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This paper is aimed at proving a common fixed point theorem for F-Kannan mappings in metric spaces with an application to
integral equations. The main result of the paper will extend and generalise the recent existing fixed point results in the literature.
We also provided illustrative examples and some applications to integral equation, nonlinear fractional differential equation, and

ordinary differential equation for damped forced oscillations to support the results.

1. Introduction and Preliminaries

In 1922, Banach [1] established a fixed point theorem in a
metric space which states that if X is a complete metric
space and T : X — X is a contraction map, ie., d(Tx, Ty)
<kd(x,y) for all x,y € X and k € [0, 1), then T has a unique
fixed point or Tx=x has a unique solution. Since then,
researchers are finding the ways to determine the fixed points
of the maps by changing one or more conditions such as con-
tractive condition, continuity of the maps, and completeness
of the space etc. Kannan [2] gave an alternative contractive
condition which was different from the Banach contraction
condition. In 1968, Kannan [2] used this new contractive
condition and proved the following theorem for self-
mappings in complete metric spaces as a result of a general-
isation of the Banach fixed point theorem.

Theorem 1 (see [2]). Let (X, d) be a complete metric space
and a self-mapping T : X — X be a mapping such that

d(Tx, Ty) <k{d(x, Tx)+d(y, Ty)}, (1)

for all x,y e X and 0<k<1/2. Then, T has a unique fixed
point z € X and for any x € X the sequence of iterate {T"x}
converges to z.

An equivalent form of (1),
k
d(Tx, Ty) < 3 {d(x, Tx) +d(y, Ty)}, (2)

for some k € (0, 1).

In 1959, Connell [3] gave an example of a metric space X
which is not complete and every contraction on X has a fixed
point. Also, Subrahmanyam [4] proved the converse of the
Banach fixed point theorem using Kannan mapping. More-
over, the assumption of continuity of the mapping and the
compactness condition on metric space is required for the
existence of a fixed point for a strict type Kannan contraction.

In 2000, Branciari [5] introduced a class of generalised
metric spaces by replacing triangular inequality to similar
ones which involve four or more points instead of three
and improved the Banach contraction mapping principle.
This motivated several researchers to prove fixed point
results in such spaces. For more details on the fixed point the-
ory of a generalised metric space, we refer to the reader [6-
11]. In 2008, Azam and Arshad [12] using the concept of
Branciari [5] investigated fixed points for the mappings given
by Kannan [2] by applying the rectangular property in a gen-
eralised metric space.

We will require the following definitions and preliminary
results to prove our results.
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Definition 2 (see [12]). Let X be a nonempty set. Suppose that
the mapping d : X x X — R satisfies

(i) d(x,y) =0, for all x, y € X and d(x, y) = 0 if and only
ifx=y

(ii) d(x,y)=d(y,x), forall x,y e X

(ili) d(x,y) <d(x,w)+d(w,z) +d(z,p), for all x,yeX
and for all distinct points w,z € X — {x, y} [rectan-
gular property]

Then, d is called a generalised metric and (X, d) is a gen-
eralised metric space.

Definition 3 (see [5]). Let (X, d) be a metric space. A mapping
T : X — X is said to be sequentially convergent if we have,
for every sequence {y, }, if {Ty,} is convergence then {y,}
also is convergence. T is said to be subsequentially conver-
gent if we have, for every sequence {y,},if {Ty,} is conver-
gence then {y, } has a convergent subsequence.

Definition 4 (see [13]). Let X be a topological space. If (x,, ) is
a sequence of points of X, and if n; <n, <--- <m;<---isan
increasing sequence of positive integers, then the sequence
(y;) defined by setting y,=x, is called a subsequence of
the sequence (x,). The space X is said to be sequentially
compact if every sequence of points of X has a convergent
subsequence.

For more details on the sequentially convergent property,
one can see [14, 15].

In 2011, Moradi and Alimohammadi [16] generalised
Kannan’s results, by using the sequentially convergent map-
pings and rectangular property in a metric space. Since then,
several researchers involved in investigations of Kannan’s
contraction mappings using a rectangular property in differ-
ent spaces. For more details, one can see [12, 17-20] and the
references therein. Furthermore, Morandi and Alimoham-
madi [16] investigated and extended Kannan’s mapping [2]
by using the concept due to Branciari [5]. They proved results
on two self-mappings as follows.

Theorem 5 (see [16]). Let (X, d) be a complete metric space
and T,S : X — X be mappings such that T is continuous,
one-to-one, and subsequentially convergent. If A € [0, 1/2) and

d(TSx, TSy) < A[d(Tx, TSx) +d(Ty, TSy)], (x,y € X), (3)

then S has a unique fixed point. Also, if T is sequentially con-
vergent then for every x, € X, the sequence of iterates {S"x,}
converges to this fixed point.

