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Abstruct- Scalability refers to the ability to modify the res- 
olution and/or bit rate associated with an already compressed 
data source in order to satisfy requirements which could not be 
foreseen at the time of compression. A number of researchers 
have already demonstrated the feasibility of efficient scalable 
image and video compression. The principle focus of this paper is 
to describe data structures for highly scalable compressed video, 
which are able to support simple, generic scaling approaches for 
both constant bit rate and constant distortion scaling criteria. 
Interactive video material presents particular challenges when the 
data stream is to be scaled to maintain an approximately constant 
level of distortion, rather than just a constant bit rate. Special 
attention is paid, therefore, to the development of generic, robust 
scaling algorithms for such applications. The data structures and 
scaling methodologies developed in this paper are particularly 
appealing for distribution of highly scalable compressed video 
over heterogeneous media, because they simultaneously support 
both variable bit rate (VBR) and constant bit rate (CBR) services 
with a wide range of available service qualities, using only 
simple, generic mechanisms for scaling. The performance of the 
proposed scaling methodologies is experimentally investigated 
using a highly scalable video compression algorithm, which is 
able to achieve comparable compression performance to that of 
the inherently nonscalable MPEG-1 compression standard. 

I. INTRODUCTION 

N the last few years the term scalability has come to be I associated with any of a number of desirable properties for 

image and, particularly, video compression algorithms. Scala- 

bility essentially means that the compressed bit stream can be 

manipulated in a simple manner in order to satisfy constraints 

on such parameters as bit rate, display resolution and frame 

rate, or decompression hardware complexity. In general, this 

manipulation consists of the extraction of relevant subsets from 

the compressed bit stream, each of which should represent an 

efficient compression of the video sequence, at some resolution 

and distortion. In rate-scalability, appropriate subsets are 

extracted in order to trade distortion for bit rate at some 

fixed display resolution. Resolution-scalability, on the other 

hand, means that subsets may be extracted which represent the 

video sequence at a variety of different resolutions. Rate- and 
resolution-scalability usually also provide a means of scaling 

the decompression algorithm’s computational requirements. In 
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order for the complete scalable bit stream to also represent 

an efficient compression of the video sequence at maximum 

resolution and bit rate, these subsets must be embedded within 

one another, rather than coexisting independently as they 

would in a simulcast. 
The value of scalable compression lies in the fact that 

the bit stream may be manipulated at any point after the 
compressed bit stream has been generated. This is significant 

because in many important applications, advance knowledge 

of constraints on resolution, bit rate, or decoding complexity, 

may not be available during compression. Both video database 

servers [4] and shared digital networks can face unforeseeable 

throughput limitations, which jeopardize the integrity of com- 

pressed video delivered to clients. Unless the compressed data 

streams can be gracefully scaled down to more manageable 

bit rates, such potential throughput limitations can either 

lead to very serious corruption or else necessitate significant 

overallocation of resources in order to avoid the possibility of 

severe degradations in service quality. For these applications, 

rate-scalability is a highly desirable property. Scalability is also 

a very important property for video database, multicast, and 

broadcast applications with heterogeneous distribution andlor 

display requirements. In such heterogeneous environments, 

constraints on bit rate and display resolution cannot be an- 

ticipated during compression, either because the compressed 

data is to be stored and then retrieved under many potentially 

different conditions, or because the compressed data is to 

be simultaneously distributed to many clients, with differing 

display technology and/or distribution path characteristics. In 

these cases, both rate-scalability and resolution-scalability are 

desirable properties. 

A number of researchers have proposed image or video 

compression algorithms which offer some degree of scala- 

bility. Said and Pearlman [17], Shapiro [lS], and Taubman 

and Zakhor [24] have all proposed highly scalable algorithms 

for still image compression, which offer excellent compression 
performance over an almost continuous range of bit rate scales. 

With a specific view toward video applications, Bosveld et 
al. [2] and Chaddha et al. [3] have also proposed scalable 

intraframe compression schemes. Chaddha et al. are particu- 

larly concerned with software-only scalable compression for 

cooperative video applications where interframe techniques 

are considered too computationally expensive. Efficient, highly 

scalable video compression presents some additional difficul- 

ties over still image compression, because techniques based 

on predictive feedback for exploiting temporal redundancy 

do not lend themselves to scalability. This observation is 
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easily understood in view of the fact that predictive coding 

algorithms maintain a copy of some aspect of the anticipated 

decoder’s state, with respect to which the source signal is 

encoded; however, the principle behind scalability is that 

the decoder’s state cannot be anticipated at the encoder. 

Nevertheless, various proposals (e.g., [6], [SI, [lo], [ l l ] ,  [28]) 

have been advanced for achieving limited scalability within a 

motion compensated predictive framework. As expected, such 

approaches generally suffer from rapidly escalating complexity 

and significant loss in compression performance as the number 

of available scales increases. In fact, provisions for scalable 

compression modes within the MPEG-2 standard, based on 

motion compensated prediction, explicitly restrict the number 

of scales to at most three [5]. For this reason, a number 

of researchers have proposed three-dimensional (3-D) mul- 

tiresolution transforms as a vehicle for exploiting temporal 

redundancy without resorting to nonscalable predictive coding 

techniques. Among these are Sing et al. 1191, Ohm [15], and 
Taubman and Zakhor [24], [25]. Such transforms are inher- 

ently much more suited to highly scalable compression than 

techniques based on motion compensated prediction. It should 

be noted, however, that highly scalable video compression 

also depends upon efficient layered quantization and coding 

strategies. In this respect, the algorithm presented in [24] is 

noteworthy for offering a virtually continuous range of bit rate 

scales. These algorithms are discussed further in Section IV. 

While there is clearly much room for further investigation 

into highly scalable video compression algorithms, the rel- 

evance of such algorithms may in large part depend upon 

the ease with which scalability is able to be exploited in 

video storage and distribution equipment. To underscore this 

point, we note that the advantages of scalable compression 

are primarily realized by allowing such equipment to interact 

with the compressed video stream via scaling operations; such 

interaction between storage and transport entities and the traffic 

they support is entirely foreign to nonscalable traffic. Previous 

work (e.g. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 111 and [ 151) has focused on tailoring compression 

schemes to the limited native scaling potential afforded by the 

two priority levels offered by ATM networks. By contrast, the 

focus of this work is to investigate the potential of a layered 

substream hierarchy as an intermediate abstraction between 

highly scalable compression algorithms and the scaling entities 

associated with storage and distribution systems. While this 

abstraction imposes some requirements on both the compres- 

sion scheme and the scaling entities, it permits simple, generic 

scaling operations, which are independent of syntactic features 
specific to any particular compression scheme. Moreover, 

within this abstraction, the compressed data stream may be 

scaled as often as desired, with either a constant bit rate or 

a constant level of distortion as the objective at each point. 

Special attention is devoted to the issues surrounding generic 
distortion-based scaling with hard guarantees on average bit 

rate properties, particularly for interactive applications. 

The paper is organized as follows. In Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 we begin by 

outlining our proposed layered substream abstraction, together 

with the simple, generic scaling mechanisms supported and 

the requirements this abstraction imposes on the compression 

algorithm. Distortion based scaling is dependent on the values 

of distortion tugs, which are inserted periodically into the lay- 

ered substream hierarchy. Perhaps the most important question 

addressed by this paper is how such tags should be generated 

so that distortion-based scaling is able to maintain any selected 

measure of distortion in the reconstructed video sequence at 

an approximately constant level, while preserving an average 

bit rate interpretation that is independent of the underlying 

distortion measure. Section 111 motivates and addresses these 

issues. In order to place this work in a realistic context, we 

proceed to discuss highly scalable compression algorithms 

which are able to support the proposed layered substream 

abstraction. In particular, Section IV summarizes some of the 

important features of highly scalable compression schemes and 

briefly describes the algorithm presented in [25], which forms 

the context for our experimental investigations. Section V 
shows how the resulting compressed video data may be 

organized to satisfy the requirements imposed by our layered 

substream hierarchy. Finally, the effectiveness of rate and 
distortion-based scaling within the context of our layered 

substream abstraction are demonstrated in the experimental 

results of Section VI. 

11. LAYERED SUBSTREAM HIERARCHY 

The purpose of this section is to describe a layered sub- 

stream abstraction within which simple, generic bit rate scaling 

may be performed according to either a constant bit rate 

criterion or a constant distortion criterion. Before plunging into 

a more thorough description of these operations, it is important 

to understand that rate-scalability refers to the potential to 

change the compressed data stream’s bit rate after the actual 

compression has taken place. We refer to the actors which are 

able to perform this scaling as scaling entities. The usefulness 

of rate-scalability arises from the opportunity to include such 

scaling entities within the distribution and/or storage path 

of the compressed video data stream. This enables resource 

contention between multiple data sources to be resolved by 

gracefully scaling the source bit rates. Scaling entities may 

also be used to tailor compressed bit rates to the individual 

capabilities of each link in a heterogeneous multicast tree. 

