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ABSTRACT. In this paper, we prove a common fixed point theorem in a probabilistic metric space 
by combining the ideas of pointwise -weak commutativity and reciprocal continuity of mappings 
satisfying contractive conditions with an implicit relation.  
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1. Introduction 
 
In 1942, K. Menger [6] introduced the notion of probabilistic metric space (briefly, PM-
space) as a generalization of metric space. Such a probabilistic generalization of metric 
spaces appears to be well adapted for the investigation of physical quantities and 
physiological thresholds. It is also of fundamental importance in probabilistic functional 
analysis. The development of fixed point theory in PM-spaces was due to Schweizer and 
Sklar [14, 15]. 
In fixed point theory, contraction mapping theorems have been always an active area of 
research since 1922 with the celebrated Banach contraction fixed point theorem [1]. 
Sehgal [16] initiated the study of contraction mapping theorems in PM-spaces. 
Subsequently, several contraction mapping theorems for commuting mappings have been 
proved in PM-spaces; see for instance [5], [9], [18], [19], [20].  
The notions of improving commutativity of mappings have been extended to PM-spaces 
by various mathematicians. For example, Singh and Pant [21] extended the notion of weak 
commutativity (introduced by Sessa [17] in metric spaces), Mishra [8] extended the notion 
of compatibility (introduced by Jungck [3] in metric spaces) and Ćirić and Milovanović-
Arandjelović [2] extended the notion of poinwise R -weak commutativity (introduced by 
Pant [11] in metric spaces) to PM-spaces. These mathematicians have also proved some 
common fixed point theorems for contraction mappings by applying them in PM-spaces.  
 Most of the common fixed point theorems for contraction mappings invariably require a 
compatibility condition besides assuming continuity of at least one of the mappings. In 
1999, Pant [12] noticed these criteria for fixed points of contraction mappings and 
introduced a new continuity condition, known as reciprocal continuity and obtained a 
common fixed point theorem by using the compatibility in metric spaces. He also showed 
that in the setting of common fixed point theorems for compatible mappings satisfying 
contraction conditions, the notion of reciprocal continuity is weaker than the continuity of 
one of the mappings.  
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Also, the notion of pointwise R-weakly commuting mappings made the scope of the study 
of common fixed point theorems from the class of compatible to the wider class of 
pointwise R -weakly commuting mappings. Using the ideas of pointwise -weak 
commutativity and reciprocal continuity of mappings, Kumar and Chugh [4] established 
some common fixed point theorems in metric spaces. In 2005, Miheţ [7] established a 
fixed point theorem concerning probabilistic contractions satisfying an implicit relation.  

R

The purpose of this paper is to prove a common fixed point theorem by combining the 
ideas of pointwise -weak commutativity and reciprocal continuity of mappings 
satisfying contractive conditions with an implicit relation. Our result is an improved 
extension of the result of Kumar and Chugh [4] to PM-spaces.  

R

  
 

2. Preliminaries 
Definition 2.1[15] A mapping  is called a distribution function if it is non-
decreasing and left continuous with 

+→ RRF :
( 0) =∈ Finf Rt t  and .1)( =∈ tFsup Rt  

We shall denote by  the set of all distribution functions while ℑ H  will always denote 
the specific distribution function defined by  
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Definition 2.2[15] A PM-space is an ordered pair , where ),( FX X  is a nonempty set 
of elements and  is a mapping from F XX ×  to ℑ , the collection of all distribution 
functions. The value of F  at XXvu ×∈),(  is represented by . The functions 

 
are assumed to satisfy the following conditions: 

v,uF

vuF ,

(PM1)  
  
for all   iff 1)(, =tF vu 0>t ;vu =  

(PM2)   ;0)0(, =vuF

(PM3)   ;)()( ,, tFtF uvvu =

(PM4)   if and then  1)(, =tF vu  
1)(, =sF wv   

1)(, =+ stF wu  

              for all  and    Xwvu ∈,, .0, ≥st
 
Definition 2.3[15] A mapping ]1,0[]1,0[]1,0[: →×Δ  is called a triangular norm 
(briefly, t -norm) if the following conditions are satisfied:  
(i)    for all  

 
aa =Δ )1,(

  
;]1,0[∈a

(ii)      );,(),( abba Δ=Δ
(iii)  

 
for  ),(),( badc Δ≥Δ ;, bdac ≥≥

(iv)  
  