Wardowski [21] gave an interesting generalisation of the
Banach fixed point theorem using a different type of contrac-
tion called F-contraction. Since then, many researchers fol-
lowing his approach to construct new fixed point theorems
for which one can see [22-27] and the references therein.
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Wardowski [21] gave the following definitions.

Let F be a function defined as F : R* — R, which sat-
isfies the following conditions:

(F1) F is strictly increasing, i.e., for all a, f € R, such that
a< B, F(a) < F(B)

(F2) For each sequence {a,}, of positive numbers

lim &, = 0 if and only if lim F(a,) =-00

(F3) There exists k € (0, 1) such that

lim (a,)*F(a;,) =0 (4)

n—00

Definition 6 (see [21]). A mapping T : X — X is said to be a
F-contraction if there exists 7 > 0, such that

Vx,y€X,d(Tx, Ty) >0= 1+ F(d(Tx, Ty)) < F(d(x, y)).
(5)

In 2012, Wardowski [21] introduced a generalization of
Banach contraction principle, which is as follows:

Theorem 7 (see [21]). Let (X, d) be a complete metric space
and T : X — X be a F-contraction. Then, T has a unique
fixed point x* €X and for every x,€X a sequence
{T"x,} e is convergent to x*.

In 2019, Goswamii et al. [22] defined F-contractive type
mappings in b-metric spaces and proved some fixed point
results with suitable examples. Recently, Batra et al. [28]
noticed that the definition introduced by Goswami et al.
[22] is not meaningful in general. They provided suitable
examples to support their opinion on this definition. There-
fore, Batra et al. [28] gave the notions of F-contraction and
Kannan mapping to define a new class of contractions called
F-Kannan mappings which is in true sense a generalization
of Kannan mappings.

Motivated by Batra et al. [28], we use the following nota-
tions: Let X be a nonempty set and (X, d) denotes the metric
space with metric d. Define the cardinality of a set A by
card {A} and FixT denotes the set of all fixed points of a
mapping T.

Batra et al. [28] gave a new generalization family of con-
traction called F-Kannan mapping and introduced the fol-
lowing definition.

Definition 8 (see [28]). Let F be a mapping satisfying
(F1)-(F3). A mapping T : X — X is said to be an F-Kan-
nan mapping if the following holds:

(K1)

Tx+Ty=Tx+xorTy+y (6)
(K2) 3Y > 0 such that

d(x, Tx)+d(y, Ty)

Y + F(d(Tx, Ty)) < F ;

(7)

for all x, y € X, with Tx # Ty.
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The remark presented below is due to Batra et al. [28].

Remark 9 (see [28]). By properties of F, it follows that every
F-Kannan mapping T on a metric space (X, d) satisfies the
following condition:

d(x, Tx) +d(y, Ty)

d(Tx, Ty)) < 3

) (8)

for every x,y € X.

Further, it is concluded that Card{FixT} <1. Let T be a
self-map of a metric space (X, d). We say that T is a Picard
operator (PO) if T has unique fixed point x* and lim T"x

n—00
=x* forall x e X.

Then, the family of all functions F : R* — R satisfying
the condition F, — F; is denoted by V.

One can use the following examples in Batra et al. [28] of
such functions F : R* — R which satisty F, — F;.

Example 10 (see [28]). Let F, : R* — R be defined as F,
(z) =1In (2). Then, clearly, (F1)-(F3) are satisfied by F,(z).
In fact, (F3) holds for every k € (0, 1),

d(Tx, Ty)<e " {d(x, ) ;r 40 Ty)] , 9)

for all x,y € X with Tx # Ty.
Thus, if T : X — X is a Kannan mapping with constant
k€ (0, 1) satisfying

d(Tx, Ty) <k [d(x’ Tx) +dy. Ty) } , (10)

2

for every x, y € X.

Example 11 (see [28]). Let F, : R* — R be defined as F,
(z) =1In (2) + 2,z > 0. Then, (F1)-(F3) are satisfied by F,(z).

d(Tx, Ty)
(d(x, Tx) +d(y, Ty))/2

d(Tx,Ty)~[d(x,Tx)+d(y,Ty)]/2 < e—T, (11)

for all x,y € X with Tx # Ty.
The following lemma was proved by Batra et al. [28]

Lemma 12 (see [28]). Let (X, d) be a metric space and T : X
— X be an F-Kannan mapping. Then, d(T"x, T"'x) —
0 as n+— oo for all x € X.

Batra et al. [28] introduced an F-Kannan mapping using
the properties by Subrahmanyam [4] which is an extension of
Goswami et al. [22] and Wardowski [21] results. They proved
the following result.

Theorem 13 (see [28]). Let (X, d) be a complete metric space
and suppose T : X — X is an F-Kannan mapping, then T is
a Picard operator (PO).