Because we expect to include such scaling entities in the actual 

distribution and/or storage path of the compressed data, an 

important consideration is that bit rate scaling should be a 
generic operation, which does not depend on syntactic features 

specific to any particular compression algorithm. By contrast, 
we expect resolution-scalability and complexity-scalability to 

be of concern only during decompression and hence intimately 

dependent upon the particular compression algorithm. Thus, 

we are only concerned with developing a generic abstraction 

for rate-scalability. Given that we would like to implement 

rate scaling entities in the context of large public networks, 

a second important consideration is that these scaling entities 

should be as simple as possible. 

Fig. 1 depicts the organization of Q substreams in our pro- 

posed layered hierarchy. Each substream, $ = 1, 2, . . . , %’, 
is characterized by a constant bit rate, R+. In order to estab- 

lish a temporal relationship between the substreams and the 

source video which they represent, we partition the substream 
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Fig. 1. Layered substream hierarchy. 

hierarchy into temporal blocks, or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAframe slots, each having a 

duration of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF video frame periods. The bit rates, R+, are then 

assessed in the context of these frame slots. That is, substream 

11, contains exactly RQ (.F/FR) bits in each frame slot, s, 

where FR is the video frame rate. In Section I, we suggested 

that efficient highly scalable video compression algorithms 

should be based around 3-D multiresolution transforms. In 

fact, both memory conservation and compression efficiency 

considerations currently suggest that this multiresolution trans- 

form should be block-based in the temporal dimension.’ The 

use of a temporally block-based transform with a block size 

of F’ frames suggests a natural partitioning of the data stream 

into frame slots of F = K . F’ frames each, where K 
is an integer. As we shall see, end-to-end delay is affected 

by the value of F, so we select K = 1 for delay sensitive 

applications. In applications where delay is not critical, larger 

values of K can be helpful in enhancing the efficiency with 

which highly scalable compressed data may be packaged into 

the fixed rate substreams, 11,, within each frame slot, s. 

We make two important assumptions concerning the scal- 

able compression algorithm, whose compressed data is to 

be conformed to the layered hierarchy of Fig. 1. The first 

assumption is that the compressed data is sufficiently scalable 

to allow the first 11, substreams to represent an efficient 

compression of the original video material at rate E:==, RE, 
for each value of 11, E { 1, 2, . . . , Q}. Our second assumption 

is that the number of substreams available for decompression 

may change from frame slot to frame slot, with little if any 

effect on the decoder’s ability to utilize the entire received data 

stream. As we shall see, this second assumption is important 

in enabling effective constant distortion scaling within the 

same frame work as constant bit rate scaling. Suitable highly 

scalable compression schemes and algorithms for organizing 

the scalable data into substreams are discussed in Sections IV 
and V. 

Temporally overlapping transforms not only require more memory than 
block based transforms, but also do not appear to offer any advantage in 
compression performance [ 151, [24]. 

It is evident that constant bit rate scaling with a target rate 

of E:==, RE may be accomplished simply by discarding all 

but the first 11, substreams in each frame slot. Scaling via 

substream discarding is completely generic in that it does 

not depend on syntactic features of the compression algorithm 

used to generate the substreams. With the addition of distortion 

tag values, D,$, to each frame slot, s, of each substream, +, 
as shown in Fig. 1, generic distortion-based scaling is also 

possible within the layered substream context. The idea behind 

constant distortion substream scaling is that 73; should be 

representative of the distortion expected during frame slot s,  
when the video sequence is reconstructed from the first + 
substreams only. To obtain an approximately constant level 

of distortion, no greater than some distortion target, D,  it is 

sufficient to retain only the first @ ( D )  substreams of frame 

slot s, where 

+”(DO) e min {IC, I D; 5 D>. (1) 

Of course, it is unreasonable to expect truly generic scal- 

ing entities to work with complex psychovisual measures 

of distortion. Indeed, from a philosophical standpoint, it is 

probably only reasonable to expect scaling entities which 

reside within distribution networks to deal with quantities 

directly related to the bit rate. For example, a network may 

expect to regulate the average bit rate of a variable rate 

data source using some deterministic model such as a “leaky 

bucket” [16]. Resource allocation may also be performed on 

the basis of such parameters as average and peak bit rate. For 

these reasons, we prefer to give the distortion target, D,  a 

direct interpretation in terms of average hit rate. In particular, 

we begin by defining a standard, strictly decreasing average 

rate function, R(.), which does not depend upon any particular 

video sequence or compression algorithm. The significance of 
the average rate function, E(.) ,  is that the distortion tag values, 
D;, must be selected so as to guarantee not only that video 
reconstructed from the first $”(D)  substreams in each frame 

slot, s, has an approximately constant level of distortion, with 

respect to some reference measure of subjective distortion, but 

also that the average bit rate resulting from the selection of 
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$'(Do) substreams in each frame slot, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, is equal to R(V). That 

is, we first define the standard average rate function, I?(.), and 

then require the distortion tag values to be chosen such that 

the values $'(V), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs = 1, 2, ..., yielded by (l), satisfy 

It is important to understand that the condition, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2 ) ,  need not 

necessarily interfere with the fact that reconstruction from 

the first @(V) substreams in each frame slot, s, should 

provide approximately constant distortion with respect to a 

given reference measure. Rather, (2) states that the level of 

distortion associated with target V must be adjusted so as to 

yield an average bit rate of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR(D), regardless of the particular 

video sequence or reference distortion measure concerned. 

In this way, scaling entities may remain oblivious to the 

subtleties of actual measures of subjective distortion employed 

by the compression algorithm, provided the distortion tags 

consistently satisfy their average bit rate interpretation, as 

given by (2). 

In practice, of course, the distortion target, V,  and distortion 

tag values, l?;, may only assume values from a discrete 

set. In the remainder of this paper, therefore, we adopt the 

following notation. The distortion target, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, takes on one of p 
values, d l  > d2 > . .. > d p ,  satisfying R ( d 1 )  2 R1 and 

R ( d p )  5 Rip.* In view of (l), it is sufficient to consider 

distortion tag values belonging to the augmented set, V$ E 

{do,  d l ,  . . .  , d p } ,  where do is any value which exceeds the 

largest distortion target, i.e., do > d l .  To see why this is a 

sufficient set of distortion tag values, observe that any tag 

value, D$ in the interval (d ;+ l ,  d;]  may be replaced with the 

value V$ = d;,  without interfering with the result of constant 

distortion scaling with any target, V E { d l ,  d2, . . .  , d p } .  
Note that, with the largest possible distortion target, D = d l ,  
constant distortion scaling discards all substreams after the first 

substream found to have a distortion tag value less than do. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A distortion tag value of D; = do may thus be interpreted as 

indicating that $ substreams are not sufficient to satisfy any of 

the valid distortion targets d l ,  d2, . . . d p  in frame slot s. If 

R ( d 1 )  > RI, some distortion tags must assume the value do 
from time to time. On the other hand, if R(d1) = R1, so that 

the minimum average bit rate and the minimum instantaneous 

bit rate are identical, we can have $ ' ( d l )  = 1, Vs, which 

means that the distortion tag value do need never be used. 

Although the distortion-based scaling algorithm embodied 
by (1) is necessarily very simple and its average rate inter- 
pretation, given in (2 ) ,  is independent of any particular video 

sequence or refereme measure of actual subjective distortion, 

the mechanisms used to generate appropriate distortion tags, 

V$, need not be. Techniques for generating meaningful dis- 

tortion tag values for both interactive and prerecorded video 

applications are discussed next in Section 111. 

Before concluding this section, we briefly consider the 

implications of our proposed layered substream hierarchy 

'The minimum average hit rate, R ( d l ) ,  must clearly be no smaller than the 
minimum instantaneous bit rate, R I .  Similarly, the largest average bit rate, 
R(d,), may not exceed the largest instantaneous hit rate, Rq. 

for end-to-end delay. Here we are concemed only with in- 
herent delay, by which we mean the minimum end-to-end 

delay achievable, assuming that physical transmission delays 

and computation times are negligible. Without any loss of 

generality, we may assume that video frames sF through 

(s + 1)F- 1 can be reconstructed and displayed if and only if 

the compressed data in frame slot s is available at the r e c e i ~ e r . ~  

Moreover, because we do not impose any constraints on the 

proportion of bits devoted to representing each of these frames, 

we cannot guarantee that any of them will be available for 

display until the entire frame slot has been received. Similarly, 

the compression algorithm might have to wait until the arrival 

of all source video on which the compressed data for frame 

slot s depends before it decides how best to allocate the 

R, ( F / F R )  bits in each substream, $J.4 This means that none 

of frame slot s can be generated until at least the arrival of 

source frame (s + 1)F - 1. If the compression algorithm 

employs an overlapping temporal transform, then even later 

source frames may be required before the frame slot can be 

generated. As noted at the beginning of this section, however, 

there is little reason to use anything other than a temporally 

block-based transform. In this case, by setting F equal to an 

integral multiple of the temporal block size, we can ensure 

that source frame (s + 1)F ~ 1 is always the last frame in 

a transform block so that no further delay is introduced by 

the multiresolution transform. In summary, none of frame slot 

s can be generated until source frame (s + l ) F  - 1 arrives, 

after which we must wait F frame periods for the fixed rate 

substreams of frame slot s to be completely transmitted to 

the receiver; only then do we have any guarantee that any of 

frames sF through (s + l ) F  - 1 can be decompressed and 

displayed. Consequently, frame s 3  experiences the maximum 

end-to-end delay of 2F - 1 frame periods. 

