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Summary  23 

 24 

1. Species interactions, ranging from antagonisms to mutualisms, form the architecture 25 

of biodiversity and determine ecosystem functioning. Understanding the rules 26 

responsible for who interacts with whom, as well as the functional consequences of 27 

these interspecific interactions, is central to predict community dynamics and stability. 28 

2. Species traits sensu lato may affect different ecological processes by determining 29 

species interactions through a two-step process. First, ecological and life-history traits 30 

govern species distributions and abundance, and hence determine species co-31 

occurrence and the potential for species to interact. Second, morphological or 32 

physiological traits between co-occurring potential interaction partners should match for 33 

the realization of an interaction. Here, we review recent advances on predicting 34 

interactions from species co-occurrence, and develop a probabilistic model for inferring 35 

trait matching.  36 

3. The models proposed here integrate both neutral and trait-matching constraints, 37 

while using only information about known interactions, thereby overcoming problems 38 

originating from under-sampling of rare interactions (i.e. missing links). They can easily 39 

accommodate qualitative or quantitative data, and can incorporate trait variation within 40 

species, such as values that vary along developmental stages or environmental 41 

gradients.  42 

4. We use three case studies to show that the proposed models can detect strong trait 43 

matching (e.g. predator-prey system), relaxed trait matching (e.g. herbivore-plant 44 

system) and barrier trait matching (e.g. plant-pollinator systems).  45 
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5. Only by elucidating which species traits are important in each process (i.e. in 46 

determining interaction establishment and frequency), can we advance in explaining 47 

how species interact and the consequences of these interactions for ecosystem 48 

functioning. 49 

 50 

Key words: Trait matching, functional traits, interaction networks, pollination, predation, 51 

herbivory, parasitism, mutualisms, trophic interactions. 52 

 53 

Introduction 54 

 55 

Species interactions form the architecture of biodiversity (Bascompte & Jordano 2007). 56 

There is growing recognition that community structure, stability and functioning depend 57 

not only on which species are present in a community, but also on how they interact 58 

(Tylianakis et al. 2008). Complex networks of biotic interactions such as predation, 59 

parasitism and mutualism provide essential information related to conservation 60 

(Carvalheiro, Barbosa & Memmott 2008; Tylianakis et al. 2010), community stability and 61 

ecosystem functioning (Thompson et al. 2012; Peralta et al. 2014), and evolutionary 62 

processes (Jacquemyn et al. 2011; Fenster et al. 2015). These insights would be not 63 

possible from simple species occurrence data or analysis of pairwise interactions. 64 

Despite the growing literature describing species interaction networks, we still have a 65 

poor understanding of how network structure comes to exist. 66 

 67 

There are few generalizable observations of how species interactions respond to 68 

environmental changes (Tylianakis et al. 2008). Therefore, understanding what 69 
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determines the occurrence of pairwise interactions, and, at a higher level, the structure 70 

of ecological networks, is a key challenge for ecologists. Overcoming this challenge 71 

requires the identification of the mechanisms responsible for who interacts with whom. 72 

Natural selection promotes adaptations to increase species efficiency (Castellanos et al. 73 

2003). Reciprocal trait adaptations between partners, which have positive demographic 74 

consequences, lead to increased interaction strength among co-evolved members 75 

(Sargent and Ackerly 2008). Hence, there is a great expectation that incorporating a 76 

trait-based approach can help us explain general mechanisms driving pairwise 77 

interactions. We refer here to traits in a broad sense, comprising adaptations that define 78 

organisms in terms of their ecological role, how they interact with the environment and 79 

with other species (Díaz & Cabido 2001). Most traits studied so far for predicting 80 

species interactions fall into morphological adaptations (e.g. body size), but 81 

physiological (e.g. chemical defenses) or behavioral (e.g. diel) adaptations can also 82 

drive species interactions. Moreover, traits should be precise and measurable attributes 83 

of the species. Recent studies indeed suggest that ecological networks of different 84 

types (e.g. from antagonistic to mutualistic) could be described from the traits of the 85 

interacting species (Eklöf et al. 2013). The ability of these methods to predict novel 86 

interactions following species invasions or following range shifts is, however, limited. 87 