));,(,()),,(( cbacba ΔΔ=ΔΔ

        Example 2.1. The following are the four basic -norms: 
for all  ].1,0[,,, ∈dcba

t
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(i) The minimum t -norm, MΔ , is defined by  

),,(),( yxminyxM =Δ  

(ii) The product  t -norm, PΔ , is defined by 

,.),( yxyxP =Δ  

(iii) The Lukasiewicz  t -norm, LΔ , is defined by  

),0,1(),( −+=Δ yxmaxyxL  
(iv) The weakest t -norm, the drastic product, DΔ , is defined by 
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⎪
⎨
⎧ =

=Δ
otherwise.
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yxD

0
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),(  

As regards the pointwise ordering, we have the inequalities 
.MPLD Δ<Δ<Δ<Δ  

 
Definition 2.4[15] A Menger space is a triplet ),,( ΔFX , where  is a  PM-
space and -norm  is such that the inequality 

),( FX
t Δ

)}(),({)( ,,, sFtFstF wvvuwu Δ≥+  

holds for all  and all .  Xwvu ∈,, 0, ≥st
Every metric space  can be realized as a PM-space by taking ),( dX ℑ→× XXF :  

defined by  for all  in  )),()(, vudtF vu (tH −= vu, .X
 
Definition 2.5[21] Two self-mappings  and  of a PM-space  are said to be 

weakly commuting if  for each 

A

,FAz

S
)t

),( FX
()(, tF SzSAzASz ≥ z  in X  and  .0>t

Every pair of commuting self-maps is weakly commuting, but the reverse is not true. For 
this, refer to example in [10].   
Definition 2.6[8]  Two self-mappings A  

nSAu

→

and  of a PM-space  will   be called 

compatible if and only if  for all , whenever  is a 

sequence in  such that  for some 

S
1→

),( FX
0)(, tF

nASu

zSuAu nn ,

>t }{ nu

X z  in . X
Definition 2.7[2] Two self-mappings A  and  of a PM-space  are said to be 
pointwise 

S ),( FX
R -weakly commuting if given  in z X  there exist  such that 

 for  

0>R
)/(,, RtFF SzAzSAzASz ≥)(t .0>t

 Clearly, every pair of weakly commuting mappings is pointwise -weakly commuting 
with   

R
.1=R

 
Remark 2.1. It is obvious that  and  can fail to be pointwise A S R -weakly commuting 
only if there is some  in z X  such that SzAz =   but ,SAzASz ≠  that is, only if they 
posses a coincidence point at which they do not commute. This means that a contractive 
type mapping pair cannot posses a common fixed point without being pointwise R -
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weakly commuting since a common fixed point is also a coincidence point at which the 
mappings commute, and contractive conditions exclude the possibility of two types of 
coincidence points. Also, compatible mappings are necessarily pointwise R -weakly 
commuting since compatible mappings commute at their coincidence points. However, 
pointwise R -weakly commuting mappings need not to be compatible as shown in the 
following example: 
 
Example 2.2.  Let  and let  be defined by  ]20,2[=X F
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Then  is a probabilistic metric space. Let  and S  be self-mappings of  
defined as 
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It can be verified that A  and  are pointwise -weakly commuting mappings but not 
compatible. Also, neither 

S R
A  nor   is continuous, not even at their coincidence points. S

 
 The concept of reciprocal continuity of mappings in PM-spaces is as follows: 
Definition 2.8. Two self-mappings  and  of a PM-space  will be called 

reciprocally continuous if  and , whenever  is a 

sequence such that   for some 

A
→

S ),( FX
AzASun

zSun →
SzSAun → }{ nu

Aun , z  in . X
 If A  and  are both continuous, then they are obviously reciprocally continuous but 
converse is not true. Moreover, in the setting of common fixed point theorems for 
compatible pair of mappings satisfying contractive conditions, continuity of one of the 
mappings 

S

A  and  implies their reciprocal continuity but not conversely. S
 
Lemma 2.1 [20] Let  be a sequence in a Menger space}{ nu ( )MFX Δ,, . If   there 

exists a constant   such that )1,0(∈h
      

 ...3,2,1),(,, 11
=≥

−+
ntFF

nnnn uuuu )(ht

}then {  is a Cauchy sequence  in nu X . 
 