111. GENERATION OF DISTORTION TAGS 

In Section 11, we showed how constant distortion scaling 

may be performed in the context of our proposed layered 

substream abstraction. We tum our attention now to the task of 

generating the distortion tags, D$ E {do ,  d l ,  . . .  , d p } ,  which 

determine the behavior of this scaling operation. We assume 

that the compression algorithm is able to assign a reference 

distortion value, V$, to each substream, $J, in each frame slot, 

s. VG is some measure of the average distortion expected over 

frame slot s, when the video sequence is reconstructed from 

substreams 1, 2 ,  . . . , $. We refer to the reference distortion 
measure used to generate these V$ values as the V-distortion 
measure. V-distortion measures may vary from a simple mean 

squared error (MSE) estimate to more complex perceptually 

based distortion measures. The idea is to determine a strictly 

increasing map, 7, from reference distortion values, VG, to 

distortion tag values, D$ E {do ,  d l ,  . . . , d p } ,  such that con- 

stant distortion scaling is guaranteed to satisfy the average bit 

3The validity of this statement depends only on selecting an appropriate 
point at which to start numbering the frames and observing that the h m e  
slots are separated by exactly .F frame periods. 

41n our experience, premature allocation of the number of bits used to 
represent different frames can significantly degrade the overall efficiency of 
the compressed video representation. 
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rate requirement of (2). In this way, constant distortion scaling 

holds the distortion of the reconstructed video approximately 

constant with respect to the particular V-distortion measure 

selected. That is, V$ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Dl should be approximately constant 

from frame slot to frame slot, for any distortion target zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 

We begin, in Section 111-A, by considering the determination 

of this map, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, when the reference distortion values, V$, are 

known ahead of time for all substreams, q4, and frame slots, s. 
Of course, such an approach is only applicable for prerecorded 

video material of finite duration. For interactive applications, 

distortion tag values, D$, in frame slot s must be determined 

without any information about the reference distortion values 

in future frame slots, s + 1, s + 2, . . .. Section 111-B discusses 

an adaptive strategy for such applications, in which an adaptive 

map P,  from reference distortion values, V$, to distortion 

tag values, 27;. is allowed to change slowly from frame slot 

to frame slot. In this case, the rate at which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7" is allowed to 

change determines the time frame over which distortion can be 

considered to be held constant by constant distortion scaling. 

(4,  d2,  ' " >  d p } .  

A. Generation of Distortion Tug Values for Prerecorded Video 

In this section, we discuss the determination of the strictly 

increasing map, 7,  from reference distortion values, V$, 

to distortion tag values, D$,, in the case of a prerecorded 

video sequence consisting of exactly S frame slots. Because 

the video sequence is prerecorded, the set of all reference 

distortion values { V ,  I 1 5 s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 S, 1 5 $ 5 !U} may be 

employed to construct this map, 7. Our objective is to select 

the map, 7, for which the average bit rate over all S frame 

slots 

(3) 

is as close as possible to, but no larger than R(d,), for 

each distortion target d l ,  d2, . . . ,  dp .  Recall that I?(.) is our 

standard average rate function, which does not depend upon 

the video sequence or the reference V-distortion measure, 

whereas the map, 7, depends on both the video sequence and 

the V-distortion measure, through the V$ values. Because only 

a finite number of frame slots are available, and substream 

discarding allows for only a discrete set of bit rates in any 

frame slot, it is not generally possible to obtain exact equality 

between the short term average bit rate of ( 3 )  and the nominal 

average bit rate, R(D) .  As the number of frame slots, S, 
becomes increasingly large, however, the discrepancy between 

R(27) and the average in (3) rapidly becomes negligible so 

that (2) holds. 

We observe that 7 is simply a quantization operator, quan- 

tizing continuous V-distortion values onto the discrete set 
of distortion tag values, {do,  d l .  . . . , d p } .  As such, we may 
characterize Is by p thresholds, tl > t z  > . . . > t,, according 

to 

7 - l ( d z )  = (L+l ,  t,], 2 = 0, 1, 2, . . . ,  P ,  (4) 

where we have used t o  = 00 and t,+l = -00, for notational 

convenience. Thus, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 ( 7 i )  = d, whenever the reference distor- 

tion 'U is less than or equal to the threshold t ,  but greater than 

The following observation demonstrates the usefulness 

of characterizing 7 by (4). 
Observation 1: The number of substreams $"(d,) retained 

during constant distortion scaling in frame slot s, with dis- 

tortion target 2) = d,, depends only upon the threshold, t,, 
according to 

The proof of this statement may be found in the Appendix. 

This observation is particularly helpful because it indicates 

that the values, $"(d,), and hence the average bit rate of (3 ) ,  
depend only upon the threshold value t, and not on the values 

of t , ,  j # i .  In order to guarantee that this average rate is as 

close as possible to R(d,), without exceeding R(d, ) ,  we have 

simply to select 

i = l  > 2 > . . .  7 P .  (6) 

Equation (6) is easily understood by observing that the average 

bit rate associated with distortion target d, is a nonincreasing 

function of t,. Therefore, we wish to select the smallest 

possible distortion threshold, t,, such that the average bit 

rate does not exceed R(d,). Evaluation of the threshold 

values t ,  according to (6), grows rapidly in complexity as 

S becomes large. While this computation is found to be 

quite manageable for the relatively short video sequences 

investigated in Section VI-D, the adaptive approach described 

in Section 111-B is probably more suitable for very long video 

sequences, whether they are prerecorded or not. Nevertheless, 

the above algorithm serves as a useful introduction to the less 

obvious algorithm described in Section 111-B. 

B. Generation of Distortion Tag Values 
for Interactive Applicalions 

In Section 111-A, we considered the determination of a single 

map, 7, from reference distortion values, V$, to distortion tag 

values, D$,, so as to satisfy the average bit rate requirement 

of (2 )  for each distortion target, 2) E { d l ,  dz, . . . . d p } .  The 

map, 7, necessarily depends upon the set of all reference 

distortion values, V,S, over all substreams and all frame slots 

in the video sequence. Such information is not available in 

interactive applications. Thus, it is necessary to consider an 

adaptive map, I", such that V$ = 7"(V$), b'$. s and I s  
is allowed to change from frame slot to frame slot. Because 

the map is not fixed ahead of time, we are able to guarantee 

that (2) is satisfied. On the other hand, because the map is not 

fixed, the time period, over which substream scaling according 
to (1) can be considered to hold V-distortion approximately 
constant, depends upon the rate at which 7" is allowed to 

change. These concepts shall be made more concrete as we 

describe our proposed approach to the adaptation of 7". 
Before discussing the adaptation of I", we observe that the 

average rate constraint of (2) offers no indication as to the time 

over which it may be enforced. The sequences considered in 
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Section 111-A have a known finite duration of S frame-slots, 

for which the averaging period is made explicit in (3). For 

interactive applications, however, the duration of the video se- 

quence is generally unknown. Moreover, even for prerecorded 

video material, it may be necessary to allow average bit rate 

properties to be verified, e.g., by network regulatory entities, 

within a shorter time frame than the duration of the entire video 

sequence. For these reasons, we impose a tighter requirement 

on the average bit rate interpretation of the distortion targets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
27 E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ d l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAda, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . , d p } .  In particular, we require 

where B is a fixed parameter, whose interpretation will 

become apparent presently. By inspection of (7), B must have 

the dimension of time, measured in seconds. 

Dividing both sides of (7) by S and taking the limit as 

S i 00, it is clear that (7) implies (2). In order to appreciate 

the significance of (7), note that F / F R  is the duration of each 

frame slot in seconds. Thus, the left hand side of (7) is equal to 
the difference between the number of bits required by the first 

S frame slots of the scaled data stream, with distortion target 

d;,  and the number of bits which would be required if the data 

stream had a constant bit rate of R(d;). As such, (7) may be 

recognized as a leaky bucket condition [16]. In particular, (7) 

states that a leaky bucket, which is initially filled to half of a 

total capacity of 2R(d;)B bits, and which leaks at a constant 

rate of R(d;) b/s, should neither underflow nor overflow as it 
is filled with the constant distortion scaled data stream with 

distortion target, D = d;. We note that leaky bucket models 

have been proposed for average bit rate regulation in shared 

networking environments [16]. The R(&) term on the right 
hand side of (7) ensures that the bucket capacity is proportional 

to the average bit rate. The constant parameter, B, may thus be 

understood as an indication of the time frame, over which the 

average bit rate interpretation of any distortion target may be 

enforced, say by network policing entities. For example, a data 

stream, whose instantaneous bit rate continually exceeds its 

nominal average bit rate by 100% may be detected as violating 

the condition of (7) after B seconds. If it continually exceeds 

its average rate by only 50%, policing entities may identify 

it as a delinquent data source only after 2B seconds have 

elapsed. More generally, (7) states that the average bit rate, 
taken over the first T seconds, must be within BIT x 100% 

of the nominal average bit rate, R ( d ; ) .  
We are now in a position to discuss adaptation of the map, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7”. In order to appreciate our proposed approach, it is helpful 

to understand the nature of this adaptation problem. Exactly 

as in Section 111-A, 7” is a quantization operator, which may 

be characterized by the p thresholds, ts > t$ > . . .  > tg, 
such that 

( 7 ” ) - y d i )  = (t,”+l, t,”], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 = 0, 1, 2, ‘ .  ‘ , p .  

