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Summary One of the most common melanoma-related CDKN2A mutations reported in North America is the V126D mutation. We examined
nine markers surrounding CDKN2A in three American and four Canadian families carrying the V126D mutation. All seven families had a
haplotype consistent with a common ancestor/founder for this mutation. In addition, the mutation appears to have originated 34–52
generations ago (1-LOD-unit support interval 13–98 generations). © 2001 Cancer Research Campaign http:///www.bjcancer.com 
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Cutaneous malignant melanoma (CMM) is a potentially fatal form
of skin cancer with a complex aetiology (Chin et al, 1998).
Approximately 10% of melanomas arise in individuals with a
familial predisposition to the disease, and a subset of these
kindreds has an inherited susceptibility for their melanoma. The
most common genetic lesion comprises a germline mutation in the
CDKN2A gene, which encodes two unrelated cell cycle regulatory
proteins: p16INK4A and p14ARF (Serrano et al, 1993; 1995; Zhang 
et al, 1998; Pomerantz et al, 1998). Mutations that affect the func-
tion of p16INK4A occur in approximately 20% of melanoma-prone
families worldwide; the mutation detection frequency rises to 
≥ 50% in kindreds with more than 6 CMM patients (Kefford et al,
1999; Goldstein and Tucker, 2001). 

Many different germline CDKN2A mutations have been identi-
fied in melanoma-prone families from North America, Europe,
and Australasia. The majority of mutations so far identified are
missense mutations scattered throughout the CDKN2A coding
region. Although some mutations have been observed only once,
numerous mutations have repeatedly been found in different fami-
lies. Haplotype analyses of common recurrent mutations from the
same geographic areas (e.g. 225del19 from the Netherlands,
113insArg from Sweden, G-34T from Canada) (Gruis et al, 1995;
Borg et al, 1996; Liu et al, 1999) or geographically diverse areas
(e.g. M531, 23ins24, G101W) (Pollock et al, 1998; Liu et al, 1999;
Ciotti et al, 2000) revealed that the vast majority of these recurrent
mutations result from a single genetic origin, i.e. the mutations
derive from common founders or ancestors. 

One of the most common CDKN2A mutations reported in North
America is the V126D mutation. This mutation inhibits the
catalytic activity of the cyclin D1/CDK4 and cyclin D1/CDK6
complexes in vitro (Ranade et al, 1995). It was also shown to be
temperature sensitive for binding to CDK4 and CDK6 in vitro, for
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inhibiting cyclin D1-CDK4 in a reconstituted pRb-kinase assay,
and for increasing the proportion of G1-phase cells following
transfection (Parry and Peters, 1996). Previous examination of
three American melanoma-prone families with this mutation
suggested the possibility of a common haplotype (Goldstein et al,
2000). We have now examined additional markers in these three
families, including marker D9S974, a marker extremely close to
the CDKN2A gene (Randerson-Moor et al, 2001). In addition, we
have examined nine markers surrounding the CDKN2A gene in
four Canadian families carrying the V126D mutation. The results
show that all seven families have a haplotype consistent with a
common founder for this mutation. In addition, although based
on only seven families, the mutation appears to have originated
approximately 34–52 generations ago (1-LOD-unit support
interval 13–98 generations). 

SUBJECTS AND METHODS 

Families 

Details about the seven North American families have been
presented previously (Hussussian et al, 1994; Goldstein et al,
2000; Liu et al, 1999). For all participants, written informed
consent was obtained prior to participation under Institution
Review Board approved protocols. Briefly, the four Canadian fami-
lies had an average of three melanoma patients per family (Table 1).
In addition, patients from two of the families had multiple primary
melanomas. The three American families all had patients with
multiple primary melanomas; two of the families had at least one
patient with pancreatic cancer. Although six of the seven families
had German/English ancestries, little is known about the ancestral
pathway for melanoma in these families prior to their arrival in
North America. 

Genotyping 

Nine markers were genotyped for the analysis to determine which
alleles from loci flanking CDKN2A were transmitted with CMM
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Table 1 North American families with V126D CDKN2A germline mutation. Family ancestry, number of CMM patients, presence of multiple primary melanoma
tumours, presence of pancreatic cancer, number of tested V126D mutation carriers, and number of family members genotyped for haplotype analysis. American
families: K, J, L; Canadian families: 101, 102, 103, 104

Families American Canadian 

K J L 101 102 103 104 

Family ancestry English/German/ German/ German/Dutch/ German/ Unknown German/ German/English/ 
Scandinavian English English English English French

