point x_{2} there exists a point x_{3} in A_{3} such that $T x_{2}=g x_{3}$, and so on. Continuing in this manner we can define a sequence $\left\{x_{n}\right\}$ as follows

$$
T x_{n}=g x_{n+1},
$$

for $n=1,2, \cdots$. We prove that $\left\{g x_{n}\right\}$ is a Cauchy sequence. If there exists $n_{0} \in \mathbb{N}$ such that $g x_{n_{0}+1}=g x_{n_{0}}$ then, since $g x_{n_{0}+1}=T x_{n_{0}}=g x_{n_{0}}$, the part of existence of the coincidence point of T and g is proved. Suppose that $g x_{n+1} \neq g x_{n}$ for any $n=1,2, \cdots$. Then, since $X=\cup_{i=1}^{m} A_{i}$, for any $n>0$ there exists $i_{n} \in\{1,2, \cdots, m\}$ such that $x_{n-1} \in A_{i_{n}}$ and $x_{n} \in A_{i_{n+1}}$. Since (T, g) are cyclic $(\phi-\psi)$-contraction, we have

$$
\begin{align*}
\phi\left(p\left(g x_{n}, g x_{n+1}\right)\right) & =\phi\left(p\left(T x_{n-1}, T x_{n}\right)\right) \\
& \leq \phi\left(p\left(g x_{n-1}, g x_{n}\right)\right)-\psi\left(p\left(g x_{n-1}, g x_{n}\right)\right) \\
& \leq \phi\left(p\left(g x_{n-1}, g x_{n}\right)\right) \tag{3}
\end{align*}
$$

From (3) and taking into account that ϕ is nondecreasing we obtain

$$
p\left(g x_{n}, g x_{n+1}\right) \leq p\left(g x_{n-1}, g x_{n}\right) \text { for any } n=2,3, \cdots
$$

Thus $\left\{p\left(g x_{n}, g x_{n+1}\right)\right\}$ is a nondecreasing sequence of nonnegative real numbers. Consequently, there exists $\gamma \geq 0$ such that $\lim _{n \rightarrow \infty} p\left(g x_{n}, g x_{n+1}\right)=\gamma$. Taking $n \rightarrow \infty$ in (3) and using the continuity of ϕ and ψ, we have

$$
\phi(\gamma) \leq \phi(\gamma)-\psi(\gamma) \leq \phi(\gamma)
$$

and, therefore, $\psi(\gamma)=0$. Since $\psi \in \mathcal{F}, \gamma=0$, that is,

$$
\lim _{n \rightarrow \infty} p\left(g x_{n}, g x_{n+1}\right)=0
$$

Since $p\left(g x_{n}, g x_{n}\right) \leq p\left(g x_{n}, g x_{n+1}\right)$ and $p\left(g x_{n+1}, g x_{n+1}\right) \leq p\left(g x_{n}, g x_{n+1}\right)$, hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p\left(g x_{n}, g x_{n}\right)=\lim _{n \rightarrow \infty} p\left(g x_{n+1}, g x_{n+1}\right)=\lim _{n \rightarrow \infty} p\left(g x_{n}, g x_{n+1}\right)=0 . \tag{4}
\end{equation*}
$$

Since

$$
d_{p}\left(g x_{n}, g x_{n+1}\right)=2 p\left(g x_{n}, g x_{n+1}\right)-p\left(g x_{n}, g x_{n}\right)-p\left(g x_{n+1}, g x_{n+1}\right) .
$$

This shows that $\lim _{n \rightarrow \infty} d_{p}\left(g x_{n}, g x_{n+1}\right)=0$.
In the sequel, we prove that $\left\{g x_{n}\right\}$ is a Cauchy sequence in the metric space $\left(X, d_{p}\right)$.
First, we prove the following claim.
Claim: For every $\epsilon>0$ there exists $n \in \mathbb{N}$ such that if $b, q \geq n$ with $b-q \equiv 1(m)$ then $d_{p}\left(x_{b}, x_{q}\right)<\epsilon$.
In fact, suppose the contrary case. This means that there exists $\epsilon>0$ such that for any $n \in \mathbb{N}$ we can find $b_{n}>q_{n} \geq n$ with $b_{n}-q_{n} \equiv 1(m)$ satisfying

$$
\begin{equation*}
d_{p}\left(g x_{q_{n}}, g x_{b_{n}}\right) \geq \epsilon . \tag{5}
\end{equation*}
$$