Thus, we are faced, in general, with the problem of jointly 

adapting these p thresholds, in order to satisfy the p constraints 

of (7).5 Moreover, in order to keep distortion as constant as 

possible, it is important that the map be adapted as slowly as 

possible without violating any of these p constraints. Thus, a 

truly optimal adaptation scheme would be expected to satisfy 

all p constraints tightly.6 Referring to Observation 1, we 

see that each sequence, $“ (d ; ) ,  s = 1, 2, . . ., depends only 

upon the corresponding sequence of threshold values, t l ,  s = 
1; 2 ,  . . .. Thus, each of the p constraints of (7) is independently 

controlled by one of the adaptive thresholds, tl. This suggests 

that an optimal adaptation scheme should independently adapt 

each threshold, t;, as slowly as possible without violating the 

corresponding constraint in (7), thereby ensuring that each 

of the constraints in (7) is tight. Although this reasoning 

may appear to significantly simplify the adaptation task, it 

is important to bear in mind that the p thresholds are in fact 
coupled by the p ~ 1 ordering constraints, ts > t; > . . . > ti. 
Only in this context does Observation 1 hold. As it turns 

out, the need to avoid misordering of the threshold values 

considerably complicates the map adaptation task, motivating 

the somewhat indirect approach proposed in the remainder of 

this section. 

It is convenient to represent the adaptive quantizing map, 

I“, indirectly as the composition of a fixed, continuous map, 

M ,  followed by an adaptive quantization operator, A”, i.e., 

7” = A” o M .  As we shall see, this approach allows us to 

describe a simple, stable scheme for independently adapting 

the quantization thresholds of A“, so as to avoid misordering 

difficulties, while the implications of this adaptive scheme 

for bit rate and distortion properties may be controlled by 

appropriate selection of the fixed part, M .  That is, the p - 1 

threshold ordering constraints are satisfied by appropriate 

adaptation of A“, whereas we arrange for the p leaky bucket 

constraints of (7) to be satisfied tightly by appropriate design 

of M .  
In our formulation, M is a strictly decreasing, continuous 

map; we write M(V$) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa;, V$, s, where may be 

thought of as a measure of thejdelity associated with video 

reconstructed from the first + substreams in frame slot s. The 

adaptive part, A”, is then a quantization operator, mapping the 

continuous valued fidelity values, @$, onto the discrete set of 

distortion tag values, {do,  d l ,  . . . ,  d p } ,  i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD$ = A”(@.$). 
We choose M to be a decreasing map because the ensuing 

arguments are more intuitive when the intermediate variables 

@; may be interpreted as fidelity values; specifically, fidelity 
increases with substream number, $J. Strictly by way of exam- 

ple, the reference distortion values, V$, might represent MSE, 
whereas the fidelity values, @;, might represent peak signal- 

to-noise ratio (PSNR), in which case the strictly decreasing 

map, M ,  would be given by M(w) = 10 loglo (255’ /w).  
Because M is strictly decreasing and continuous, it must be 

invertible. Thus, the task of holding V-distortion constant is 

identical to that of holding fidelity constant. 

5There is one constraint for each of the p distortion targets, 2, = 

61f this were not so, then it should be possible to hold distortion more 
constant for one or more of the distortion targets by allowing greater variations 
in the short term average bit rate reflected by the left hand side of (7). 

d l , & , . ” , d p .  



335 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATAUBMAN AND ZAKHOR A COMMON FRAMEWORK FOR HIGHLY SCALABLE COMPRESSED VIDEO 

We divert our attention now to the adaptive quantization 

operator, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA". A "  may be characterized by the p fidelity 

thresholds, us zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< a; < . . .  < U:, according to 

( A " ) - ' ( d ; )  = [a:, ai++,), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 0, 1, "., p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8) 

where we have used U;  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-00 and ai+, = 00 for notational 

convenience. Notice that the fidelity thresholds, a;, are related 

to the distortion thresholds, t;, of the composite map, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIs, 
according to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAti = M (U: ) .  The following observation demon- 

strates the usefulness of this characterization of A" in terms 

of the thresholds, U:. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Observation 2: The number of substreams, @(&), retained 

during constant distortion scaling in frame slot s, with dis- 

tortion target D = d; ,  depends only upon the threshold, a;, 
according to 

$" (d i )  = min {$ I @$ 2 a:}, i = 1, 2,  .. . , p .  (9) 

The proof is essentially identical to that of Observation 1, 

found in the Appendix. 

Observation 2 is important because it indicates that the 

validity of the leaky bucket model of (7), for any distortion 

target, D = di ,  depends only upon the corresponding sequence 

of threshold values, a;, s = 1, 2,  . . ., i.e., it does not depend 

upon the other threshold values, a;, j # i. This means that 

our adaptation problem for the map A" may be considered 

as p independent adaptation- problems: for distortion target 

d; ,  we update the fidelity threshold, a;, from frame slot to 

frame slot, according to the value of $" (d ; ) ,  in such a way 

as to guarantee that (7) is satisfied. The proposed adaptation 

scheme itself is presented in Section 111-B-1. It is important 

to remember that these p adaptation tasks are coupled by the 

p - 1 ordering constraints, as < U ;  < . . . < U:. If any of these 

ordering constraints are violated at any point, then (9) becomes 

invalid. Section 111-B-2 takes up this issue, demonstrating 

that the adaptation scheme of Section 111-B- 1 preserves this 

ordering except under rare circumstances. In these rare cases, 

a slight perturbation in the reference distortion values V$ is 

sufficient to guarantee that the ordering of the fidelity threshold 

values is never violated. Moreover, the probability that such 

corrective distortion perturbations need be applied, as well as 

the magnitude of the perturbations, both decrease rapidly to 

zero, as the time constant, B, of (7), increases. 

1) Proposed Adaptation Scheme: Our proposed adaptation 

strategy is based on the observation that increasing the value of 

a! results in an increase in the average fidelity corresponding 

to distortion tag d; ,  which tends to increase the average bit 
rate associated with the distortion target, d;. Thus, whenever 

the instantaneous bit rate associated with a distortion target di 
is found to be lower than R ( d i ) ,  we set a:+' to be a little 

larger than at; whenever it is found to be larger than R ( d i ) ,  
we set U:+' to be a little smaller than ai.  To be precise, we 

simply update each of the parameters ai according to 

i s ( d i )  

.;"=a:- [ 2 R * - 4  Z=1,2; . . ,p .  (10) 

In this case, the amount by which the ith fidelity threshold 

changes between frame slots s and s + 1 is exactly equal to 

the difference between the average and instantaneous bit rates 

associated with distortion target d, in frame slot s. We point 

out that the relative impact of this change on the threshold 

value may be made as small as desired by appropriate choice 

of the map, M .  This is because the definition of fidelity is 

controlled by M .  Scaling M causes all fidelity values to be 

correspondingly scaled. Thus, the rate at which the composite 

map 7" adapts in response to (10) depends upon the choice 

of M .  Our next task is to show how M should be selected 

in order to satisfy each of the p leaky bucket constraints in 

(7) tightly. 

Suppose the fidelity values @$ associated with each sub- 

stream, $I, are bounded according to @Tin < @$ < @;"", 'd s. 

We show now that these bounds play a key role in determining 

whether or not (7) is satisfied. Moreover, because and 

to satisfy (7) by appropriate choice of M .  We begin with the 

following observation. 

Observation 3: The fidelity threshold value, a:, adapted 

according to (10) is bounded according to a?ln 5 a,S 5 a y x ,  

where ayin and a y x  satisfy 

@ max depend upon the map M ,  we shall ultimately be able 

r w 1  

with 

and 

with 

provided the initial value, a:, is selected to be anywhere 

within these bounds. In (11) and (12), the constants &' 
and $J: represent the number of substreams corresponding 

to the maximum instantaneous bit rate not exceeding R ( d , )  
and the minimum instantaneous bit rate not less than R(d,), 
respectively. The superscripts, b and a, are intended to suggest 

the adjectives below and above, respectively. The proof of this 

observation may be found in the Appendix. 

In view of (lo), the terms [ R ( d , )  - RI ]  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[E,"=, Re - 
R ( d , ) ]  in (12) and (11) represent, respectively, the maximum 
possible increase and decrease of the threshold, a:, between 

two consecutive frame slots. The magnitude of these terms 

should, in practice, be very much smaller than the a; values 

themselves, because constant distortion scaling is only effec- 

tive if the map, A", used to generate the distortion tag values, 

changes slowly from frame slot to frame slot. As a result, the 

bounds, a?" and aFn, should usually differ only negligibly 

from the values of @;r and @Tin, respectively. 