 88 

Traits are implicated in ecological dynamics at several concatenated levels of 89 

community organization (Fig. 1), and therefore could influence the occurrence of 90 

interactions in multiple ways. Some traits determine species distributions in a multi-91 

dimensional environmental space, and thus impact co-occurrence in space and time. 92 
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Since the occurrence of an interaction requires the presence of the two species, traits 93 

involved in phenological matching or habitat filtering could constrain interactions. Life-94 

history traits impact demography, abundance and biomass, thereby affecting the 95 

probability of encounter. Then, provided they encounter each other in space and time, 96 

the compatibility between traits of the two species (i.e. trait-matching constraints) will 97 

also determine whether or not they interact. Finally, the intensity and the impact of an 98 

interaction will determine the functioning of the network, and also feed back to 99 

determine species abundances and dynamics. How efficient an interacting species is on 100 

a per capita basis is also likely to be mediated by its behavioural or physiological traits 101 

and how these match with those of the other species. Of course, these levels interact 102 

with each other through evolutionary processes. Most work to date has focused on 103 

morphological trait matching and little, if any, has tackled several of these stages at a 104 

time (see the review in Morales-Castilla et al. 2015). Our first objective here is to review 105 

what we know about each of these processes and assess their success and limitations 106 

at predicting interactions. Our second objective is to propose a way forward to evaluate 107 

trait matching in a way that is not confounded with species co-occurrences, and how 108 

this can be integrated into a larger framework, from species occurrences to ecosystem 109 

functioning. 110 

 111 

Traits governing species encounters in space and time. 112 

 113 

Habitat filtering constrains the pool of co-occurring species in a region or microhabitat. 114 

Sharing habitat-filtering traits, like tolerance to drought or thermal preference, may 115 
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hence be a prerequisite for two species to interact. Even in large and diffuse networks 116 

such as the global planktonic interactome, 18% of the variance in community 117 

composition (taxon presence and abundance) can be explained by environment alone, 118 

and these co-occurrences can be used successfully to predict interactions between taxa 119 

(Lima-Mendez et al. 2015). Microhabitat characteristics can also influence sessile 120 

organisms even within close proximity, as shown by interactions among mycorrhizas 121 

and plants, where rooting depth could preclude co-occurrence between shallow rooted 122 

plants and fungi restricted to lower soil horizons. In fact, the concept of “habitat 123 

associations” as a driver of interactions has been pointed to as the sole explanation for 124 

these interactions (Zobel & Öpik 2014), suggesting that both partners interact simply 125 

because they respond independently to different environmental factors.  126 

 127 

At broader spatial scales, species turnover along ecological gradients can also be 128 

responsible for a large fraction of network variation in space (Poisot et al. 2012). Range 129 

overlap determines the location and the total area over which two species can 130 

eventually interact. This can be used to better understand the consequences of range 131 

shifts on the local food-web structure (Albouy et al. 2014). Species distribution models in 132 

combination with ecological and life-history traits (D’Amen et al. 2015) can be used to 133 

predict co-occurrence and potential interactions in response to global changes (Albouy 134 

et al. 2014, Morales-Castilla et al. 2015). 135 

 136 

Similar to species distribution in space, species encounter will be determined by the 137 

synchrony of their activity periods at different temporal scales (i.e. daily, seasonal, 138 

interannual). Mismatch of phenology has been widely called to explain undetected 139 
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interactions that are not possible to occur (i.e. forbidden interactions; Olesen et al. 2011; 140 

Encinas-Viso, Revilla & Etienne 2012; Olito & Fox 2015), that is, species present in the 141 

same location that do not interact because they do not overlap in their seasonal activity 142 

periods. Phenological overlap during the season has therefore been used as a proxy for 143 

interaction probability (Bartomeus et al. 2013). While phenology is usually studied as 144 

the timing when species are active during a season (e.g. plant flowering period), daily 145 

fluctuations of activity can also be important for defining when interactions among 146 

partners can occur. A clear example is the distinction between crepuscular vs. diurnal 147 

species (Herrera 2000), but more subtle fluctuations of activity depending on daily 148 

temperature may be also relevant (Rader et al. 2013). In addition, some species may 149 

interact only with partners in a given life-history stage, for example, some 150 

ectomycorrhizal fungi may require host trees to be at least several years old and do not 151 

interact with seedlings. This highlights the importance and complexity of the temporal 152 

constraints on co-occurrence. 153 

 154 

Given that species co-occur in space and time, their abundance also determines the 155 

frequency at which they will interact (Canard et al. 2014). Abundant species are simply 156 

more likely to encounter each other than rare ones. This mechanism has been called 157 

neutral because it does not rely on any niche differentiation. Thus, models that use 158 

species abundances to predict encounter probabilities have found that abundance alone 159 

can explain considerable variance in key aspects of network structure (Vázquez et al. 160 

2007; Krishna et al. 2008; Olito & Fox 2015). Abundance is determined primarily by life-161 

history traits (e.g. fecundity, longevity, mortality). For plant communities, there is some 162 

consensus over which traits relate to abundance or dominance in the community, such 163 
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as maximal height and position along the slow-fast continuum (e.g. leaf economic 164 

spectrum; Wright et al. 2004). Therefore, trait distributions over environmental gradients 165 

have been used to predict plant abundance and community structure (Shipley, Vile & 166 