Now, we take $n>2 m$. Then, corresponding to $q_{n} \geq n$ use can choose b_{n} in such a way that it is the smallest integer with $b_{n}>q_{n}$ satisfying $b_{n}-q_{n} \equiv 1(m)$ and $d_{p}\left(g x_{q_{n}}, g x_{b_{n}}\right) \geq \epsilon$. Therefore, $d_{p}\left(g x_{q_{n}}, g x_{b_{n-m}}\right) \leq \epsilon$. Using the triangular inequality

$$
\epsilon \leq d_{p}\left(g x_{q_{n}}, g x_{b_{n}}\right) \leq d_{p}\left(g x_{q_{n}}, g x_{b_{n-m}}\right)+\sum_{i=1}^{m} d_{p}\left(g x_{b_{n-i}} g x_{b_{n-i+1}}\right)<\epsilon+\sum_{i=1}^{m} d_{p}\left(g x_{b_{n-i}}, g x_{b_{n-i+1}}\right) .
$$

Letting $n \rightarrow \infty$ in the last inequality and taking into account that $\lim _{n \rightarrow \infty} d_{p}\left(g x_{n}, g x_{n+1}\right)=0$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{p}\left(g x_{q_{n}}, g x_{b_{n}}\right)=\epsilon \Longrightarrow \lim _{n \rightarrow \infty} p\left(g x_{q_{n}}, g x_{b_{n}}\right)=\frac{\epsilon}{2} \tag{6}
\end{equation*}
$$

Again, by the triangular inequality

$$
\begin{align*}
\epsilon & \leq d_{p}\left(g x_{q_{n}}, g x_{b_{n}}\right) \\
& \leq d_{p}\left(g x_{q_{n}}, g x_{q_{n+1}}\right)+d_{p}\left(g x_{q_{n+1}}, g x_{b_{n+1}}\right)+d_{p}\left(g x_{b_{n+1}}, g x_{b_{n}}\right) \tag{7}\\
& \leq d_{p}\left(g x_{q_{n}}, g x_{q_{n+1}}\right)+d_{p}\left(g x_{q_{n+1}}, g x_{q_{n}}\right) \\
& +d_{p}\left(g x_{q_{n}}, g x_{b_{n}}\right)+d_{p}\left(g x_{b_{n}}, g x_{b_{n+1}}\right)+d_{p}\left(g x_{b_{n+1}}, g x_{b_{n}}\right) \\
& =2 d_{p}\left(g x_{q_{n}}, g x_{q_{n+1}}\right)+d_{p}\left(g x_{q_{n}}, g x_{b_{n}}\right)+2 d_{p}\left(g x_{b_{n}}, g x_{b_{n+1}}\right)
\end{align*}
$$

Letting $n \rightarrow \infty$ in (6) and taking into account that $\lim _{n \rightarrow \infty} d_{p}\left(g x_{n}, g x_{n+1}\right)=0$ and (6), we get

$$
\lim _{n \rightarrow \infty} d_{p}\left(g x_{q_{n+1}} g x_{b_{n+1}}\right)=\epsilon .
$$

Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p\left(g x_{q_{n+1}}, g x_{b_{n+1}}\right)=\frac{\epsilon}{2} \tag{8}
\end{equation*}
$$