Observation 3 allows us to transform (7) into a requirement 
on the bounds @Tax and @T"', using the adaptation scheme 



336 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 6, NO. 4, AUGUST 1996 

of (lo), as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 :  

S 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM d i )  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU," - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU;+'] - SR(di)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s=l 

= l\o,;+l - U;l\ 

* 
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu y X  - < (QTr - a;:.) + R,, 

(=2 

'ds, l < a l p .  (13) 

Note that, in accordance with the discussion above, we expect 

the right hand side of (13) to be dominated by the term 

(Q$T - (amin) in practical applications. Equation (13) in- 
4% 

dicates that the p leaky bucket constraints of (7) are satisfied 

if and only if 

i = I, 2 ,  ' " ,  p .  (14) 

Thus, each of the leaky bucket constraints is satisfied tightly, 

if and only if equality holds in (14). Again, for practical 

applications, we note that B should usually be sufficiently 

large that the term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE;"=, RE on the right hand side of (14) 
is insignificant. 

Equation (14) suggests that the leaky bucket constraints of 

(7) might be satisfied by appropriate design of the strictly 

decreasing function M ,  which maps reference distortion val- 

ues into fidelity values. The idea is to first obtain bounds, 

v,"' and V y ,  for the V distortion associated with the 

first t,b substreams of the layered hierarchy. In interactive 

applications it is not usually possible to predict the exact 

range of reference distortion values that may arise; however, 

experience may be used to identify and then enforce appro- 

priate bounds. For example, we might measure the V$ values 

over some representative collection of video sequences and 

then select VTin and ,Tax such that V$ 2 V7in for 99% 

of all frame slots s, and V$ 5 VGmax for 99% of all frame 

slots. Having selected VGmln and VGmax, using this or some 

other method, we simply hard-limit the V$ values determined 

during compression so as to guarantee that V;ln 5 V,S 5 
V r  without exception. Thus, the reference distortion values 

must occasionally be artificially constrained to lie within the 

selected bounds; however, if the training video sequences 

used to determine V+mln and V T  are truly representative, 

this hard-limiting need not significantly interfere with the 
video sequence distortion associated with constant distortion 
scaling. Having fixed these reference distortion bounds, we 

have simply to choose a continuous, strictly decreasing map, 

M ,  such that 

Fig. 2. 
values, V z  , to fidelity values, @;, . 

Piecewise linear, decreasing map, M ,  from reference distortion 

Recalling that we would like to satisfy all p leaky bucket 

constraints tightly, so as to avoid overly constraining the 

instantaneous bit rate associated with any distortion target, 

our objective is to select M such that equality holds in 

(15). Intuitively, there should be enough degrees of freedom 

to make such a selection, provided the indices $4 are all 

distinct, i.e., i # j j $4 # $7. The specific choices 

described in Section VI-A certainly have this property. In 

order to make these concepts concrete, we now describe a 

simple, piecewise linear map, M ,  to guarantee equality in 

each of the p constraints of (15). 
Consider a piecewise linear map M ,  mapping inter- 

vals [.;: wi-11  linearly onto the intervals [&I, 4i], i = 
1: 2, . . . , p ,  as shown in Fig. 2 for p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. The constants 

v; and 4; may be obtained using the following constructive 

algorithm. Fig. 2 provides a useful framework in which to 

appreciate the operation of this simple algorithm. 

Set vo = VGax and $,, = 0. That is, M(VYax) = 0. 
+I 

For each i = 1, 2 ,  . ' . ,  p 

- Evaluate amin = M ( V r )  from that part of 

the piecewise linear map constructed so far. Then 

set U; = Vmin and & = .M(Vmax +; ) + Ai, *: 
where A; [B ( F R I T ) ]  R(&) - E,"=, Re. This 
guarantees that equality holds in (15) for distortion 

target d i .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*P 

Notice that the above algorithm relies upon the fact that the 

indices $14 are distinct, so that the critical points, vi, can also 

be distinct. 

We may now interpret the parameter B in terms of the 

rate at which the thresholds at are allowed to ~ h a n g e . ~  In 
particular, suppose the instantaneous bit rate I/J'(&), associated 
with distortion target D = d;,  exceeds the nominal average bit 

rate, R ( d i ) ,  by 100% in some frame slot s. Then a: decreases 

by an amount R(d;) between frame slots s and s + 1. On the 

7Recall that B can also be interpreted as the number of seconds required 
to detect the fact that a data stream, whose instantaneous bit rate continually 
exceeds the nominal average rate by loo%, is in violation of the leaky bucket 
criterion of (7). 



337 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATAUBMAN AND ZAKHOR A COMMON FRAMEWORK FOR HIGHLY SCALABLE COMPRESSED VIDEO 

other hand, from ( l l ) ,  (12), and (15), the maximum range of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
so, in the interval from frame slot 

changes by approximately (F /FR)  (1/B) times its maximum 

range; this frame slot interval has a duration of F/FR seconds. 

More generally, if the instantaneous bit rate associated with 
distortion target zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdi exceeds ~ ( d ~ )  by 100% for T 
seconds, the &ange in a; is T / B  times its 
maximum range. this way, B may be interpreted as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan 
adaptation time constant. Large values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB allow the map zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA", 
and hence to adapt slowly, so that the V-distortion 

of reconstructed video is held approximately constant Over a 

longer period of time. on the other hand, large values of B 
imply that policing agents will require time to detect 

Clearly, these conditions are highly unlikely to occur si- 

the likelihood of finding any fidelity value @$ in the interval 

Ea:,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.?+I) approaches zero. if no value @$ 

is found in La: ,  a:+i) during frame dot s y  then (@+I - 

increases by the amount [R(di+l) -R(di)l> in accordance with 
(16), so that threshold misordering becomes even less likely in 

future frame slots. Thus, when the adaptation time constant B 
iS large, so that the relative change in fidelity threshold values 
from frame Slot to fm" Slot is Very small, many increasingly 

unlikely events must occur in succession in order to gradually 

bring a pair Of sufficiently close to allow 
misordering to occur. In fact, in Section VI we demonstrate 

experimentally that the likelihood of order violations decreases 

2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThreshold Ordering and Other Considerations: in a practical application. Nevertheless, the adaptive strategy 

described so far does admit the possibility of order violations. 

To avoid this possibility altogether, the adaptive algorithm 

a: values is z < (@$~-@$n+C~=z R ~ )  = B R ( ~ ; )  (F~/.T). multaneously. In fact, in the limit as a: approaches at+,, 

to frame slot + 1, 

delinquent data Sources in a shared networking environment. so as increases that they may never be observed 

Section III-B..~, we proposed an algorithm for adaptively 

updating the map A" in each frme slot and selecting an 
appropriate fixed map, M ,  so as to satisfy (7). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn developing 

this algorithm, we assumed that the adaptation strategy of 

(10) preserves the order a;: < a; < . . . < a; of the fidelity 

threshold values. This assumption is critical to the arguments 
above, because the fidelity threshold bounds of Observation 3 
depend upon the validity of (9) which, in turn, depends upon 
the fact that U; < a; < . . . < a;. The purpose of this section 

is to exmine the validity of this assumption and show how 

it may be enforced. 

We may assume that the initial threshold values are selected 
such that a: < a i  < . . . < ai. It is sufficient, therefore, to 

ensure that (a;;; - .$+I) > 0 whenever (a;+l - > 0 for 

i = 1, 2, . . . , p p  1. T~ this end, suppose that (a;+l > 0, 
for 1 5 < in frame slot s, and observe from (10) that 

may detect an 

the reference distortion 
and then modify 

so as to prevent the Order 
violation. To be precise, in some frame slot s, suppose that 

Of (lo) is 
about to Produce an order violation, (a::: - a:+') 5 0, for 

Some Z. The violation may be avoided by artificially modifying 

those fidelity values @$ which lie in the interval [a:, a:+,), 
moving them outside the interval. Naturally, this artificial 

modification of the fidelity values, which is equivalent to an ar- 
tifiCia1 modification Of the Original reference distortion values, 
interferes with the distortion properties of constant distortion 

scaling. The modification, however, need only be very slight 

because an impending order violation requires [a:, a:++,) to 

be a relatively small interval. Moreover, according to (15), the 

map M ,  from reference distortion values to fidelity values, is 
effectively scaled by the time constant, B. This means that 

the amount by which any reference distortion value must be 

changed in order to move the corresponding fidelity value 

outside the interval [a i ,  decreases in inverse proportion 
to the size of B. 

is 
moved immediately below" a; then $,"(d;) is incremented 

by one and (10) assigns U$+' a slightly smaller value than it 

otherwise would have; according to (9), however, the values 

Of '$'(d.i)> j f i ,  are unaffected by this modification. On 

the other hand, if the largest fidelity value in the interval 

[";I a:+;l) is increased to "?+I> then '@(di+l) is decremented 

by one and (10) assigns a::: a slightly larger value than 

it otherwise would have. Again, because > ai+.+,, this 
modification f 1. 
In this way, by slightly modifying the fidelity values @$ E 
[U;, ai+l), we are able to independently increment @(di )  
and/or decrement + ~ ( d ~ + ~ ) ,  causing - + s ( d i ) l  to 
decrease and (a;$: 
may be avoided. Because this approach gives such precise 

control Over the values of +s(d i )  and + ~ ( d ~ + ~ ) ,  it is possible 

to show that a choice exists' which does 

- " 3 )  > o, v j 3  but the adaptation 

(U:;; - U:+') = (a;+l - U;) + [R(di+l)  - R ( d ; ) ]  
v (di+l)  

E = $ " ( &  )+I 

Moreover, because (9) holds during frame slot s, the event 
'@(di) < @'(di+i)  can Occur only if a: 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@$s(dt) < @+I.' 