No. of members w/CMM 5 6 10 3 2 4 3 
Multiple primaries (Y/N) Y Y Y N Y N Y 
Pancreatic cancer (Y/N) Y (n = 3) N Y (n = 1) N N N N 
No. of tested V126D carriers 6 7 5 2 1 1 2 
No. of genotyped subjects:* 6 5 3 3 1 1 2 
No. affected 3 3 3 2 1 1 2 
No. unaffected 3 2 0 1 0 0 0 

*Used in haplotype analysis.
in each of the families: IFNA, D9S736, D9S1749, D9S974,
D9S942, D9S1748, D9S1604, D9S171, and D9S126. Markers
D9S1749 (approximately 0.0105 M or 1.05 cM distal) and
D9S974 (approximately 0.012 cM proximal) were the closest
flanking markers to exon 2 of the CDKN2A gene (Randerson-
Moor et al, 2001). Allele sizes for all markers are comparable with
those from haplotype studies of Ciotti et al (2000) and Pollock et al
(except for D9S736 and D9S126) (1998). 

Dating the mutation 

To estimate when the V126D mutation originated, we used a
maximum likelihood (MLE) method developed by D. Goldgar
(Neuhausen et al, 1996, 1998) and previously applied to G101W
(Ciotti et al, 2000). Briefly, the joint likelihood of the V126D
haplotypes was written as a function of the recombination fraction
between the disease and each marker, the number of generations
(G) since the mutation arose, and the mutation rate (0.0006 for all
markers except D9S1749 [0.01] and D9S942 [0.002]) and allele
frequencies at each marker locus (Ciotti et al, 2000) (Table 2). The
MLE method was used to find the value of G that best fitted
the pattern of haplotype sharing at the nine marker loci.
When haplotypes could not be determined with certainty, all
possible haplotypes consistent with the observed multilocus geno-
types were considered in the analysis. Approximate support inter-
vals were calculated by finding the value of G on either side of the
most likely value that had a ≥ 10-fold decrease in likelihood. 

RESULTS 

Haplotype analysis using 9 polymorphic markers spanning the
CDKN2A locus was performed on index cases and additional
family members (when available) to determine whether carriers
from the seven families harbored the same mutation identically by
descent. Table 3 shows the disease haplotypes or genotypes for the
seven families. Both alleles are indicated for markers for which
segregating alleles could not be unambiguously determined. All
seven families showed a haplotype or genotype consistent with a
single genetic origin for the V126D mutation. The D9S1749-
D9S1604 haplotype 16/17–6–11–9–2 appears to be common
across all families, after allowing for recombination over time.
One American family (K) had the 5 allele at D9S974, rather than
the 6 allele seen in all other families. D9S1749, previously shown
to vary in allele size because of replication slippage resulting in the
British Journal of Cancer (2001) 85(4), 527–530
loss or gain of one or more repeat units during meiosis (Pollock et
al, 1998), showed either the 16 or 17 allele co-segregating in all
but one family. Family 103 showed allele 14 co-segregating with
CMM. Allowing for replication slippage in D9S1749, families J
and L shared a common haplotype from IFNA to D9S126. It was
not possible to further assess the extended sharing of the disease
related haplotype in other families because the co-segregating
alleles could not be unequivocally determined. 

Results from the MLE method suggested that the V126D muta-
tion originated approximately 34–52 generations ago (1-LOD-unit
support interval 13–98 generations) or approximately 680–1040
years ago (1-LOD-unit support interval 260–1960 years) using a
20-year generation interval or 1020 to 1560 years ago (1-LOD-unit
support interval 390–2940 years) using a 30-year generation
interval. The maximum likelihood estimates for alleles 16 and 17
of D9S1749 were equivalent; thus a range in the estimate of the
mutation origin is presented (e.g. 34–52 generations). 

DISCUSSION 

The V126D mutation appears to have originated from a common
founder or ancestor, as is the case with most recurrent CDKN2A
mutations studied to date. Only 23ins24, a 24 base-pair duplica-
tion, has been shown to have multiple origins (Pollock et al, 1998),
probably due to the inherent instability of the wild type CDKN2A
5’ tandem repeat region. Although there are many recurrent
CDKN2A mutations, only two – G101W and 113insArg – have
been evaluated to determine their ages of origination. Using the
same MLE methods as was used in the current study, Ciotti et al
(2000) and Hashemi et al (2001) concluded that the G101W and
113insArg mutations both originated approximately 100 genera-
tions ago. Using the same maximum likelihood estimate method,
we estimated that the V126D mutation originated approximately
34–52 generations ago (1-LOD-unit support interval 13–98 gener-
ations). Given the relatively small number of families in the
present study and the sensitivity of the MLE method to the marker
mutation rates, we also employed an approach proposed by
Neuhausen et al (1996) to evaluate the variability in the estimated
age of the mutation. The age of origin for the mutation was re-
estimated assuming marker mutation rates that were an order of
magnitude (i.e. 10x) lower and higher (Neuhausen et al, 1996)
than the values used in the original analysis. The estimated age of
the V126D mutation was reduced to 9 generations when a 10-fold
increase in marker mutation rates was assumed and 71 generations
© 2001 Cancer Research Campaign
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Table 2 Allele frequencies at each marker locus (from Ciotti et al, 2000) for dating the mutation 