Garnier 2006; Laughlin et al. 2012). Similarly, it is possible to relate life-history traits to 167 

animal abundances. For instance, species with fast life cycles (usually small, with high 168 

reproduction rates and short longevity) tend to be more abundant than large species 169 

with slow life histories (White et al. 2007), and large species can decline more rapidly 170 

following habitat change (Larsen, Williams & Kremen 2005). As a result, abundance can 171 

be largely related to body size and position in the interaction network (Woodward et al. 172 

2005). Overall, the relationships between traits, abundance and probability of encounter 173 

defines the neutral expectations for interacting. This relationship is complex, for 174 

example, because the encounter probability changes both as function of species traits 175 

(e.g. landscape use) and as a function of abundance (e.g. through density-dependent 176 

foraging). 177 

  178 

Trait matching 179 

 180 

Trait matching between interacting partners has been identified for a variety of 181 

organisms. Plant corolla length and pollinator proboscis length is a classic example 182 

(Kritsky 1991). However, most pollinators are quite generalists and while species may 183 

have specialized morphology, it does not prevent them from utilizing a diversity of 184 

resources (Waser et al. 1996). Bird beak size and fruit size has also been shown to be 185 

tightly related to dispersal success (Galetti et al. 2013). In fishes, predator mouth gap 186 

and prey size are also strong determinants of predatory interactions (Cunha & Planas 187 
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1999). More complex relationships have been found for plants too, with the role of 188 

specific leaf area in plant-plant interactions changing from facilitation to competition, 189 

depending on resource availability (Gross et al. 2009). Trait-matching constraints have 190 

been described for most interacting species, ranging from arbuscular mycorrhizas and 191 

plants (Chagnon et al. 2013) to plants and herbivores (Deraison et al. 2015). 192 

 193 

Trait matching between individuals operates in addition to neutral processes to impact 194 

pairwise interactions. Despite advances in these respective fields (e.g. null model 195 

analysis: Vázquez, Chacoff & Cagnolo 2009; trait matching analysis: Dehling et al. 196 

2014; Spitz, Ridoux & Brind’Amour 2014, Crea et al. 2015), we still lack a common 197 

analytical framework with which to evaluate the contribution of species traits to pairwise 198 

interactions, and at the higher level to the structure of interaction networks. 199 

 200 

Even though neutral and trait-based null models can predict the general structure of 201 

interaction networks, such models often are poor at predicting the occurrence and 202 

intensity of individual interactions (Vázquez et al. 2009; Olito & Fox 2015). Such models 203 

are useful because they free us from species identities and allow us to detect 204 

generalities, but there is no guaranty that synthetic network properties do not arise from 205 

the wrong reason.  Another major problem that may preclude disentangling trait-based 206 

processes is that traits could influence interactions directly via trait matching, or 207 

indirectly via environmental matching. Hence, even if the variance between neutral and 208 

trait matching components is successfully partitioned, this would ignore the fact that 209 

some of the 'neutral' variance was generated by species traits via their effect on 210 

distribution and abundance (as we outlined in the previous section). Thus, the influence 211 
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of abundance versus traits can be seen as a path diagram where traits directly affect 212 

interactions and also affect abundances, which affect interactions (Fig. 1). We propose 213 

a framework that aims to integrate, rather than separate both processes. 214 

 215 

A significant challenge before such an analysis can be achieved is to access completely 216 

sampled networks with which to validate models. Empirical network data however have 217 

inherent uncertainties associated with the way in which they are sampled. Specifically, 218 

sampling completeness is rarely achieved when collecting interaction networks (Chacoff 219 

et al. 2012, Bartomeus 2013), and hence, some unobserved interactions may indeed 220 

occur (i.e. false absence of interactions). This would be less of a problem if the 221 

proportion of interactions that are sampled were constant, but this sampling efficiency 222 

can vary with local environmental conditions (Laliberté & Tylianakis 2010), species 223 

abundance and frequency, and of course, sampling effort. Thus, to truly understand the 224 

importance of trait matching for determining species interactions, the absence of an 225 

interaction in an empirical dataset cannot be used to infer true absence of that 226 

interaction in nature. The nature of the data therefore impedes the direct evaluation of 227 

probabilistic models (e.g. Rohr et al. 2010; Crea et al. 2015) and requires methods to 228 

estimate absences (Bartomeus 2013) or the development of model fitting procedures 229 

based on observed interactions only.   230 

 231 

Another challenge is that null models based on a priori rules for interactions have to be 232 

constructed using assumptions of which traits are critical for interaction establishment. 233 

Constructing and interpreting biologically meaningful null models that can isolate the 234 

targeted process to be studied is not an easy task (Vázquez & Aizen 2003). As an 235 
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alternative, recent attempts to understand trait matching by statistically modeling 236 

empirical data are promising (e.g., models incorporating imperfect detectability: 237 

Bartomeus 2013; fourth corner analysis: Dehling et al. 2014; linear models: González-238 