Thus, the term C@(d%+l) R, in (16) is zero unless a; 5 
@$ < a;+l for some substream 4. Noting that [ R ( & + ~ )  - 

R(d;)] > 0 and (a:++l - a:) > 0, (16) indicates that the event, 

(a;:; - 5 0 cannot occur unless (a;+l - a:) is very 
small already' and at least one substream, $, has its fidelity 

value, @$ E [a;,  a:+l).lo 

(16) - RE. 

If the smallest fidelity value in the interval [a:, 

5=P(d,)++, 

'To see this, observe that @ + s ( d , )  2 a:, from (9). But, if we also 
have @+s(dt )  2 a:+,, then (9) yields @ ( & + I )  = t,bS(&), contradicting 

l i i '(4) < V(dt+i) .  
9By small, we mean in relation to the overall range of fidelity values. 

Assuming that adaptation is slow, which it must be if distortion is to be held 

constant over a reasonable period of time, the relative change in any fidelity 
threshold value between frame slots must also be slow, which means that 

- a:) must be very small if these thresholds are to cross in the next 
frame slot, s + 1. 

"Of course, these conditions are necessary, but not sufficient. In fact, 
we may require several substreams, d ~ ,  to have fidelity values in the narrow 

interval, [a:, a:+,), in order for ~ ~ ~ ~ ~ ~ ~ + 1  toexceed (a:++, -a:)+ 
[R (d ,+ l )  - R ( d , ) ] .  

not dfect the Of @"(d.i), j # 

to increase, so that Order 

"By this we mean that E [a;, a:++,) is reduced just sufficiently to 
guarantee that a:pl < @$ < U:  and @$ > 
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not violate the bounds in Observation 3 and therefore does 

not disturb any of the properties of our adaptation scheme 

discussed hitherto [26]. 

So far, we have had to resort to artificial modification of 

the reference distortion values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI$ on two separate occasions, 

in order to guarantee that the leaky bucket criterion of (7) is 

satisfied: first to enforce the bounds ,'$'In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 V$ 5 VTax; 
and second to guarantee the fidelity threshold ordenng as < 
a; < . . . < a;. In many applications, it may also be desirable 

to offer hard guarantees on the maximum and/or minimum 

bit rates associated with some distortion target, D = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdi, i.e., 

Gmin(di) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 $ " ( d i )  5 gmax(di), Vs. Such guarantees may 

be accommodated using the same approach. For example, we 

might use a collection of representative video sequences to 

identify values Gmln(d;) and $max(d;), such that we expect 

to find $"'"(cl;) 5 $" (d ; )  5 gmax(d;) with a high degree 

of confidence. Due to the unpredictable nature of interactive 

video material, however, it is possible that these bounds might 

occasionally be violated. To avoid the possibility of such 

violations, we want to make sure that $ " ( d i )  = $min(d;) or 

yY(d i )  = $"""(d,), as appropriate, in any frame slot s,  where 

such a violation would otherwise occur. This hard-limiting 

of the $ " ( d i )  values may be accomplished by appropriately 

modifying the distortion tag values D;, which, in tum, is 

equivalent to appropriately modifying the reference distortion 

values, V;, prior to applying the algorithm presented above. It 

is not difficult to see that such a modification need not disturb 

the fidelity threshold bounds of Observation 3, so that the leaky 

bucket criterion of (7) is still satisfied. 

3) Summary of Proposed Distortion Tagging Algorithm: In 

summary, we have described an algorithm for adapting the 

map zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7" from reference distortion values, V$, to distortion tag 

values, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD$, such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7" depends only upon the past, i.e., 

the values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI(,,-', VG-', . . .. In order to guarantee the leaky 

bucket criterion of (7) and possibly other hard constraints 

on the instantaneous bit rate, we must occasionally make 

artificial modifications to the actual reference distortion values, 

V;. Because these modifications occur rarely and involve 

only small changes, we do not expect them to significantly 

impact the distortion properties of constant distortion scaling. 

Moreover, the V-distortion measure itself can, at best, be 

thought of as an approximate measure of actual subjective 

distortion. Of greater concern is the fact that the need to adapt 

7" means that there is a limited time frame, over which we 

may consider the distortion to be held approximately constant. 

This time frame is determined by the parameter, B. Larger 
values for B allow the distortion to be held approximately 

constant over longer periods of time, but lead to slower 

response times in policing the leaky bucket model of average 

bit rate. 

It is helpful at this point to summarize the elements of 

our proposed adaptation scheme. The first step is for all 

elements of the compression, storage, and distribution path 

associated with the compressed video to agree on a set of 
fixed parameters. These include the set of valid distortion 

targets, { d l ,  da, . . .  , d p } ,  the standard average rate function, 

R(.), the leaky bucket time constant, B,  and possibly also a 

set of rate bounds, ,@'in and $)Zmax, i = 1, 2, 

parameters establish the context within which scaling and 

regulating entities should interpret the distortion tag values 

embedded in the layered substream hierarchy. In Section VI- 

A we describe the specific parameter choices adopted for our 

experimental investigations. In addition to these commonly 

agreed parameters, the adaptation algorithm must also place 

upper and lower bounds, ,Tax and VTin, on the reference 

distortion values. Because these bounds must be known ahead 

of time, they should probably be obtained from the statistics 

of some collection of representative video sequences. During 

the distortion tagging process itself, these bounds are strictly 

enforced by hard-limiting the actual reference distortion values 

if necessary. The fixed map, M ,  may then be designed 

to satisfy (15) using the simple piecewise linear approach 

described above, or any other suitable method. The distor- 

tion tagging operation proceeds by first mapping reference 

distortion values V$ to fidelity values @; through M ,  and 

then mapping the fidelity values @$ to distortion tags D$ 
through A", which is updated after each frame slot, according 

to (10). As discussed above, the Edelity values, or equivalently, 

the reference distortion values, may occasionally need to 

be modified slightly in order to prevent misordering of the 

thresholds, as < a$ < . . .  < a i ,  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA". However, both 

the frequency and the magnitude of such modifications both 

decrease rapidly as the time constant B becomes large. 

IV. HIGHLY SCALABLE COMPRESSION 

The purpose of this section is to discuss video compression 

algorithms, which are able to generate highly scalable com- 

pressed data streams, conformable to the layered substream 

abstraction introduced in Section 11. In Section I, we referred 

to a number of existing scalable compression schemes. Since 

predictive coding techniques such as the popular motion 

compensation approach adopted by the H.261, MPEG- I ,  and 

MPEG-2 standards, are not well-suited to highly scalable com- 

pression, we must resort to some form of 3-D transform as a 

means of exploiting both spatial and temporal redundancy. It is 

important to realize, however, that a multiresolution transform 

does not in itself guarantee that the compression scheme 

will be highly scalable. Although simply discarding various 

resolution components from a multiresolution decomposition 

provides a mechanism for scaling the resolution and compu- 

tational demands associated with video decompression, it is 

inadequate for many applications, particularly those requiring 

bit rate scalability. There are two reasons for this. First, such an 

approach offers only very coarse control over the bit rate [19]. 
More importantly, however, quantization noise in the lower 

resolution components of a multiresolution decomposition is 

much more noticeable when these components are to be used 

in reconstructing the video sequence at high resolution than it 

is when only a low resolution picture is to be reconstructed. 

As a consequence of this phenomenon, any compression 

scheme which employs a multiresolution transform but offers 

only a single level of quantization for each multiresolution 

component generally operates at an unsuitable rate-distortion 

point for all but at most one of the available decompression 

resolutions [ 131. In conclusion, we should expect a successful 
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highly scalable video compression scheme to involve a 3-D 

multiresolution transform as well as a layered quantization 

and coding scheme to provide multiple levels of quantization 

for each resolution component. We refer to this latter task as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
progressive quantization and coding because it permits pro- 
gressive refinement of the accuracy to which each resolution 

component is recovered as the number of available quantiza- 

tion layers increases. Suitable multiresolution transforms are 

discussed in Section IV-A, while progressive quantization and 

coding approaches are considered in Section IV-B. 

A. Multiresolution Transforms 

The multiresolution transforms considered in this paper 

are obtained by separable application of one-dimensional 

(1 -D) filtering and subsampling operations along the temporal 

and spatial dimensions. Fig. 3 provides an example of an 

L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 3 level 1-D multiresolution transform. In the figure, 

FI and F 2  represent low and high pass analysis filters, 

respectively, while GI  and G2 represent low and high pass 

synthesis filters. The operator, 12 , denotes subsampling by a 

factor of two, i.e., discarding every second sample, while the 

operator, m, denotes up-sampling by a factor of two, i.e., 

inserting a zero valued sample between every pair of input 

samples. Together, the filtering and subsampling operators of 

the analysis system depicted in Fig. 3 decompose the input 

signal z into a collection of so-called subbands, denoted H I ,  
H2, H3, and L3 with the same number of samples as the 

original input signal. If the reconstructed signal, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5, is identical 

to the input signal z, up to a translational offset, the combined 

analysis and synthesis filter banks are said to constitute a 

perfect reconstruction (PR) subband system. Although PR is 

a desirable property, near-perfect reconstruction (NPR), for 

which subband synthesis is only approximately the inverse 

of subband analysis, is often sufficient in practice. The actual 

design of suitable analysis and synthesis filters is not discussed 

here; however [27] provides a useful reference in this area. 