In 2017, Gopal et al. [29] specified the fundamental prop-
erties for a fixed point theorem which ensures the existence of
a common fixed point for suitable assumptions. Those
assumptions are sufficient and include conditions of commu-
tativity, containment of ranges of mappings, continuity of at
least one mapping or weaker notion, contractive, and all
essential common fixed point theorem attempts to obtain
or soften required values of one or more such conditions.

Definition 14 (see [30]). Let (S, T) be a pair of self-mappings
on a metric space (X, d). Then, the coincidence point of the
pair (S, T) is a point x € X such that (Sx) = (Tx) =x*, then
x* is called coincidence point of the pair (S, T). If x* = x, then
x is said to be a common fixed point.

Definition 15 (see [31]). Let S, T be self-mappings of a non-
empty set X. A point x € X is the coincidence point of S
and T if t = Sx = Tx. The set of coincidence point of S and
T is denoted by C(S, T).

Definition 16 (see [31, 32]). Let (S, T) be a pair of self-
mappings on a metric space (X, d). Then, the pair (S, T) is
said to be

(i) Commuting if, for all x € X, S(Tx) = T(Sx),
(i) Weakly commuting if, for all d(S(Tx), T(Sx)) <d(S

x, Tx),

(ili) Compatible iflim, . d(STx,, TSx,) =0, whenever
x, is a sequence in X such that lim, Tx, =
lim, |, Sx,=t,

(iv) Weakly compatible if, for all S(Tx)=T(Sx), for
every coincidence point x € X.

This paper is aimed at extending and generalising the
results due to Batra et al. [28], and Morandi and Alimoham-
madi [16] using a pair of two self-mappings in F-Kannan
mapping. Doing so, we will be able to extend several other
results of the same setting in the literature. We will provide
some applications of the theorem to the integral equation,
nonlinear fractional differential equation, and ordinary dif-
ferential equation for damped forced oscillations to support
the results.

2. Main Results

We present the main result of this paper by assuming a map
to be sequentially convergent with a pair of two self-
mappings in F-Kannan mappings. We shall start with the
extension of Definition 8 using a pair of two self-mappings
in the F-Kannan mapping setting.

Definition 17. Let F be a mapping satisfying (F1)-(F3). A pair
of two self-mapping T, S : X — X is said to be an F-Kannan
mapping if the following holds:



(FK1)
TSx+TSy=TSx+#xo0rTSy+y (12)
(FK2) There exists " > 0 such that

d(Tx, TSx) +d(Ty, TSy)

. (13)

Y + F(d(TSx, TSy)) < F

for all x, y € X, with TSx # TSy.

By following Batra et al. [28], we presented the remark as
below.

Remark 18. By properties of F, it follows that every F-Kan-
nan mapping T on a metric space (X, d) satisfies the follow-
ing condition:

d(Tx, TSx) +d(Ty, TSy)
2

d(TSx, TSy) < . (19)

for every x, y € X.

We give the following examples in the context of a pair of
two mappings:

Example 19. Let F; : Rt — R be defined as F,(z) =In (2).
Then, clearly, (F1)-(F3) are satisfied by F,(z). In fact, (F3)
holds for every k€ (0,1). Moreover, condition (13) above
takes the form:

Tx, TSx) +d(Ty, TSy)] (15)
2 bl

d(TSx, TSy)<e™ " [d(

for all x, y € X with TSx # TSy.

Thus, if T,S : X — X is a Kannan mapping with con-
stant k € (0, 1) satisfying

(16)

Tx, T Ty, T
d(TSx,TSy)sk{d( x, ISx) +d(Ty Sy)}

2

for every x, y € X. Then, it also satisfies (15) and (13) with
Y =1n (1/k).

Example 20. Let F, : R* — R be defined as F,(z) =1n (z)
+2z,z> 0. Then, (F1)-(F3) are satisfied by F,(z). Condition
(13) above takes the form:

d(TSx, TSy)
(d(Tx, TSx) +d(Ty, TSy))/2

d(TSx,TSy)—(d(Tx,TSx)+d(Ty,TSy)) -

>

2
(17)
for all x, y € X with TSx # TSy.

We prove the following lemma which will be useful in
proving of the main theorem.
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Lemma 21. Let (X, d) be a metric space and T, S : X — X be
an F -Kannan mapping. Then,

d(TS'xp TS™'x,) — 0asi— oo, (18)
forall x € X.

Proof. Let x, € X be arbitrary. If TS'x, = TS""'x, for some i
€N, then sequence {x;}, . converges in X and hence the
sequence d(TS'x,, TS x,) — 0 asi —> oo for all x € X.

Assume that TS'x, # TS™*'x, for any i € N. Then, by (13)
with Y > 0, we get

Y + F(d(TS'xp, TS™'xy))
d(TS " xg, TS'x,) +d(TS'xp, TS x,) (19)
5 .