Since $g x_{q_{n}}$ and $g x_{b_{n}}$ lie in different adjacently labeled sets A_{i} and A_{i+1} for certain $1 \leq i \leq m$, using the fact that T and g are cyclic $(\phi-\psi)$-contraction, we have

$$
\begin{aligned}
\phi\left(p\left(g x_{q_{n+1}}, g x_{b_{n+1}}\right)\right) & =\phi\left(p\left(T x_{q_{n}}, T x_{b_{n}}\right)\right. \\
& \leq \phi\left(p\left(g x_{q_{n}}, g x_{b_{n}}\right)\right)-\psi\left(p\left(g x_{q_{n}}, g x_{b_{n}}\right)\right) \\
& \leq \phi\left(p\left(g x_{q_{n}}, g x_{b_{n}}\right)\right) .
\end{aligned}
$$

Taking into account (6) and (8) and the continuity of ϕ and ψ, letting $n \rightarrow \infty$ in the last inequality, we obtain

$$
\phi\left(\frac{\epsilon}{2}\right) \leq \phi\left(\frac{\epsilon}{2}\right)-\psi\left(\frac{\epsilon}{2}\right) \leq \phi\left(\frac{\epsilon}{2}\right)
$$

and consequently, $\psi\left(\frac{\epsilon}{2}\right)=0$. Since $\psi \in \mathcal{F}$, then $\epsilon=0$ which is contradiction. Therefore, our claim is proved.
In the sequel, we will prove that $\left\{g x_{n}\right\}$ is a Cauchy sequence in metric space $\left(X, d_{p}\right)$. Fix $\epsilon>0$. By the claim, we find $n_{0} \in \mathbb{N}$ such that if $b, q \geq n_{0}$ with $b-q \equiv 1(m)$

$$
\begin{equation*}
d_{p}\left(g x_{b}, g x_{q}\right) \leq \frac{\epsilon}{2} \tag{9}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} d_{p}\left(g x_{n}, g x_{n+1}\right)=0$ we also find $n_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
d_{p}\left(g x_{n}, g x_{n+1}\right) \leq \frac{\epsilon}{2 m} \tag{10}
\end{equation*}
$$

for any $n \geq n_{1}$.
Suppose that $r, s \geq \max \left\{n_{0}, n_{1}\right\}$ and $s>r$. Then there exists $k \in\{1,2, \cdots, m\}$ such that $s-r \equiv k(m)$. Therefore, $s-r+j \equiv 1(m)$ for $j=m-k+1$. So, we have

$$
d_{p}\left(g x_{r}, g x_{s}\right) \leq d_{p}\left(g x_{r}, g x_{s+j}\right)+d_{p}\left(g x_{s+j}, g x_{s+j-1}\right)+\cdots+d_{p}\left(g x_{s+1}, g x_{s}\right)
$$

By (9) and (10) and from the last inequality, we get

$$
d_{p}\left(g x_{r}, g x_{s}\right) \leq \frac{\epsilon}{2}+j \frac{\epsilon}{2 m} \leq \frac{\epsilon}{2}+m \frac{\epsilon}{2 m}=\epsilon
$$

This proves that $\left\{g x_{n}\right\}$ is a Cauchy sequence in metric space $\left(X, d_{p}\right)$. Since (X, p) is complete then from Lemma 1.13, the sequence $\left\{g x_{n}\right\}$ converges in the metric space $\left(X, d_{p}\right)$, say $\lim _{n \rightarrow \infty} d_{p}\left(g x_{n}, x\right)=0$ for some $x \in X$. Therefore, by Lemma 1.13 we have

$$
p(x, x)=\lim _{n \rightarrow \infty} p\left(g x_{n}, x\right)=\lim _{n, m \rightarrow \infty} p\left(g x_{n}, g x_{m}\right) .
$$

That is, there exists $x \in X$ such that $\lim _{n \rightarrow \infty} g x_{n}=x$ in partial metric (X, p). Since $g\left(A_{i}\right)$ are closed subsets of X, we have $x \in g\left(A_{i}\right)$ for every $i \in\{1,2, \cdots, m\}$. That is, $x \in \cap_{i=1}^{m} g\left(A_{i}\right)$. Hence, there exists $z_{i} \in A_{i}$ such that $g z_{i}=x$. Since g is one to one we have

$$
g\left(z_{1}\right)=g\left(z_{2}\right)=\cdots=g\left(z_{m}\right)=x \Longrightarrow z_{1}=z_{2}=\cdots=z_{m}=z .
$$