Castro et al. 2015; Dirichlet-multinomial regression: Crea, Ali & Rader 2015), but such 239 

models are still unable to integrate the relative contribution of neutral vs. trait-based 240 

process.  241 

 242 

A final caveat is that most models are constrained to use mean trait values at the 243 

species level, neglecting variability among individuals of the same species. However, 244 

intraspecific trait variation, which can result from life-history stage, sexual dimorphism, 245 

or stochastic, environmental, genetic or epigenetic forces (Bolnick et al. 2011), has 246 

been shown to affect specific interactions such as competition, as well as overall 247 

ecological dynamics (González-Suárez & Revilla 2013).  248 

 249 

A probabilistic method for evaluating trait matching  250 

 251 

To overcome the limitations pointed out above, we model the probability of interaction 252 

among pairs of individuals given their traits, based on a framework developed by Gravel 253 

and colleagues (Gravel et al. 2013). The method also has the advantage to build 254 

directly on the established theory of ecological network structure (Williams & Martinez, 255 

2000; Eklof et al. 2013), by contrast with the above listed methods that are essentially 256 

phenomenological. We propose a method to evaluate trait-matching relationships while 257 

taking into account abundance of the interacting partners. The fitting procedure uses 258 

information about observed interactions only, thereby overcoming problems caused by 259 
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under-sampling of rare interactions leading to false absences of interactions. The 260 

approach implies that sampling effort is enough to adequately describe most true 261 

interactions in trait-space and no false positives are recorded (i.e. recording interactions 262 

as true when they do not occur). A previous sensitivity analysis however revealed it to 263 

be robust to sampling effort (Gravel et al. 2013). The parameters are estimated by 264 

maximum likelihood and the fitted model can be used to predict unobserved interactions 265 

based on species traits and abundances. Several models, corresponding to different 266 

hypotheses, can be fit directly to raw data and accommodate complex trait matching 267 

response functions to either qualitative or quantitative interaction data. Finally, they can 268 

incorporate intraspecific trait variation, avoiding the loss of realism in species with trait 269 

values that vary along developmental stages or environmental gradients. In that way we 270 

provide a common toolbox to understand trait-matching rules across a variety of 271 

interaction types.  272 

 273 

We are interested in evaluating from empirical data a function describing the probability 274 

of an interaction between species 𝑖 and 𝑗 based on their respective sets of traits 𝑇𝑖 and 275 

𝑇𝑗. Building upon the model developed by (Gravel et al. 2013), we aim to evaluate the 276 

parameters of a model that will relate the probability with which an interaction occurs to 277 

the set of traits of the two species: 278 

 279 

𝑃(𝐿𝑖𝑗  =  1| 𝑇𝑖, 𝑇𝑗) (1) 280 

 281 

Which reads as the probability of observing an interaction 𝐿 between species 𝑖 and 𝑗 282 
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given the traits 𝑇𝑖 and 𝑇𝑗. The function describing this probability could take any form. 283 

For the sake of the example here, we will consider a Gaussian shaped function (i.e. a 284 

function that assumes an unimodal relationship between 𝑇𝑖 and 𝑇𝑗) to represent the trait-285 

matching interaction (also termed interaction niche; Williams, Anandanadesan & Purves 286 

2010, see below). Other functions, such as a high order polynomial or even regression 287 

trees, could be considered as well. The Gaussian function is however convenient 288 

because it is easy to integrate and further it matches the niche model of network 289 

structure (Williams et al. 2010; Eklof et al. 2013). 290 

 291 

Equation 1 could be fit directly to empirical data by maximum likelihood. To do so, the 292 

required data should contain information on presence and absence of interactions (e.g. 293 

Rohr et al. 2010). The problem we are facing, however, is that records of the true 294 

absence of interactions are often not available in most datasets of ecological 295 

interactions, and when available, there might be considerable uncertainty in these 296 

absences (i.e. false negatives due to insufficient sampling). We therefore derive a 297 

likelihood function using Bayes theorem to fit Eq. 1 indirectly, using only information 298 

about the observed interactions. Parameters are still evaluated by maximum likelihood 299 

(using simulated annealing, as described in the supplementary information), but one 300 

could eventually develop the method further to compute the posterior distribution of 301 

parameters.  302 

 303 

The data contains information about the traits of species 𝑖 and of species 𝑗 only for 304 

observed interactions 𝐿𝑖𝑗  =  1. We consequently revise the problem and model the 305 

https://paperpile.com/c/QZyhW9/Beca
https://paperpile.com/c/QZyhW9/Beca
https://paperpile.com/c/QZyhW9/9fBo
https://paperpile.com/c/QZyhW9/9fBo
https://paperpile.com/c/QZyhW9/9fBo
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probability of observing trait 𝑇𝑖, knowing the trait Tj and the occurrence of the interaction 306 