<F

From Remark 18, we have

d(TS " xg, TS'x) +d(TS'xg, TS™'x,)
5 :

d(TS'x,, TS"'x,) <
(20)
Using (20) in (19), as results yield to
Y+ F(d(TS'x, TS*'xy)) < F(d(TS'x,, TS*'x,)). (21)
Letting i — o0 in (21), we get

Y+0<0,
(22)
Y <o,

which is a contradiction. Hence, d(TSx,, TS"'x,) — 0 as
i— 00.

Motivated by Morandi and Alimohammadi [16], we
prove the extended version of Theorem 5 using F-Kannan
mappings with a pair of two self-mappings in metric space.

Theorem 22. Let (X, d) be a complete metric space and T, S
: X — X be an F-Kannan mapping such that T is continu-
ous, injection, and subsequentially convergent. If A € [0, 1/2),
Y > 0and

d(Tx, TSx) +d(Ty, TSy)

Y + F(d(TSx, TSy))<F 5

, (23)

then S has a unique fixed point. Also, if T is subsequentially
convergent then for every x, € X the sequence of iterates {S'
x,} converges to this fixed point.

Proof. Assume x, € X be an arbitrary point in X. Let the
sequence {x;}., be defined by x,,, = Sx; and x; = S'x,, for
i=1,2,--.

21



Abstract and Applied Analysis

Using inequality (13), we obtain

d(Tx;, Tx;,,) =d(TSx;_, TSx;).

d(Txi_y, TSx;_,) +
2

F [d(Txi_l, TSx; ;) +d(Tx;, TSxi)]
2

>

Y+ F(d(Tx, Tx;,)) < F[ d(Tx; Tsxi)}

-7T.

F(d(Tx;, Txip)) <
(24)

Since F is strictly increasing, by using Remark 9, we
deduce

d(Tx_y, TSx;_,) + d(Tx;, TSx;)

d(Tx sz+1) : 2 : >
da(T T. d(Tx;, T 25)
d(TX Tle) ( Xi_1> xi);_ ( Xi> ‘xl+1)’
and hence
2d(Tx;, Txyyy) = d(Txp Txyyy) <d(Txiy Tx;), (26)
d(Tx;, Tx;py) <d(Tx;_p, Tx;).
By (F1), this implies that
F(d(Txp Txiy1)) < E(d(Txiops Tx;)).- (27)

Consequently, we get

Y + F(d(Tx;, Tx;,)) < F(d(Txi_p» Tx;)), (28)

SO,

F(d(Tx;, Txiyy)) < Fld(Txiy, Tx)] = 1o (29)

Similarly, we obtain

d(Txi1> Txiyy) = d(TSx;, TSx, ),

d(Tx;, TSx;) +d(Tx;,1, TSX;,)

2

F(d(T,01, Tx,,0) < F -,
(30)
which implies that

F(d(Txyy, Txyp,)) < Fld(Tx; Txpp )] = 1 (31)

Applying (29) in (31), we obtain
F(d(Txy Txi,p)) < Fld(Tx, Tx)] <27, (32)

by (F1).
Using induction and (29), we deduce

F(d(Tx;, Tx;y,)) < Fld(Tx,_p, Tx)] - Y. (33)

Letting i — oo in (33) and using property (F2) of F
results in

lim d(Tx;, Tx;,,) = (34)

n—-o00

By Lemma 21, we have d(Tx;, Tx
Denote d(Tx;, Tx;,,) =
F-Kannan mappings.

Using condition (
0, 1) such that

1) — 0 as i — co.
a; foralli=1,2,3,--- and i e N, for

F;) of the function F there exists k € (

lim (a;)"F(a;) = 0. (35)

n—00

From (33), for every i € N, we have

(o) F(a) < -+ < (@) Flay) =i T (@), (36)

(o) [F(o) = F(ayy)] < =i ()" <. (38)

On taking limit as i — co in (36), we get

lim i(a;)* = 0. (39)

i—00

From (39), there exist i, € N such that i(« ) <1, for all
i > i;, which follows that

a;<ikvizi. (40)

Therefore, Y, d(Tx;, Tx;,,) converges.
By (40), we prove that {Tx;} is a Cauchy sequence since
(X, d) is complete. Consider i, j € N such that j >,

d(Tx;, Txj) <d(Tx; Txypy) +d(Txy, Txy)
+d(Tx;p Tx;y3) + - +d(Tx;y, Tx;),
Soptay tapteta g,
j-1

Z d(Tx;, Tx;,,) < Z %< 1k,
- p

1

M8

I
—_

1

(41)

This shows that the series Y i""/¥ converges, which
implies that

limd(Tx;, Tx;) =0 (42)

1—00
So, Tx; = Tx; for every j>iin X. Hence, {Tx;} is a Cau-

chy sequence in X. The completeness of X ensures the exis-
tence of x* € X such that

d(Tx*,x*) = lim d(Tx Tx) 0,=limd(Tx;x*)=0.

i ]—’OO 1—00

(43)