Therefore, $g(z)=x$ for $z \in \cap_{i=1}^{m} A_{i}$. In fact, $\lim _{n \rightarrow \infty} g x_{n}=g z$. On the other hand since the sequence $\left\{g x_{n}\right\}$ has infinite terms in each A_{i} for $i \in\{1,2, \cdots, m\}$, we take a subsequence $\left\{g x_{n_{k}}\right\}$ of $\left\{g x_{n}\right\}$ with $g x_{n_{k}} \in g\left(A_{i-1}\right)$ where $x_{n_{k}} \in A_{i-1}$. Using the contractive condition, we can obtain

$$
\begin{aligned}
\phi\left(p\left(g x_{n_{k+1}}, T z\right)\right) & =\phi\left(p\left(T x_{n_{k}}, T z\right)\right) \\
& \leq \phi\left(p\left(g x_{n_{k}}, g z\right)\right)-\psi\left(p\left(g x_{n_{k}}, g z\right)\right) \\
& \leq \phi\left(p\left(g x_{n_{k}}, g z\right)\right) .
\end{aligned}
$$

Since $g x_{n_{k}} \rightarrow g z$ and ϕ and ψ belong to \mathcal{F}, letting $k \rightarrow \infty$ in the last inequality, we have

$$
\phi(p(g z, T z)) \leq \phi(p(g z, g z))-\psi(p(g z, g z)) \leq \phi(p(g z, g z))
$$

Moreover, we obtain $p(g z, T z)=p(g z, g z)$, because ϕ is nondecreasing and $p(g z, g z) \leq p(g z, T z)$. Hence, if $p(g z, g z) \neq 0$ then by the last inequality we have,

$$
\begin{aligned}
\phi(p(g z, g z)) & =\phi(p(g z, T z)) \\
& \leq \phi(p(g z, g z))-\psi(p(g z, g z)) \\
& <\phi(p(g z, g z))
\end{aligned}
$$

which is contradiction. Since $\phi \in \mathcal{F}$, then, $p(T z, T z)=p(g z, g z)=p(g z, T z)=0$, it follows that, $T z=g z=x$.
ii) Since g and T are two weakly compatible mappings, we have $T T z=T g z=g T z=g g z$. That is $T x=g x$. Next, we prove that $T x=x$. Since $T z \in X$ hence there exists some i such that $T z \in A_{i}$. By $z \in \cap_{i=1}^{m} A_{i}$ we have $z \in A_{i-1}$, by using the contractive condition we obtain

$$
\begin{aligned}
\phi(p(T z, T T z)) & \leq \phi(p(g z, g T z))-\psi(p(g z, g T z)) \\
& \leq \phi(p(g z, g T z))=\phi(p(T z, T T z))
\end{aligned}
$$

from the last inequality we have

$$
\psi(p(T z, T T z))=0
$$

Since $\psi \in \mathcal{F}, p(T z, T T z)=0$ and, consequently, $x=T z=T T z=T x=g x$.
Finally, in order to prove the uniqueness of a fixed point, we have $y, z \in X$ with y and z common fixed points of T and g. The cyclic character of $T-g$ and the fact that $y, z \in X$ are common fixed points of T and g, imply that $y, z \in \cap_{i=1}^{m} A_{i}$. If $p(y, z) \neq 0$ then by using the contractive condition we obtain

$$
\begin{aligned}
\phi(p(y, z)) & =\phi(p(T y, T z)) \leq \phi(p(g y, g z))-\psi(p(g y, g z)) \\
& <\phi(p(g y, g z))=\phi(p(y, z))
\end{aligned}
$$

which is a contradiction. Since $\phi \in \mathcal{F}, p(y, z)=0$ and, consequently, $y=z$. This finishes the proof.
Corollary 2.4. Let (X, p) be a complete partial metric space, m be a positive integer, $A_{1}, A_{2}, \cdots, A_{m}$ be nonempty closed subsets of X and $X=\cup_{i=1}^{m} A_{i}$. Let $T: X \rightarrow X$ be a cyclic weak $(\phi-\psi)$-contraction. Then T has a unique fixed point $z \in \cap_{i=1}^{m} A_{i}$.