We refer to the decomposition of Fig. 3 as a multiresolution 
transform because reconstruction of the signal from a partial 

collection of subbands is analogous to the conventional con- 

cept of resolution scaling. For example, if the filters, F1, F2, 
GI, and G2 are selected so as to ensure the PR property, then 

discarding the H I  subband and applying only the first two 

levels of the synthesis filter bank yields the signal, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA51 = zl; 

the same signal is obtained directly from z by lowpass filtering 

and subsampling, which are precisely the operations required 

for resolution reduction. In the same way, successively lower 

0 

resolution signals, 51 = XI, 52 = z 2 ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2s = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz3, 
may all be recovered by discarding a sufficient number of 

high frequency subbands and partially applying the complete 

synthesis filter bank. In general, each level of decomposition 

provides one new potential reconstruction resolution. In diadic 

decompositions, i.e., those in which each level divides the 

signal into only two subbands, each successive resolution 

is related to the previous one by a factor of two. Multiple 

band decompositions are also possible at each level, in which 

case the available resolutions are more widely separated. The 

popular length 8 DCT (discrete cosine transform), for example, 

may be understood as a subband system which divides the 

signal into eight subbands in only one level. In the sense 

described above, this DCT permits reconstruction at only one 

lower resolution with of the full resolution, which is obtained 

by discarding all but the DC coefficients of the DCT. The most 

natural extension of the 1-D transform shown in Fig. 3 to two 

spatial dimensions is illustrated in Fig. 4. Only the analysis 

system is actually shown, together with the spectral regions 

occupied by the various two-dimensional (2-D) subbands in 

this two level decomposition. In this case, the image is divided 

into four subbands in each level by separable application of 

1-D low and high pass filters and subsampling operators. 

Again, each level in the decomposition contributes one new 

potential reconstruction resolution. Such multiresolution image 

decompositions were initially proposed by Mallat [ 121. 
A full 3-D multiresolution video transform may be obtained 

by employing the 1-D transformation of Fig. 3 to temporally 

decompose each spatial subband of Fig. 4. Equivalently, a 
video sequence may first be subjected to a 1-D temporal 

transform, after which each temporal subband is spatially 

decomposed. Ohm [15], Singh et al. [19], and Taubman and 

Zakhor [24] have all proposed such separable 3-D multiresolu- 

tion transforms for scalable video compression. These authors 

all propose application of one or more levels of the so-called 

Haar wavelet transform for the temporal dimension. This PR 

transform is obtained by employing the simplest possible 

analysis and synthesis filters, Fl ,  F2, GI, and G2, in Fig. 3, 

with two tap impulse responses 
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Fig. 4. Two-level, 2-D, separable multiresolution transform 

It is not difficult to see that an L-level temporal Haar wavelet 

transform may be implemented by independently transforming 
successive blocks of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 L  video frames each. Consequently, we 

refer to this transform as block-based. As already mentioned 

in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, this property is useful in minimizing delay and 

memory demands associated with the transform. In fact, it is 

not difficult to show [26] that only L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-t 1 frame buffers are 

required to implement a separable 3-D multiresolution trans- 

form in which the temporal decomposition is accomplished 

using an L-level Haar wavelet transform. In addition to these 

memory and delay considerations, there does not appear to be 

any compression advantage to using more complex analysis 

and synthesis filters in the temporal dimension [15], [24]. 

The compression gain associated with multiresolution trans- 

forms such as those discussed above arises principally from 

the fact that most of the signal information is concentrated 

in relatively few resolution components,'* or subbands, a 

phenomenon known as energy compaction. The compression 

gain associated with temporal subband decomposition depends 

upon temporal smoothness of the video sequence to concen- 

trate the video information in the lowpass temporal bands. 

Unfortunately, however, spatial subband transformation is not 

a shift invariant operation, so that even small amounts of mo- 

tion in the original video sequence can result in very significant 

differences between subband coefficients, which have the same 

spatial coordinates in successive video frames. Consequently, 

the separable application of a temporal transformation to 

these spatial subbands offers little if any compression gain 

except in regions where the video sequence may be considered 

temporally stationary. To overcome this difficulty, we propose 

invertibly predistorting the video sequence in such a way as 
to increase temporal correlation without degrading the quality 

of the final reconstructed video. 

Fig. 5 illustrates this concept in the specific case of a pan 

compensating pre-distortion. The figure portrays four frames 

of a hypothetical video sequence, containing no actual scene 

motion, in which the camera pans to the right at a constant 

rate of one pixel per frame. For clarity, only one spatial 

dimension is represented. In this case, where the camera 

pans by an integral number of pixels per frame, camera pan 

"Differing sensitivities of the human visual sensitivities to the various 
resolution components can also be exploited in compression. 

compensation consists only in relabeling the pixel indices in 

each of the frames. In particular, after relabeling, the pixel 

indices associated with frame 0 run from 0-12, those of frame 

1 run from 1-13, and so on. After this relabeling, pixels with 
the same spatial index in successive video frames are highly 

correlated and are thus readily compressed within the context 

of the separable 3-D multiresolution transform. On the other 

hand, because the 3-D support of the video sequence is no 
longer rectilinear after relabeling, special care must be taken 

to preserve the PR property of the multiresolution transform 

at the boundaries of this region of support. These issues are 

discussed more thoroughly in [24]. In practical applications, 

the success of camera pan compensation turns out to be 

highly dependent on our ability to achieve subpixel accuracy. 

Fortunately, a video sequence in which the camera pans by 

a nonintegral number of pixels per frame may be converted 

into one in which the camera pans by an integral number of 
pixels per frame by first shifting each frame by at most zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIt; 
pixel in each of the horizontal and vertical directions. For 

subpixel accuracy, then, camera pan compensation requires 

interpolative shifting by at most half a pixel in each direction, 

together with pixel index relabeling. Moreover, it should be 

possible to invert this interpolative shift during decompression, 

as suggested by the Inverse Pan Compensation block of Fig. 5.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A suitable approach to invertible interpolative shifting has 

been developed in [23]; this same approach is adopted for 

all our experimental work. 

The pan compensation technique described above is illus- 

trative of a potentially broad class of motion compensated 

multiresolution transforms, in which the complete transform 

is considered as the composition of an invertible predistortion 
and a separable transform. Ohm [ lS ]  has proposed a highly 

successful motion-compensated 3-D subband transform, which 

may be understood as applying the global pan compensa- 
tion strategy above to local image blocks rather than the 

entire frame. There are many other ways, however, in which 

to generalize the concept. Firstly, small rotations may be 

accurately approximated by horizontal and vertical skewing 

of the individual frames. Reference [23] proposes invertible 

predistortion techniques to compensate for horizontal and 

vertical skews in image compression applications; however, 

the same approach may be applied to compensate for small 

rotations between successive frames for video compression. In 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. 
3-D transform. For clarity, only one spatial dimension is shown. 

Illustration of a pan compensated, 3-D multiresolution transform. formed by combining invertible pan compensating predistortion with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa separable 

this way, both translation and rotation may be compensated, 

either globally or on a block-by-block basis a la Ohm. One 

could also conceive of employing more general image warping 

techniques, such as the triangular mesh method described in 

[ 141, for example, to compensate for more arbitrary “smooth” 

motion fields between successive frames.13 Although we are 

not concerned with developing such ideas here, the important 

point to observe is that it is possible to compensate for various 

types of motion within the context of a 3-D multiresolution 

transform, without resorting to nonscalable predictive coding 

techniques such as motion compensated prediction. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Progressive Quantization and Coding 

While multiresolution transforms are clearly useful for 

achieving resolution-scalability, our key concern in this paper 

is with rate-scalability, as explained in Section 11. As already 

mentioned, highly scalable compression requires not only a 

suitable multiresolution transform, but also an efficient layered 

quantization and coding scheme for each resolution component 

or subband. Rather than being forced to select between either 

discarding or retaining each resolution component during 

scaling, a layered quantization and coding scheme offers 

several different operating points on the rate-distortion curve 

for each resolution component or subband. The purpose of 
this section is to briefly discuss layered quantization and 

coding approaches. Section V then deals with the problem of 

I3T0 accommodate expansions and contractions we may need to aban- 
don the requirement of exact invertibility or else permit some sample rate 
expansion; however, these might not necessarily be serious drawbacks. 

organizing the various quantization layers of each subband 

into fixed rate substreams with the properties required by our 

layered substream abstraction, as outlined in Section 11. 