By (43), it follows that x,,; — x™ as i — 00. By conti-
nuity of S and T, we have

x" = limx; = limx,,, = lim Sx; = Sx*,
1—00 1—00 1—00
(44)
R . .
x* =limx; = limx,,, = lim Tx; = Tx".
i—00 i—00 i—00

Since X is a complete metric space, there exists x* € X
such that

lim Tx; = x". (45)

i—00

Now, we prove that x* is a fixed point of T. Thus, by (iii)
of Definition 2, we have

d(x*, Tx*) <d(x", Tx;) + d(Tx;, Tx;py) + d(Tx;,q, TX™).
(46)
By Remark 18, it implies that
d(Tx;, Tx; d(Tx;,, Tx*
d(Tx;,, Tx*) < (I le); (T, Tx ) (47)
Applying (47) in (46), we obtain
d(x*, Tx") <d(x*, x*) + d(x", x")
(x*, Tx™) (48)

d(x*, Tx*
L 8= x);

Letting i — 0o and using Lemma 21 in above inequality,
we get

d(x*, Tx*) <d(x*, Tx;) + d(Tx;, Tx;,)

+ d(Tx;, Txyyy) +d(Txiy
2

<d(x", x*) +d(x", x7)
. d(x*, x") +d(x*, Tx")

Tx*)

>

>

That is, Tx™ = x*.

Next, we prove that x* is a unique fixed point of T.
Assume the contrary, i.e, there exists w* € Card{FixT} such
that x* # w*. Let Tx; — w* and w* is a fixed point of T.
Using Remark 18 and Lemma 21, it follows that x* = w*
which is a contradiction. Thus, T is a PO on X.

Moreover, T is a subsequentially convergent, {x;} has a
convergent subsequence, and there exists w*e€X and

{xi(k)};il so that klingo Xjr) =w". Since T is continuous and

Abstract and Applied Analysis

lim x; ) = w". (50)

k—oo
Due to the continuity of T, it implies that

k=00
By (45), we conclude that
Tw* =x". (52)
Using Remark 18 and (ii) of Definition 2, we get

d(Txi’ Txi+1 )

d(TSx;_;, TSx;),

(d(Tx;_y, TSx; ;) +d(Tx;, TSx;)),
(d(Tx; 1, TSx; ) + (T, Txiyy)), (53)
A
1-1

IN

A
A

IN

d(Tx;_y, TSx;_;).

Thus, using equation (13) and (iii) of Definition 2, we
have
Y + F(d(Tx;,,, Txiy)) = Y + F(d(TSx;, TSx,,))-
F(d(TSw*, Tw*)) < F(d(TSw", Tx;) + d(Tx;, Tx;,;)
+d(Tx, ), Tw")).

(54)
As F is sequentially increasing, this implies that
d(TSw*, Tw*) < d(TSw", Tx;) + d(Tx;, Tx;,,)
+d(Tx;,,, Tw"), d(TSw”, Tw*)
< d(TSw*, Ts"<k>x0) (55)

+ d(Ts"<k>x0, Tsi<k>+‘x0)

+ d(TSi(k)+1x0, Tw*) .

By Lemma 21 when TS'x, # TS*'x, for any i € N and
(13), we obtain

d(TSw*, Tsf<k>x0) < /\[d(Tw*, TSw")

+ d(TS"(k>’1x0, TS"(k)xO)}

(56)
<M(Tw", TSw")
A\ ikt
+A(m> d(Txy, Tx,),
. . PG
d(TsH" %, TSV, ) < <m> d(Tx,, Txy). (57)
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Using (56) and (57) in (55), we obtain
d(TSw*, Tw")

A k-1
<Ad(Tw®, TSw™) +A(—> d(Txy, Tx,)

1-A (58)

2 i(k) i}
+ (ﬁ> d(Tx,, Tx,) +d(Txi(k)+1, Tw )

which follows
d(TSw*, Tw™)

A i(k) A i(k)+1
< (m> d(Txy, Tx;) + (m) d(Tx,, Tx,)

+ (ﬁ) d(Tx,-(k)H, Tw*) .

(59)
Letting k — o0 in (59), we obtain
d(TSw", Tw*) = 0. (60)

Since T is injection, Sw* = w*. So, S has a fixed point. As
T is sequentially convergent, we conclude that {x;} con-
verges to the fixed point of S. Implying that Sx ¢ X and Tx
C X, then, there exists a point w* ¢ X such that w* € Sw* n
Tw*, that is, w* is a common fixed point of § and T. which
satisfies all fundamental property of Definition 16.

Dasgupta et al. [33] and Moradi and Alimohammadi
[16], in their work, considered an example in which Kannan
Theorem is not applicable. At the same time, generalised
Kannan mappings imply the existence of a fixed point for
the considered mapping. In this work, we use one more
example of this type which satisfies F-Kannan mapping.