Proof. Take $g(x)=x$ in Theorem 2.3.

Corollary 2.5. Let (X, p) be a complete partial metric space, m be a positive integer, $A_{1}, A_{2}, \cdots, A_{m}$ be nonempty closed subsets of X. Suppose that $T: X \rightarrow X$ is a self-mapping and $X=\cup_{i=1}^{m} A_{i}$ is a cyclic representation of X with respect to T. Further, T satisfies $d(T x, T y) \leq d(x, y)-\psi(d(x, y))$, for any $x \in A_{i}, y \in A_{i+1}, i=1,2, \cdots, m$, where $A_{m+1}=A_{1}$ and $\psi \in \mathcal{F}$. Then T has a unique fixed point $z \in \cap_{i=1}^{m} A_{i}$.

Proof. Take $\phi(t)=t$ in Corollary 2.4.
Example 2.6. Let $X=[0,1]$ and $g, T: X \rightarrow X$ such that $T x=\frac{x^{2}}{12}$ and $g x=\frac{x}{3}$. Suppose that $\psi, \phi:[0, \infty) \rightarrow$ $[0, \infty)$ are defined as follows $\psi(t)=\frac{t}{2}$ and $\psi(t)=\frac{t}{3}$. For $A_{i}=[0,1],(i=1,2, \ldots, m)$ all conditions of Theorem 2.3 are satisfied. It is clear that $x=0$ is the common fixed point of T and g.