𝐿𝑖𝑗: 307 

 308 

𝑃(𝑇𝑖|𝐿𝑖𝑗  =  1, 𝑇𝑗) (2) 309 

 310 

Which could be interpreted as the probability that we pick trait 𝑇𝑖 from the trait 311 

distribution we model, given we know there is an interaction between species 𝑖 and 𝑗 312 

and the trait 𝑇𝑗. This equation provides the likelihood for any observation of an 313 

interaction based on the traits of the two species. We now use Bayes’ theorem, 314 

𝑝(𝐴|𝐵)𝑝(𝐵)  =  𝑝(𝐵|𝐴)𝑝(𝐴), to decompose Eq. 2, yielding the following distribution of 315 

the trait of one species, given the trait of the second species and the observation of the 316 

interaction: 317 

 318 

𝑃(𝑇𝑖|𝐿𝑖𝑗  =  1, 𝑇𝑗)  =  
𝑃(𝐿𝑖𝑗 = 1|𝑇𝑖,𝑇𝑗)  𝑃 (𝑇𝑖)

𝑃(𝐿𝑖𝑗 = 1|𝑇𝑗)
 (3) 319 

 320 

The first term from the numerator is the trait-matching model, described at Eq. 1. It is 321 

the model for which we aim to evaluate parameters. 𝑃(𝑇𝑖) is the probability density 322 

function for the trait 𝑇𝑖. It corresponds to the probability of observing this trait in the 323 

regional pool. It could be weighted by abundance because the most abundant species 324 

are more likely to be sampled. The denominator is the marginal distribution of the trait-325 

matching function, computed as the integral of the numerator over the whole distribution 326 

of the trait 𝑇𝑖: 327 

 328 
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𝑃(𝐿𝑖𝑗  =  1|𝑇𝑗)  =  ∫ 𝑃(𝐿𝑖𝑗  =  1|𝑇𝑖, 𝑇𝑗) ∗ 𝑃(𝑇𝑖) 𝑑𝑇𝑖
      ∞

−∞
 (4) 329 

 330 

As a side product, the denominator informs us of the generality of the species j. This 331 

integral might be tricky to compute analytically, depending on the form of Eq. 1 and the 332 

distribution of trait Ti, but most software offer easy ways to compute it numerically. 333 

 334 

The model given at Eq. 3 should not be confounded with the more traditional use of the 335 

Bayes theorem in statistics. The resulting distribution describes the probability of 336 

observing an interaction given a trait, while in statistics, the distribution describes the 337 

probability of observing a set of parameters given the data. Here the parameters are 338 

estimated by simulated annealing and there is only a single set of parameters yielding 339 

the maximum likelihood. True confidence intervals for parameter estimates are hard to 340 

evaluate for non-linear models with complex likelihood surfaces, but could nonetheless 341 

be evaluated numerically. The Eq. 3 could also be implemented in a Bayesian fitting 342 

procedure to obtain a posterior distribution of parameters for Eq. 1 (Eq. 3 being the 343 

likelihood of the Bayes theorem), but this would be out of the scope of the current study. 344 

 345 

The model could be simplified to account only for the effect of abundance (trait 346 

distributions) to reveal the importance of the trait-matching constraint. A neutral model 347 

in this framework is found when an interaction is equally probable, irrespective of the 348 

traits of the two species involved in the interaction (i.e. Eq. 1 is set as a constant). 349 

Alternatively, one could want to compare to the situation where interactions are purely 350 

determined by trait-matching constraints. In this situation, we consider the distribution of 351 
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the trait (𝑃(𝑇𝑖) uniform within the range of the observed traits. The Eq. 3 remains the 352 

same for all three models and could be used to compute the likelihood for each of them. 353 

Equations for the pure neutral and trait-matching models, and a multi-trait expansion, as 354 

well as all of the R code necessary to perform this analysis are provided in the 355 

supplementary material (see Appendix S1 in Supporting Information) and as an R 356 

package found at https://github.com/ibartomeus/trait_match.  357 

 358 

We re-analyzed three datasets on different systems ranging from antagonistic to 359 

mutualistic interactions to illustrate the overall principle of the method. First, we use data 360 

from (Barnes et al. 2008) on the diet of marine fish species. The traits are the individual 361 

(log transformed) body size of the predator fish species (𝑀𝑝𝑟𝑒𝑑) and the individual body 362 

size of preys 𝑃(𝑀𝑝𝑟𝑒𝑦). We know that larger fish typically feed on smaller ones because 363 

they must catch and handle the prey with their mouth. The frequency distribution of prey 364 

size will indeed influence the distribution of the body mass in the diet of the predator. A 365 

predator will tend to feed most often on the most abundant preys, which is a neutral 366 

component to the interaction probability. The predator does not select from that 367 

distribution randomly, however, but rather it targets only a specific range (given by Eq.1 368 