Example 23. Consider the sequence X ={0} U {1,1/2,1/3,
---} and d be a Euclidean metric on X. Then, (X, d) is a com-
plete metric space. Let the mapping S: X — X be deter-
mined as follows:

$(0) =0,

1 1 61
O @
n n+1
for n>1. Let there exists A € [0, 1/2), so that for all x,y € X
condition (1) is satisfied although is not true for every A >0

, which is a contradiction, hence, Kannan’s theorem cannot
be applicable.

The mapping T : X — X be determined as

T(0) =0,

R

For all n > 1, T is continuous, injection, and subsequen-
tially convergent.

Now, let m, n € N, m > n. Then, we prove that (T, S) is an
F-Kannan mapping with respect to F,(z)=lnz+z and ¥
=1.

By using (KF2) with F,(z), we note that (23) becomes

d(TSx, TSy)

A(TSXTSy)~((d( T TSx)+d(Ty,TSy))/2) o -
[d(Tx, TSx) + d(Ty, TSy)]/2 -

e

(63)

To see this, we now calculate d(Sx, Ty) for x=1/m,y =
1/n,n>1.

d(TSx, TSy) = d(TS <%) TS (%) )

1 1 (64)
Sl )™ (™)
) I\ rs( 1)),

d(Tx, TSx) ; i <1T (m>Tls(m) > (65)
T3m (m+ )™
—a(r(1), rs(1)),

d(Ty, TSy)—‘i<1T<n> Tf(ﬂ)) (66)
S e

Applying (64),(65), and (66) in (63) becomes

|TS(1/m), TS(1/n)|
([T (1/m), TS(1/m)]| + |T(1/n), TS(1/n)[/6

. el TS(Um), TS(Um)|~[| T(1/m), TS(1/m)|+|T(1n),TS(Un)|/6] < p=T

(67)
By Theorem 22, S has unique fixed point that is x* = 0.

3. Some Applications

In this section, we will provide three applications of the the-
orem proved in the previous section.

3.1. Existence of a Solution for an Integral Equation. In this
section, as inspired by Nashine et al. [34], we establish the
existence of a solution for the following Volterra type integral
equation: This problem is equivalent to the integral equation

b
u(t)=h(t)+ J f(t,s,u(s))dsVt, s € [a, b], (68)

a

where f:[a,b]x[a,b]x R— R and h: [a,b] — R are
continuous functions. Let X =C([a,b],R) be the space
of all continuous functions defined on Cla, b]. Notice that
Cla, b] endowed with metric



. (69)

d(xy) =[x =y =A ma;flx(t) - Ay(t)

te(a,

is a complete metric space and X can be equipped with

the partial order < given by x,y € X, (x<y) = (x(¢)<y(¢

)and [|x|| o ¥l £1), or (x(¢) =y(t)) for all tela,b]. It

was shown by Nieto and Rodrigurz-Lopez [35] that (X,

X) is regular. For more applications to nonlinear integral

equations, one can see [36-38] and the references therein.
Now, we define a mapping S : X — X by

Sx(t) =h(t) + J f(t,s,x(s))ds, t € [a, b]. (70)

If x € [a, b] is a fixed point of S, then x € [g, b] is a solution
of (68).

We prove our results, by establishing the existence of a
common fixed point for a pair of self-mappings.

Theorem 24. Let S, T : C([a, b]) — C({a, b)) be self-maps of
a metric space (X, d) such that the following condition holds

(1) For allt,s € [a, b] and u € Cla, b], we have

b

ftos.u(t)) sf(t, o[ 6 w(r»dwh(t)) (1)

a

(2) There exists two functions f,, f, : [a, b)) x X x X — X
with constants  such that, for all t € [a, b, we have

[fi(t:sa)| = |55 b)[ <a(t,s)qlb—al,q<1 (72)
(3) For

sup Jb a(t,s)ds< 1 (73)

teab]J a

Then, integral equation (68) has a solution x* € C([a, b]
,R).

Proof. From (a), for all ¢ € [a, b], we have

b
Sx(t)=h(t) + J f(t,s,x(s))ds,Vt, s € [a, b].

a

< f<t, st f(s, 7, x())dT + h(s))ds +h(t)

a

(74)
=h(t)+ be(t, s, Sx(s))ds,Vt, s € [a, b]

= §(Sx)(t).

Therefore, Sx < §(Sx) for all x € [a, b).

Abstract and Applied Analysis

By using condition (2) of Theorem 24, we obtain

b
8(0) = (0] = | 116 5.5(9) =0, 5,9(9) s
b
< |ttt alastalc) -y, 09)

a

b
=wmn[mmmwswm».

a

Thus, d(Sx, Sy) < gd(x, y) for all x, y € X. Hence, x = x* is
a common fixed point of S and T, also a solution to integral
equation. Then, the integral equation (68) has a solution x*
€ C([a, b, R).