Allele No. IFNA D9S736 D9S1749 D9S974 D9S942 D9S1748 D9S1604 D9S171 D9S126 

1 0.08 0.06 0.000 0.064 0.012 0.00 0.44 0.280 0.01 
2 0.15 0.09 0.000 0.038 0.050 0.00 0.56 0.073 0.11 
3 0.30 0.09 0.000 0.038 0.025 0.08 0.050 0.11 
4 0.11 0.42 0.000 0.090 0.025 0.16 0.061 0.21 
5 0.08 0.19 0.000 0.103 0.138 0.11 0.305 0.17 
6 0.22 0.15 0.000 0.180 0.100 0.06 0.012 0.29 
7 0.06 0.012 0.220 0.025 0.15 0.085 0.10 
8 0.001 0.090 0.160 0.21 0.050 
9 0.001 0.100 0.088 0.12 0.024 

10 0.001 0.013 0.038 0.10 0.060 
11 0.050 0.064 0.075 0.01 
12 0.025 0.012 
13 0.025 0.038 
14 0.075 0.001 
15 0.087 0.000 
16 0.062 0.012 
17 0.062 0.125 
18 0.075 0.025 
19 0.087 0.038 
20 0.012 0.000 
21 0.025 0.000 
22 0.062 0.000 
23 0.075 0.013 
24 0.038 
25 0.050 
26 0.025 
27 0.050 
28 0.025 
29 0.001 
30 0.012 
31 0.012 
32 0.050 

Table 3 North American families with V126D CDKN2A germline mutation. Haplotype analysis for 9p markers 

Haplotype/genotype for each family 

Familiest American Canadian 

K J L 101 102 103 104 

Markers 
IFNA 6 6 6 6 3,6 3,6 3 
D9S736 4 1 1 1,4 1,5 4 4,5 
D9S1749 17,18* 16** 17 16 16,25 14 16 *** 

D9S974 5 6 6 6 6 2,6 6,7 
D9S942 11 11 11 11 8,11 11,19 11,16 
D9S1748 9 9 9 9 7,9 8,9 5, 9
D9S1604 2 2 2 2 1,2 1,2 2
D9S171 5 1 1,5 1 1,9 1 1 
D9S126 4,6 4 4 6 4,6 4,6 4,6 

*Both alleles are indicated for markers for which segregating alleles could not be unequivocally determined. 
**Alleles that are part of the common disease-related haplotype are shown in boldface. 
***Line between D9S1749 and D9S974 represents location of V126D mutation.
when a 10-fold decrease in rates was applied (combined 1-LOD-
unit support interval 3–145 generations). These additional findings
in conjunction with the original results suggest the possibility of a
more recent origin for V126D relative to that seen for the G101W
and 113insArg mutations. We cannot, however, preclude a more
remote origin based on the greater imprecision in the estimated age
resulting from the smaller numbers of families available for the
current study. 
© 2001 Cancer Research Campaign
American family K had the 5 allele at D9S974, rather than the 6
allele seen in all the other families. Since D9S974 is the marker
closest to the V126D mutation (0.012 cM), a recombination event
so close to the mutation would likely indicate a remote origin for
the mutation. Replication slippage, conversely, does not neces-
sarily imply an ancient origin for the mutation. Unfortunately it is
not possible to determine whether the 5 allele, only 2 base pairs
smaller than the consensus 6 allele, resulted from recombination or
British Journal of Cancer (2001) 85(4), 527–530
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replication slippage. Thus, this allele change provides little addi-
tional evidence for helping determine the origin of the V126D
mutation. 