; the niche component). Both the available prey size distribution, 𝑃(𝑀𝑝𝑟𝑒𝑦),and the 369 

resulting prey size distribution, 𝑃(𝑀𝑝𝑟𝑒𝑦|𝐿, 𝑀𝑝𝑟𝑒𝑑), are illustrated in figure 2B for a given 370 

predator species. The resulting prey distribution has to be somewhere between the 371 

regional prey distribution and its preferred prey size. The model therefore integrates 372 

both neutral and trait-matching constraints. 373 

 374 

https://github.com/ibartomeus/trait_match
https://paperpile.com/c/QZyhW9/cPyH
https://paperpile.com/c/QZyhW9/cPyH
https://paperpile.com/c/QZyhW9/cPyH
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We consider the following Gaussian function to represent the probability of an 375 

interaction given the size of the predator and the prey: 376 

      377 

𝑃(𝐿𝑖𝑗  =  1|𝑀𝑝𝑟𝑒𝑑, 𝑀𝑝𝑟𝑒𝑦)  = 𝑒𝑥𝑝 
−(𝛼0 +𝛼1 ∗ 𝑀𝑝𝑟𝑒𝑑 −𝑀𝑝𝑟𝑒𝑦)

2

2(𝛽0 +𝛽1 ∗ 𝑀𝑝𝑟𝑒𝑑)
2

 (5) 378 

 379 

Where 𝛼0, 𝛼1, 𝛽0 and 𝛽1 are fitted parameters describing the linear relationship between 380 

the predator size, its optimum ( 𝛼0 + 𝛼1𝑀𝑝𝑟𝑒𝑑) and the range ( 𝛽0 + 𝛽1𝑀𝑝𝑟𝑒𝑑) of its 381 

preference function. This formulation considers there is an optimal prey size for the 382 

predator and the probability an interaction occurs reduces with any deviation from it 383 

(Williams et al. 2010). The optimum also increases linearly with predator size. The same 384 

reasoning could also be applied to mutualistic interactions, considering there is an 385 

optimal corolla length for a pollinator of a given tongue length. One tricky issue might be 386 

to gather information about the prey trait distribution. The distribution of prey traits might 387 

be influenced by the interactions if there is a feedback of predators on prey abundance, 388 

and in the best situation we need to tease that effect apart. Here we assume that the 389 

distribution of the data provides an adequate representation of the distribution of 390 

potential prey sizes because of the large number of observed interactions (> 33 000) 391 

and their diversity. We thus consider a normal distribution of (log) prey size and 392 

computed the average and the standard deviation.  393 

 394 

The predator-prey example provides a case where trait matching is a strong driver of 395 

interactions because of a strong predator-prey body size relationship (likelihood = -396 
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21223). The parameters of the fitted model can subsequently be used for predicting 397 

interactions among species that co-occur, but have not been observed to interact (e.g. 398 

due to incomplete sampling) or more interestingly, for species that currently do not co-399 

occur but may do so in the future, for example as a consequence of range shifts under 400 

climate change (Albouy et al. 2014) or species invasions.  401 

 402 

Next, we use the same models on experimental data on the relationship between 403 

grasshopper incisive strength and leaf dry matter content (Deraison et al. 2015). In this 404 

case, both traits are species averages. We first find weak trait matching for binary data 405 

(who eats whom at the species-level; likelihood = -213; Fig 3A). However, weighting the 406 

interactions by consumption frequency removes bias in parameter estimates and the fit 407 

of the model is considerably improved (likelihood = -5383). We thus find that strong-408 

mandibled grasshoppers prefer plants with higher content of dry matter, as reported in 409 

the original paper (Fig 3B).  410 

 411 

The model could also be evaluated using traits measured at the individual level. In the 412 

last example, we related pollinator tongue length with plant nectar holder depth in 413 

visitation networks from Bartomeus, Vilà & Santamaría (2008). Individual pollinator 414 

tongue length was inferred using the allometric relationship with body inter-tegular span 415 

within each bee family (Cariveau et al. 2015), while species average flower size was 416 

considered for plants. Individual trait data for pollinators allows capture of the inter-417 

individual differences when evaluating parameters of trait-matching functions. In 418 

addition, this model uses independent information to describe the trait abundance 419 

distribution of plant species. In the past examples, abundance was inferred from the 420 

https://paperpile.com/c/QZyhW9/CJK3
https://paperpile.com/c/QZyhW9/CJK3
https://paperpile.com/c/QZyhW9/CJK3
https://paperpile.com/c/QZyhW9/1asx
https://paperpile.com/c/QZyhW9/1asx
https://paperpile.com/c/QZyhW9/1asx
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network of interactions, but in this case, independent transect measures of percent plant 421 

cover in the site are available (Bartomeus et al. 2008). We find that the model can be 422 

interpreted as a trait-barrier, where small-tongued individuals cannot access deep 423 

flowers, but long-tongued species can access both deep and shallow flowers (likelihood 424 