3.2. Existence of a Solution for Nonlinear Fractional
Differential Equation. The purpose of this section is to pro-
vide an application of Theorem 22 to get a common solution
of a nonlinear fractional differential equation, where we can
apply F-Kannan mappings in metric spaces.

Here, we investigates the Caputo derivative with the frac-
tional order of the nonlinear fractional differential equation.
This form of fractional derivative for a continuous function
f:[0,00) — R is given as

t

1
CDa £ = t— n—a-1¢rn ds,
( t)f() F(n—lx) a( S) f(S) S (76)
(n-1<a,n=[a]+1),
where [a] denotes the integer part of the real number « (see

[37, 39]). Also, the Riemann-Liouville fractional integral of
order « is given by

()= fy= |, -9 @0 7)

0

The Caputo fractional differential equation has several
applications in mathematics, i.e., in image processing, digital
data processing, electrical signal, acoustics, physics, and
probability theory (one can see in [40]). The following non-
linear fractional differential equation is inspired by Kilbas
et al. [41], Baleanu et al. [39], Budhia et al. [42], and Kanwal
et al. [37]:

ED%x(t) =f(t, x(t)), t € (0,1),1<a<2,
v (78)
x(0) =0, x(1) :J x(s)ds(0<v<1),

0

where “D? denotes the Caputo fractional derivative of order
aand f : [0,1] — X is a continuous function.

Consider the space X = C(I)(I = [0, 1]) of the continuous
function defined on I. Suppose that (X, ||) is a Banach space,
and I:=[0, T], T > 0. Let C(I, X) be the Banach space of all
continuous functions from I into X with the norm ||x|:=sup
|x(¢)|=L,t €l for x € C(I, X) (one can see in [43]).
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This space defines the metric by

d(x,y) = tz;%{lx(f) —y®)l}h (79)

Vx, y € X. This is a complete metric space.
Nonlinear fractional equation (78) can be written as

x(t) = %j (£ =9 f (s x(s))ds

0

- (2_5%‘[ (1 —s)“"lf(s,x(s))ds

0

+ (2—\/2;)1“@0Jv Us (s=2)"'f(z x(z))dz | ds.

(80)

A function x € C(I, X) is a solution of the fractional dif-
ferential integral equation (80) if and only if x is a solution
of the nonlinear fractional differential equation (78).

Now, we prove the following theorem.

Theorem 25. Suppose the following condition hold:

(i) f e C(IxX,X) is sequentially continuous

(ii) There exists a continuous function f : [0, 1] x R —
R,, such that

F(t.x(9) ~ f(Ey(s)| <€ TLx(s) - p(5)]  (81)

for all t € [0, 1] and for all x, y € X such that d(x(t), y
(t)) > 0 and a constant L with a constant x € L, such
that

Lk <1,
t*(2=v?) (a+ 1)+ 2t (a+ v +1) (82)

" 2- V) (@)a(a+ 1)

Then, fractional differential equation (78) has a common
solution as a fixed point x* € C(I, X).

Proof. Let us define T, S : C(I) — C(I) by

1 t
WJO

2t ! a-1
—mj (1=95)""f(s, x(s))ds

0

TSx(t) = (t—s)“’lf(s,x(s))ds

Ty |, 79 e e s

(83)

for t € [0, 1], then TS is sequentially continuous. Suppose that

S

Sx(t) = J (s—2)*'f(z,x(2))dz, (84)

0

this implies that S € TS and S posses a fixed point x* € T'S. To
prove the existence of fixed point of TS, we prove that TS is
sequentially and contraction. To show T'S is sequentially con-
tinuous, let TSx # TSy, for all x, y € [0, T]. By condition (ii),
we have

t

|TSx - TSy| = ‘% L (t =)' f(s, x(s))ds

2t 1

- 2-v)I(a) ), (1- S)ailf(&x(s))ds

. ﬁ ’ U (s— 2" f(z x(z))dz} ds

0 0

1 ! a-1
- mj (£ =9 (s (5))ds
2t 1

T2 ),

- oo ). || 2 ez a

0 0

(1=9)""f(s5(s))ds

>

< ﬁj (£ )£ (5,%(5)) — £ (5, 9(5)) | ds

2t

* ey ), (197 6 2(9) ~ o 39l

. ﬁj U (s-2)*"f(e:x(2))

t

—f<z,y<z>>|dz} ds, < % [ (=9 1x(9) =yt

Jo

2t ! a-1
e |, (9 o) yolas
2t v : a-1 _ s
+ o). || =2 e (o] as
eirL ! a-1
= el (9

2te 'L ! el
+ m Hx_)’HooL (1-5)"ds

g [l

e YL 2te’ 'L
< +
al(0)  (2-v?)al(«)
. 2te” T Lyt .
2= vaasr DI e
[ 2t
<e 'L
=¢ Mo T 2=Vl (@)
. 2tvett ] .
2= a(asr @) e