Most recurrent CDKN2A mutations observed in North America
can be traced back to a European country or region of origin. For
example, the recurrent M53I mutation, which has been found at
high frequency in North America, Great Britain, and Australia,
appears to have originated in Great Britain (Pollock et al, 1998;
Liu et al, 1999). Similarly, the G101W mutation, which is very
common in the United States, appears to have originated in south-
western Europe; it is the most common mutation detected in
France and Italy (Ciotti et al, 2000; Soufir et al, 1998; Ghiorzo 
et al, 1999; Ruiz et al, 1999). In contrast, the V126D mutation does
not appear at high frequency in any other countries besides the
United States and Canada. The mutation has been observed in
Australia, France and Italy but only rarely in each of these coun-
tries. This phenomenon may reflect selective mutation testing in
the various countries or it may be related to the origination of this
particular mutation. For example, the major CDKN2A mutation
testing from Great Britain to date has occurred in Northcentral
England and Scotland where the V126D mutation has not been
observed (MacKie et al, 1998; Newton Bishop et al, 1999). Also,
very little data from Germany on CDKN2A mutation testing has
been published. Testing in other areas of Great Britain, Germany
or other parts of continental Europe, however, might reveal the
mutation. Although six of the seven families immigrated to North
America from Germany and England, the ancestral pathway for
melanoma in these families cannot be determined. Additional
families from North America as well as from other geographic
areas may help determine the geographic origin for this recurrent
yet puzzling CDKN2A mutation. 

ACKNOWLEDGEMENTS 

We wish to thank the participating families, whose generosity and
cooperation have made this study possible. We thank Mary Fraser,
Laura Fontaine, and Deborah Zametkin for nursing support. We
acknowledge the Biomedical Supercomputing Center of the NCI-
Frederick Cancer Research and Development Center for allocation
of computing time and staff support. 

REFERENCES 

Borg A, Johansson U, Johansson O, Hakansson S, Westerdahl J, Masback A, Olsson
H and Ingvar C (1996) Novel germline p16 mutation in familial melanoma in
southern Sweden. Cancer Res 56: 2497–2500 

Chin L, Merlino G and DePinho RA (1998) Malignant melanoma: modern black
plague and genetic black box. Genes Dev 12: 3467–3481 

Ciotti P, Struewing JP, Mantelli M, Chompret A, Avril M-F, Santi PL, Tucker MA,
Bianchi-Scarra G, Bressac-de Paillerets B and Goldstein AM (2000) A single
genetic origin for the G101W CDKN2A mutation in 20 melanoma-prone
families. Am J Hum Genet 67: 311–319 

Ghiorzo P, Ciotti P, Mantelli M, Heouaine A, Queirolo P, Rainero ML, Ferrari C,
Santi PL, De Marchi R, Farris A, Ajmar F, Bruzzi P and Bianchi-Scarra G
(1999) Characterization of ligurian melanoma families and risk of occurrence
of other neoplasia. Int J Cancer 12: 441–448 

Goldstein AM, Struewing JP, Chidambaram A, Fraser MC and Tucker MA (2000)
Genotype-phenotype relationships in American melanoma-prone families with
CDKN2A and CDK4 mutations. J Natl Cancer Inst 92: 1006–1010 

Goldstein AM and Tucker MA (2001) Familial melanoma and its management. In:
Genetic Predisposition to Cancer, 2nd Edition, Eeles R, Easton D, Eng C and
Ponder B (eds) (in press). Arnold: London 
British Journal of Cancer (2001) 85(4), 527–530
Gruis NA, van der Velden PA, Sandkuijl LA, Prins DE, Weaver-Feldhaus J, Kamb
A, Bergman W and Frants RR (1995) Homozygotes for CDKN2A (p16)
germline mutation in Dutch familial melanoma kindreds. Nature Genet 10:
351–353 

Hashemi J, Bendahl P-O, Sandberg T, Platz A, Linder S, Stierner U, Olsson H,
Ingvar C, Hansson J and Borg Å (2001) Haplotype analysis and age estimation
of the 113 insArg CDKN2A founder mutation in Swedish melanoma families.
Genes Chromosomes Cancer (in press) 

Hussussian CJ, Struewing JP, Goldstein AM, Higgins PAT, Ally DS, Sheahan MD,
Clark Jr WH, Tucker MA and Dracopoli NC (1994) Germline p16 mutations in
familial melanoma. Nature Genet 8: 15–21 

Kefford RF, Newton Bishop JA, Bergman W and Tucker MA (1999) Counseling and
DNA testing for individuals perceived to be genetically predisposed to
melanoma: a consensus statement of the Melanoma Genetics Consortium. 
J Clin Oncol 17: 3245–3251 

Liu L, Dilworth D, Gao L, Monzon J, Summers A, Lassam N and Hogg D (1999)
Mutation of the CDKN2A 5′ UTR creates an aberrant initiation codon and
predisposes to melanoma. Nature Genet 21: 128–132 

MacKie RM, Andrew N, Lanyon WG and Connor JM (1998) CDKN2A germline
mutations in U.K. patients with familial melanoma and multiple primary
melanomas. J Invest Dermatol 111: 269–272 