= -705; Fig. 4). However, under such weak constraints (most pollinators can access 425 

most plants), abundance is the main determinant of interaction probability. For 426 

comparison, using pollinator species trait averages instead of individual values produce 427 

a similar model, but with a worst likelihood (-726), indicating that there is a gain from 428 

using detailed data when available.  429 

 430 

Discussion and conclusions 431 

Quantifying the trait-matching relationships across species may help us to understand 432 

how networks are structured. For example, the nested structure of plant-pollinator 433 

networks may be driven from species abundance (Vázquez et al. 2009) or from barriers 434 

to certain interactions (Stang, Klinkhamer & van der Meijden 2006). In contrast, the 435 

strong trait-matching observed in plant-herbivore interactions (e.g. plant defenses 436 

limiting herbivory for all but a few tolerant species) can produce more modular networks 437 

where interactions depart more from the null expectation based solely on abundance 438 

(Thébault & Fontaine 2010). Even within plant-pollinator interactions, bird-plant 439 

networks are more specialized than insect-plant networks, which is also reflected in 440 

their degree of trait-matching (Maglianesi, Böhning-Gaese & Schleuning 2015).  Our 441 

framework is however limited to pairwise interactions and future work will have to 442 

investigate how the distribution of traits in a community constrains the emergent 443 

network properties. Moreover, trait-matching constraints describe potential interactions, 444 

https://paperpile.com/c/QZyhW9/XX1A
https://paperpile.com/c/QZyhW9/XX1A
https://paperpile.com/c/QZyhW9/XX1A
https://paperpile.com/c/QZyhW9/2186
https://paperpile.com/c/QZyhW9/2186
https://paperpile.com/c/QZyhW9/2186
https://paperpile.com/c/QZyhW9/lwaj
https://paperpile.com/c/QZyhW9/GzQn
https://paperpile.com/c/QZyhW9/s7h6
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but may not always reflect realized interactions (Poisot, Stouffer & Gravel 2015). The 445 

future development of a bayesian approach to evaluate the distribution of parameters 446 

will help quantifying the uncertainty of predicted interactions.  447 

 448 

Parameterized trait-matching functions not only provide a better understanding of the 449 

drivers of interactions, but they also allow prediction of novel interactions following 450 

deliberate introductions (e.g. of crop species or biological control agents) or 451 

unintentional invasions and range shifts (Morales-Castilla et al. 2015). Proxies of trait 452 

similarity, like phylogenetic distance, have already been successfully used to predict 453 

interactions of exotic species (Pearse & Altermatt 2013) and adding traits has the 454 

potential to enhance this approach. Species losses and gains following local and global 455 

changes are threatening most ecosystems, and it is simply impossible to measure all 456 

potential interactions in the field. Tools are consequently required to assess how the 457 

interaction network will rewire. We know that exotic species invading a community get 458 

easily integrated into the recipient network of interactions (Albrecht et al. 2014), and that 459 

after species turnover in a community, the remaining species reshuffle their interactions 460 

to adjust to the new composition (Kaiser-Bunbury et al. 2010). Our predictive ability in 461 

these situations is however still limited.  462 

 463 

Careful selection of the right set of traits to run the analysis is, however, a critical step. 464 

We have seen that traits constraining interactions could potentially comprise all 465 

morphological and physiological species characteristics, and hence, are quite specific 466 

for each interaction type. A good a priori knowledge on the biology of the species and 467 

type of interaction involved is needed to select the right trait combinations. For example, 468 

https://paperpile.com/c/QZyhW9/zrES
https://paperpile.com/c/QZyhW9/AtY9
https://paperpile.com/c/QZyhW9/AtY9
https://paperpile.com/c/QZyhW9/AtY9
https://paperpile.com/c/QZyhW9/cQ29
https://paperpile.com/c/QZyhW9/RnM3
https://paperpile.com/c/QZyhW9/RnM3
https://paperpile.com/c/QZyhW9/RnM3
https://paperpile.com/c/QZyhW9/czxF
https://paperpile.com/c/QZyhW9/czxF
https://paperpile.com/c/QZyhW9/czxF
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we also explored whether body size drives host-parasite relationships using the 469 

Tylianakis, Tscharntke & Lewis (2007) dataset, but in this case all models performed 470 

poorly because the largest parasitoid is smaller than the smallest host, which allows all 471 

types of body size combinations. Alternatively, spurious trait matches could be found 472 

when some traits are correlated. For instance, traits like body size correlate 473 

allometrically with several other morphological traits (Woodward et al. 2005) and might 474 

therefore provide a wrong causal explanation of the interactions. One strong limitation 475 

for some interactions, such as fungi and plants, is that the traits governing interactions 476 

remain somewhat unclear (Tedersoo et al. 2008; Martínez-García et al. 2015). The 477 

challenge for the future will be to determine and quantify the actual traits governing 478 

these interactions, including their variability among individuals or genets.  479 