[14(2 = v?) (@+ 1) + 2t (@ + v +1)
Q2=-v)I'(@)a(a+1)

< Ifx -

1% =Yl cor

(85)
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This implies that
| TSx, TS|, <e "Lx||x - y| (86)
Since Lx < 1, we have
1785, TSyl < €T [lx =yl (87)
Thus, for each x, y € X, we have
d(TSx, TSy) < e "M(x, y). (88)

Taking logarithms on both sides of (88) using F,(z) =
In (z) and the property of F, we get

In (d(TSx, TSy)) <In (e""M(x, y)). (89)
Equivalently to
Y+ F(d(TSx, TSy)) < F(M(x, y)). (90)

For Lk €[0,1), "> 0, and M(x, y) is an F-Kannan map-
ping. Therefore, T'S is a contraction mapping on X. Since all
the conditions of Theorem 25 are satisfied, therefore, there
exists x* € C(I) a common fixed point of T and S, that is,
x* is a solution to fractional nonlinear differential equation
(78).

3.3. Existence of Common Solution of Ordinary Differential
Equations for Damped Forced Oscillations. This section
investigates the solution of the forced damped oscillation dif-
ferential equations problem in the setting of metric spaces.
Nieto and Rodriguez-Lépez [35] initiated the proof of the
existing solution of an ordinary differential equation. Since
then, several authors are interested in this line of research.
In details, one can see the literature in [41, 44-48] and the
references therein.

In 2020, Shoib et al. [49], considered the forced damped
oscillation differential problem of an object of mass m moves
to and fro on the x-axis around an equilibrium position x = 0.
The object has position x(t) at time ¢, it undergoes the
applied force f(t) such that

d*x dx
mW+bE+kx=f(t). (91)

where m, b, and k are constant positive numbers. If the intial
conditions are assumed to be

x(0)=0,x"(0)=0. (92)

Problem (91) can be written as

x(t) = JZ G(t,s)K(t, x(s))ds,Vt,s € [0, T}, (93)

where T > 0. Let X =C(I), I =0, T].

Abstract and Applied Analysis

The green function for forced damped oscillation is
defined by

—se ) 0<s<t<T,
G(t,s) = (94)
T

where 7 can be written in terms of b, k, and m.

Inspired by Shoaib et al. [49] and Gupta et al. [45], we
find the common solution of a forced damped oscillation dif-
ferential equation using the fixed point method.

Theorem 26. Suppose the following assumption hold:
(i) There exists a continuous function K : [0, T]> — [0,
00), such that

|K(t,s,x(t)) — K(t, s y(t))| < e —y, (95)

fort,s€[0,T), Y >0andx,y€R, where,

In [(x-y)* +1] _ d(Tx, TSx) +d(Ty, TSy) (%)
x-y 2

(ii) There exist a functon G : I x I — R, such that

T
supj G’ (t,s)ds <
te[0,T]J 0

(97)

=l =

Then, problem (93) has a fixed point x* € X, which is a
solution of (91).

Proof. Let TS:C'([0,1]) — C'([0,1]) be an operator
defined by

TSx(t) = JO G(t,s)K(t, s, x(s))ds. (98)

Consider x > y, for all x,y € C(I) and (93), we have
ITSx(t) - TSy(1)

T
= sup J G(t,s)[K(t,s,x(s)) = K(t, 5, y(s))]ds,
te0,1]J o (99)

<o [ erair s BIEE -y +1]
_ze[OE]Jo ot )\/ x(s) = y(s) &

Recall Cauchy-Schwartz inequality defined by

(i |xiyi|>2 . (i |x,»|2> (i W).

(100)
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Using (99) in (100), we obtain

JT TG \/ln [(x(s) - y(s))* +1]

0 x(s) = y(s)
o 112
() ([ ]r ol =p)*+1]
<(J,¢09) (], V X(5) -9
(101)
Then,
T 1
G*(t,s) = =. 102
| cea=7 (102)
The second integral gives
JT [e-” In [(x(s) = y(s))” + 1]] i
: EORSTE 103)

v 10 [0 @)
: () ~>()

Using (102) and (103) in the R.H.S of (101), we get

(N[ or I [@eep? 1]\
_<T> ( ) T) . (104)

Hence, from (99),

xT.

)?+1]
|

In [(d(x,y))2 + 1]'

Ty (105)

d(TSx, TSy)<e "

Taking logarithms on both sides of (105) using F,(z) =
In (z) and the property of F, we get

In (d(TSx, TSy)) <In eY’\/ % (106)
This implies that
Y + F(d(TSx, TSy)) < F \/% (107)

Let us choose a map Sx = In [(d(x, y))* + 1], it is obvious,
SeTsS.

Thus, we conclude that for x > y all conditions of Theo-
rem 26 are satisfied. Hence, TS has a unique common fixed
point x* which is the solution of integral equation (93).
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