Neuhausen SL, Mazoyer S, Friedman L, Stratton M, Offit K, Caligo A, Tomlinson
G, Cannon-Albright L, Bishop T, Kelsell D, Solomon E, Weber B, Couch F,
Struewing J, Tonin P, Durocher F, Narod S, Skolnick MH, Lenoir G, Serova O,
Ponder B, Stoppa-Lyonnet D, Easton D, King M-C and Goldgar DE (1996)
Haplotype and phenotype analysis of six recurrent BRCA1 mutations in 61
families: results of an international study. Am J Hum Genet 58: 271–280 

Neuhausen SL, Godwin AK, Gershoni-Baruch R, Schubert E, Garber J, 
Stoppa-Lyonnet D, Olah E, Csokay B, Serova O, Lalloo F, Osorio A, Stratton
M, Offit K, Boyd J, Caligo MA, Scott RJ, Schofield A, Teugels E, Schwab M,
Cannon-Albright L, Bishop T, Easton D, Benitez J, King M-C, Ponder BAJ,
Weber B, Devilee P, Borg A, Narod SA and Goldgar D (1998) Haplotype and
phenotype analysis of nine recurrent BRCA2 mutations in 111 families: results
of an international study. Am J Hum Genet 62: 1381–1388 

Newton Bishop JA, Harland M, Bennett DC, Bataille V, Goldstein AM, Tucker MA,
Ponder BAJ, Cuzick J, Selby P and Bishop DT (1999) Mutation testing in
melanoma families: INK4A, CDK4, and INK4D. Br J Cancer 80: 295–300 

Parry D and Peters G (1996) Temperature-sensitive mutants of p16CDKN2
associated with familial melanoma. Mol Cell Biol 16: 3844–3852 

Pollock PM, Spurr N, Bishop T, Newton-Bishop J, Gruis N, van der Velden PA,
Goldstein AM, Tucker MA, Foulkes WD, Barnhill R, Haber D, Fountain J and
Hayward NK (1998) Haplotype Analysis of two recurrent CDKN2A mutations
in 10 melanoma families: evidence for common founders and independent
mutations. Hum Mut 11: 424–431 

Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, Potes
J, Chen K, Orlow I, Lee HW, Cordon-Cardo C and DePinho RA (1998) The
Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and
neutralizes MDM2’s inhibition of p53. Cell 92: 713–723 

Ranade K, Hussussian CJ, Sikorski RS, Varmus HE, Goldstein AM, Tucker MA,
Serrano M, Hannon GJ, Beach D and Dracopoli NC (1995) Mutations
associated with familial melanoma impair p16INK4 function. Nature Genet 10:
114–116 

Randerson-Moor JA, Harland M, Williams S, Cuthbert-Heavens D, Sheridan E,
Aveyard J, Sibley K, Whitaker L, Knowles M, Newton Bishop J and Bishop
DT (2001) A germline deletion of p14ARF but not CDKN2A in a melanoma-
neural system tumour syndrome family. Hum Molec Genet 10: 55–62 

Ruiz A, Puig S, Malvehy J, Lazaro C, Lynch M, Gimenez-Arnau AM, Puig L,
Sanchez-Conejo J, Estivill X and Castel T (1999) CDKN2A mutations in
Spanish cutaneous malignant melanoma families and patients with multiple
melanoma and other neoplasia. J Med Genet 36: 490–493 

Serrano M, Hannon GJ and Beach D (1993) A new regulatory motif in cell cycle
control causing specific inhibition of cyclin D/CDK4. Nature 366: 704–707 

Serrano M, Gomez-Lahoz E, DePinho RA, Beach D and Bar-Sagi D (1995)
Inhibition of ras-induced proliferation and cellular transformation by p16INK4.
Science 267: 249–252 

Soufir N, Avril MF, Chompret A, Demenais F, Bombled J, Spatz A, Stoppa-Lyonnet
D, the French Familial Melanoma Study Group, Benard J and Bressac-de
Paillerets B (1998) Prevalence of p16 and CDK4 germline mutations in 48
melanoma-prone families in France. Hum Mol Genet 7: 209–216 

Zhang Y, Xiong Y and Yarbrough WG (1998) ARF promotes MDM2 degradation
and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53
tumor suppression pathways. Cell 92: 725–734
© 2001 Cancer Research Campaign


	A common founder for the V126D CDKN2A mutation in seven North American melanoma-prone families
	SUBJECTS AND METHODS
	Families
	Genotyping
	Dating the mutation

	RESULTS
	DISCUSSION
	ACKNOWLEDGEMENTS
	REFERENCES