 480 

Another challenge outlined in Fig. 1 and still unresolved is inferring functioning from a 481 

network of interactions (Duffy et al. 2009; Thompson et al. 2012). Species interactions 482 

are driving several ecosystem processes and functions (e.g. animal pollination, fruit 483 

dispersion) as well as energy fluxes (e.g. predation, parasitism). Inferring the function 484 

from traits however requires incorporating the interaction efficiency (the per capita 485 

strength of a single interaction link; Vázquez et al. 2015), which in turn may be also trait- 486 

or abundance-mediated, and can depend on the extent of matching (e.g. pollinators with 487 

short tongues may be able to visit, but inefficiently pollinate long flower corollas), or on 488 

morphological, physiological or behavioural traits (e.g. large pollinators deposit more 489 

pollen; Hoehn et al. 2008; Fig 1). Empirical evidence measuring interaction efficiency is 490 

still scarce. 491 

https://paperpile.com/c/QZyhW9/Lwpk
https://paperpile.com/c/QZyhW9/9qCA+UHBE
https://paperpile.com/c/QZyhW9/9qCA+UHBE
https://paperpile.com/c/QZyhW9/9qCA+UHBE
https://paperpile.com/c/QZyhW9/9qCA+UHBE
https://paperpile.com/c/QZyhW9/9qCA+UHBE
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 492 

In conclusion, different traits can inform us about how species form networks of 493 

interactions. For some interaction types, like mycorrhizal fungal interactions, traits 494 

affecting co-occurrence can be the most relevant for understanding the occurrence of 495 

interactions. Conversely, for other interaction types, like those between predators and 496 

prey, morphological and physiological traits may be the main determinants of who 497 

interacts with whom. Understanding which mechanisms are driving pairwise interactions 498 

is key to predict how communities will respond to global change. Interactions regulated 499 

by co-occurrence will be more likely to be affected by climate change (e.g. changing 500 

phenologies and distributions), while changes in dominance following disturbance may 501 

redistribute the interactions in neutral-driven networks. Non-random species extinctions 502 

are also expected to affect more drastically interactions regulated by strong trait 503 

matching (Larsen, Williams & Kremen 2005). There are still too many unknowns to draw 504 

general conclusions about how communities are structured by traits and what 505 

implications this has for ecosystem functioning, but we are now armed with appropriate 506 

analytical tools to move beyond the mere description of interactions and run predictive 507 

analysis of network assembly and dynamics. 508 

 509 
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 770 

Figure 1. Species traits may influence the structure of interaction networks in three 771 

different ways. 1) Trait-based environmental filtering may determine species 772 

abundances in space and time, which will affect probability of encounter. 2) Given 773 

species co-occurrence, trait matching according to species interaction preferences will 774 

shape interaction probability. 3) Species traits might also influence the per capita 775 

efficiency and impact of an interaction, and thereby influence network functioning. In 776 

addition, 4) emergent properties inherent to the structure of the network will influence 777 

network functioning and feedback on community dynamics. 778 
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 779 

 780 

Figure 2. Illustration of the quantitative framework to evaluate a trait-matching 781 

probabilistic function. A) Conceptual representation of a trait-matching constraint. 782 

Interactions (in black) are feasible only when both species have traits that are 783 

compatible. However, we often do not have reliable information on the species that are 784 

present, but are not observed to interact (white dots). Dotted lines indicate the trait 785 

ranges of compatibility between the species B) Representation of the density function 786 

for available body size in the (Barnes et al. 2008) dataset (white bars), the trait-787 

matching function (black line) and the observed distribution of prey size for the predator 788 

Nototheniops larseni (black bars). C) Representation of the observed interactions (black 789 

dots) and the prediction for the maximum likelihood estimate of the trait-matching 790 

function (from low probability in red to high probability in white).   791 
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Figure 3792 

 793 

Figure 3. Representation of the fitted interaction probability for grasshopper and plant 794 

interactions unweighted (A) and weighted (B) by frequency of interaction (from low 795 

probability in red to high probability in white). The probability of interaction between a 796 

grasshopper and a plant follows a positive relationship between incisive strength and 797 

plant leaf dry matter content. Note that the overlapping data in B has been jittered to 798 

appreciate the different frequencies of particular interactions. The likelihood for (A) is 799 

similar to the neutral model, while much better in (B), indicating that the frequency of 800 

interactions must be taken into account to better reveal the trait-matching constraint.  801 
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Figure 4 808 

 809 

Figure 4. Representation of the fitted interaction probability plant and pollinators 810 

weighted by the frequency of interactions (from low probability in red to high probability 811 

in white). Only a few interactions among small tongue sized bees and long corolla depth 812 

flowers are realized (red area), while the rest of interactions are explained mainly by 813 

abundance. 814 
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