References

[1] T. Abedelljawad, E. Karapınar, K. Taş, Existence and uniqueness of common fixed point on partial metric spaces, Appl. Math. Lett. 24 (2011) 1894-1899.
[2] I. Altun, H. Simsek, Some fixed point theorems on dualistic partial metric spaces, J. Adv. Math. Stud. 1 (2008) 1-8.
[3] I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metric spaces, Topology and its Applications 157 (2010) $2778-2785$.
[4] H. Aydi, E. Karapınar, W. Shatanawi, Coupled fixed point results for (ψ, φ)-weakly contractive condition in ordered partial metric spaces, Comput. Math. Appl. 62 (2011) 4449-4460.
[5] M.Bukatin, R. Kopperman, M. Steve, H. Pajoohesh, Partial Metric Spaces, American Mathematical Monthly 116 (2009) $708-718$.
[6] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 29 (2002) 531-536
[7] Ljubomir Ciric, Bessem Samet, Hassen Aydi, Calogero Vetro, Common fixed points of generalized contractions on partial metric spaces and an application, Applied Mathematics and Computation 218 (2011) 2398-2406.
[8] M. De La Sen, Linking Contractive self-mappings and cyclic Meir-Keeler contractions with Kannan self-mappings, Fixed Point Theory and Applications (2010) Article ID 572057.
[9] P. N. Dhutta, B.S. Choudhury, A generalization of contraction principle in metric spaces, Fixed Point Theory Appl (2008) Article ID 406368.
[10] M. H. Escardo, Pcf Extended with real numbers, Theoretical Computer Sciences 162 (1996) 79-115.
[11] D. Ilić, V. Pavlović, V. Rakočević, Some new extensions of Banachs contraction principle to partial metric space, Appl. Math. Lett. 24 (2011) 1326-1330.
[12] D. Ilić, V. Pavlović, V. Rakočević, Extensions of the Zamfirescu theorem to partial metric spaces Original Research Article Math. Comput. Modelling 55 (2012) 801-809.
[13] R. Heckmann, Approximation of metric spaces by partial metric spaces, Appl. Categ. Structures 7 (1999) 71-83.
[14] E. Karapınar, Generalizations of Caristi Kirk's Theorem on Partial Metric Spaces, Fixed Point Theory Appl. 2011: 4 (2011), DOI:10.1186/1687-1812-2011-4.
[15] E. Karapinar, U. Yuksel, Some common fixed point theorems in partial metric spaces, Journal of Applied Mathematics (2011), DOI:10.1155/2011/263621.
[16] E. Karapınar, A note on common fixed point theorems in partial metric spaces, Miskolc Mathematical Notes, (in press).
[17] E. Karapınar, I. M. Erhan, Fixed Point Theorems for Operators on Partial Metric Spaces, Appl. Math. Lett. 24 (2011) $1900-1904$.
[18] K. P.Chi, E. Karapınar, T. D. Thanh, A generalized contraction principle in partial metric spaces, Mathematical and Computer Modelling (2011), DOI:10.1016/j.mcm.2011.11.005
[19] E. Karapınar, Weak ϕ-contraction on partial contraction, J. Comput. Anal. Appl. 14 (2011).
[20] E. Karapınar, Some Fixed Point Theorems on the class of comparable partial metric spaces on comparable partial metric spaces, Applied General Topology 12 (2011) 187-192.
[21] E. Karapınar, Fixed point theory for cyclic weak ϕ-contraction Appl.Math. Lett. 24 (2011) 822-825.
[22] E. Karapınar, K. Sadarangani, Fixed point theory for cyclic $(\phi-\psi)$-contractions, Fixed Point Theory and Applications 69 (2011), DOI:10.1186/1687-1812-2011-69.
[23] W.A.Kirk, P.S.Srinivasan, P.Veeramani, Fixed points for mappings satisfying cyclical weak contractive conditions, Fixed Point Theory 4 (2003) 79-89.
[24] S. G. Matthews, Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., 728 (1994) 183-197.
[25] S.G. Matthews: Partial metric topology. Research Report 212. Dept. of Computer Science. University of Warwick, 1992.
[26] S. Oltra, O. Valero, Banach's fixed point theorem for partial metric spaces, Rend. Istid. Math. Univ. Trieste 36 (2004) 17-26.
[27] M. Pacurar, I.A. Rus Fixed point theory for cyclic φ-contractions, Nonlinear Amal. 72 (2010) 1181-1187.
[28] G. Petruşhel: Cyclic representations and periodic points, Studia Univ. Babes-Bolyai Math. 50(2005) 107-112.
[29] I.A. Rus, Cyclic representations and fixed points, Ann. T. Popoviciu, Seminar Funct. Eq. Approx. Convexity 3 (2005) 171-178.
[30] W. Shatanawi , B. Samet, M. Abbas, Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces, Mathematical and Computer Modelling (2011), DOI:10.1016/j.mcm.2011.08.042
[31] N. Shobkolaei, E. Karapinar, S. Sedghi, S.M. Vaezpour, Fixed point theory for cyclic $(\phi-\psi)$-contractions on partial metric spaces, (submitted)
[32] J. E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory, MIT Press Cambridge, (1981).
[33] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. General Topology 6 (2005) 229-240.
[34] X. Zhang, Common fixed point theorems for some new generalized contractive type mappings, J. Math. Anal. Appl. 333 (2007) 780-786.

[^0]: 2010 Mathematics Subject Classification. Primary 47H10; Secondary 46N40, 54H25, 46T99
 Keywords. Fixed point, partial metric, cyclic $(\phi-\psi)$-contraction, common fixed point.
 Received: 15 June 2011; Accepted: 12 December 2011
 Communicated by Dejan Ilić
 Email addresses: erdalkarapinar@yahoo.com (Erdal Karapınar), nabi_shobe@yahoo.com (Nabi Shobkolaei), sedghi_gh@yahoo.com (Shaban Sedghi), vaez@aut.ac.ir (S. Mansour Vaezpour)