3. Implicit Relation 
In [7], Mihet established a fixed point theorem concerning probabilistic contractions 
satisfying an implicit relation. This implicit relation is similar to that in [13]. In [13], Popa 
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used the family  of implicit real functions to find the fixed points of two pairs of semi-

compatible mappings in a -compatible topological space. Here,  denotes the family 

of all real continuous functions  satisfying the following properties: 

4F
d 4F

RRF →+ 4)(:
  

  There exists  such that for every  with )( hF 1≥h 0,0 ≥≥ vu
           or   we have . 0),,,( ≥vuvuF ,0),,,( ≥uvvuF hvu ≥

)( uF   for all . 0)0,0,,( <uuF 0>u
 
In our result, we deal with the class Φ  of all real continuous functions 

, non-decreasing in the first argument and satisfying the following 
conditions: 

RR →+ 4)(:ϕ

I)(3.   For  , 0, ≥vu 0),,,( ≥vuvuϕ   or  0),,,( ≥uvvuϕ   implies that  .  vu ≥
).3( II  0)1,1,,( ≥uuϕ   for  all . 1≥u

 
Example 3.1. Define 43214321 ),,,( dtctbtattttt +++=ϕ , where 

 with  Rdcba ∈,,, 0=++ dcb ,0,0+a , 0>+>+> bacaa  and 
 Then  .0>+ da .Φ∈ϕ  

Example 3.2. Define 43214321 861214),,,( tttttttt −+−=ϕ . Then .Φ∈ϕ  
 

4. Common Fixed Point Theorem 
 
Before proving the main result, we give following lemma: 
 
Lemma 4.1. Let ( )MFX Δ,,  be a complete Menger space. Further, let  and 

 be pointwise 
),( SA

),( TB R -weakly commuting pairs of self-mappings of X  satisfying  
)1.1.4(    

  
        

);()(),()( XSXBXTXA ⊆⊆

)2.1.4(  ;0))(),(),(),(( ,,,, ≥htFtFtFhtF TvBvSuAuTvSuBvAuϕ           

)3.1.4(  ,0))(),(),(),(( ,,,, ≥tFhtFtFhtF TvBvSuAuTvSuBvAuϕ          

for all  , ,   and for some Xvu ∈, 0>t )1,0(∈h Φ∈ϕ . Then the continuity of one 

of the mappings in compatible pair  or (  on ), SA( ), TB ( )Δ,, FX  implies their 
reciprocal continuity. 
 
Proof. First, assume that  and  are compatible and  is continuous. We show that 

 and  are reciprocally continuous. Let  be a sequence such that  and 

 for some 
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that is, .0))(),(),(),((
12222121222212 ,,,, ≥
++++++

htFtFtFhtF
nnnnnnnn vvvvvvvvϕ  

Using ( ).3 I , we get  

  
  

imilarly, by (4.1.3) and then by using , we have 

  
any and  we have 

Hence by Lemma 2.1, s a Cauchy sequence in  Since is complete, 
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.

 S  
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Com ibility of A  and S  gives 
22 ,F
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Using , we have  for all  This gives 1).3( II )(, ≥tF AzAAz 0>t . 1)(, =tF AzAAz  
implying AzAAz =  and .AzSAAzAz ==

 we have that  
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This c pletes the proof of the theorem.  om

ension of the result of Kumar and Chugh [4, 
 
Remark 4.1. Theorem 4.1 is an improved ext
Theorem 3.2] to PM-spaces.  
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