In general, we have a set of N successively finer quan- 

tizers, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ!,  . . . ,  QL,, for each subband, b, with associated 

quantization layers, L:, . . . , Lh. Quantizer Qi operates on 

the samples in subband b to produce a sequence of quanti- 

zation symbols, s&[k] .  The symbols $ [ I C ] ,  corresponding to 

the coarsest quantizer, are coded into layer L!, while the 

additional information required to recover the symbols s& [ I C ] ,  
given that the symbol sequences s! [ I C ] ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsi [ I C ] ,  . . . , sk-l [ I C ]  are 

already available, is coded into layer Ck. In this way, the 

first n quantization layers for subband b are sufficient to 

reconstruct the subband samples to precision Q:. Thus, the 

precision to which the subband sample values are recovered 

is successively refined as the number of available quantization 

layers increases. Each quantizer Qi is characterized by its 

set of Voronoi regions, VA. As a first observation, we may 

assume, without any loss of generality, that the quantizers are 

embedded. That is, each Voronoi region, ‘U E VA, is a subset 

of one of the Voronoi regions, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU’ E VA-l. To understand 

why this assumption causes no loss of generality, suppose 

that Q!, . - . , Qh are arbitrary quantizers. Then the first n 
quantization layers in subband b together identify the region 
v E nVi,  to which the subband samples belong, where we 

define nVi 5 {vl n v2 n . . . n w, I w, E V,”}, the set of 

all regions formed by taking intersections of the Voronoi 

regions associated with the first n quantizers. Moreover, the 

quantization layer L& may be understood as conveying the 
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additional information required to specify the particular region 

in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnv; to which the subband samples belong, given that we 

already know the outcome of the first zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn- 1 quantization stages. 

Thus, we could replace quantizer QL with a new quantizer, 

say zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ:, whose Voronoi regions are those in nVA, without 

changing either the distortion achievable by decoding the first 

ri quantization layers or the additional information which must 

be specified by quantization layer C:.I4 So, from an informa- 

tion theoretic point of view, it makes no difference whether 

we consider an arbitrary set of quantizers, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe!, Q;, . . . , e",, 
or the set of embedded quantizers, e!,, Qkb, . . . , Qg, derived 

by taking the Voronoi regions for quantizer (2: to be those 

in nVL, for each n. 
The principle question with which we are concerned for 

progressive quantization and coding schemes is thus how a 
collection of embedded quantizers, e",, . . . , should be 

selected and their outputs coded so as to yield an efficient 

compression scheme. For the specific case of an independent 

identically distributed (IID) Gaussian source with the mean 

squared distortion measure or an IID Laplacian source with the 

absolute error distortion measure, Equitz and Cover [7] have 

shown that it is possible to find embedded vector quantizers 

to satisfy any arbitrary set of distortion or rate constraints, 

such that each quantizer approaches optimal rate-distortion 

performance as its vector length approaches infinity. Such the- 

oretical results are encouraging and provide some motivation 

for the tree structured vector quantization (TSVQ) schemes 

proposed by Ohm [15] and Singh et al. [19] for scalable video 

compression. Unfortunately, however, statistical independence 

is usually a very poor model for subband sample values; 

moreover, practical vector lengths for vector quantizers are 

usually very limited. For these reasons, both Singh et al. and 

Ohm observe gradual degradation in compression performance 

as the number of layers in their embedded quantization and 

coding schemes is increased. 

An alternative approach to TSVQ is to combine embedded 

scalar quantization with conditional entropy coding to exploit 

the mutual statistical information associated with the resulting 

scalar quantization symbols. In fact, an analysis by Gao et 
al. [9] suggests that scalar quantizers are particularly well 

suited to coding subband sample values. Fig. 6 illustrates the 

Voronoi regions, or quantization intervals, associated with 

a particularly useful set of embedded scalar quantizers for 

high frequency subband samples, which tend to be clustered 

about their mean value of zero. Each of these so-called 

dead zone quantizers, Qk, is characterized by a step size, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6:, and a dead zone of size U:, which is centered about 

zero. It is not difficult to see that a set of embedded dead 

zone quantizers must satisfy 6: = 6kpl/KA, and vi = 
U:-, - 2KA'S,, where K; > 0, and ITA' 2 0 are integers. In 

the example of Fig. 6, K; = 2, and KL' = 1. This selection 

is particularly attractive from an implementation perspective, 

because the entire set of quantizers may be realized simply by 

discarding least significant bits in an appropriately scaled, sign- 

magnitude representation of the subband samples. Moreover, 

I4This is because this new quantizer does not alter the set of all regions 
formed by taking intersections of the Voronoi regions associated with the first 
n quantizers. 

Fig. 6. Two layers of embedded scalar dead zone quantization. 

the analysis in [22] suggests that these scalar quantizers should 

be approximately optimal in the rate-distortion sense, provided 

the subband samples conform to a Laplacian distribution; in 

fact, high frequency subband samples often do exhibit an 

approximately Laplacian distribution [29]. 

In order for layered coding with embedded scalar quantizers 

to be efficient, it is necessary to carefully exploit statistical 

dependencies both between the quantization symbols produced 

by any given subband sample in successive quantization 
layers and also between the quantization symbols produced 

by different subband samples. Conditional arithmetic coding 

provides a powerful tool for exploiting these dependencies. 

In this case, each symbol, si[IC] produced by quantizer Qk 
is coded with respect to a conditioning context, & [ I C ] ,  which 

depends only on those symbols which we can be certain the 

decoder has already received. In a practical implementation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ , k [ k ]  forms an index into a table of conditional statistical 

distributions for &[/GI, which are obtained either by training 

the coder on a suitable ensemble of source video material in 

advance or by adapting the conditional distributions on the fly, 

based on previous occurrences of the various context values. 

The value of sk [k ]  is then arithmetically coded [21] using 

the conditional distribution indicated by ni[k]. The success of 

such a scheme depends upon careful design of the conditioning 

contexts, &: [ IC ] ,  so as to capture as much information as 

possible concerning the statistical dependencies between sg [ I C ] ,  
and previously coded quantization symbols, while keeping 

the set of potential context values and hence the size of the 

statistical tables within manageable bounds. 

In [24], we propose an efficient layered coding system for 3- 
D multiresolution transforms. In this scheme, the conditioning 

context, 4[IC], is based on: 1) the quantization symbol for 

the same subband sample in the previous quantization layer, 

i.e., [IC]; 2) the quantization symbols for spatially adjacent 

samples from the same subband in the same and previous 

quantization layers, which have already been coded; and 3) 
quantization symbols for spatially and temporally coincident 

samples in different subbands. The contexts are formed using 
only bitwise logical operations, with each context variable 

&:[ IC] taking on at most 268 different values. The layered 

coding scheme is shown to offer excellent rate-distortion 

performance with a relatively large number of layers, N M 8, 

for each subband. Moreover, if quantization symbols from 

other subbands-item 3) above-are ignored during context 

formation, the number of potential states for each context 

variable is reduced to 67, with less than 6% increase in the 

overall bit rate for a given level of distortion [26]. An extension 

to this layered coding scheme is proposed in [25], in which 
interlayer and spatial neighbor conditioning-items 1) and 2) 

above-are supplemented by temporal conditioning. Tempo- 
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ral conditioning is accomplished by including quantization 

symbols from spatially coincident and neighboring samples in 

the previous frame of subband zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb in the expression for 4[Ic]. 
We refer to this extension as interframe coding, because it 

enables temporal statistical dependencies to be exploited dur- 

ing coding. In fact, if the motion compensating predistortion 

operator discussed in Section IV-A is effective, then we can 

expect significant levels of temporal redundancy. Interframe 

coding is particularly useful for delay sensitive applications, 

where delay constraints often prohibit the use of more than 

one or two levels of temporal subband decomposition in 

the multiresolution transform [25]; efficient compression then 

depends partially on our ability to exploit temporal redundancy 

during conditional arithmetic coding. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl5 The obvious drawback 

of interframe coding is that it imposes requirements on the 

number of quantization layers available at the decoder in 

the previous frame, before the conditioning context may be 

correctly formed to decode the quantization symbols in the 

current frame. Specifically, the formulation proposed in [25] 
expects quantization layers one through n to be available in 

the previous frame before the nth layer can be decoded in the 
current frame of the same subband. This means that the number 

of useful quantization layers available at the decoder cannot 

increase from frame to frame, which clearly works against our 

goal of scalability. To avoid this difficulty, each subband must 

occasionally be coded using an intraframe coding technique 

such as that described in [24]. The implications of interframe 

coding for scalability are considered further in Section V. 

v. GENERATION OF LAYERED SUBSTREAMS 

In this section, we turn our attention to the organization 

of progressively coded subband samples into the layered 

substreams of Fig. 1. As presented in Section IV-B, each 

quantization layer C: contains the additional information 

required to reconstruct all samples of subband b at quantization 

precision zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQk, given that the previous n - 1 quantization 

layers for subband b have already been decoded. We begin 

by pointing out that arithmetic coding generates a single 

indivisible code word to represent the entire collection of 

source symbols coded. If conditional arithmetic coding is 

used to generate Ck, as discussed in Section 1V-B, then we 

must first partition the samples of subband b into smaller 

units in time and/or space, generating a separate arithmetic 

code word for each such unit, or code zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAblock. This is clearly 

necessary if we are to scale the number of quantization layers 

available to the decoder in a time-varying manner. Moreover, 

the fact that arithmetic encoding and decoding are inherently 

serial computational tasks means that parallel computational 

techniques, which are often required to achieve real time 

video compressioddecompression, can only be exploited when 

a sufficient number of independent code blocks are present 

at any point in time. For our experimental work, each sub- 
band's samples are partitioned into an integral number of 

rectangular code blocks within each frame, with no more 

"Note that context formation and conditional coding do not introduce 
any inherent delay into the compression scheme, whereas the temporal 
muftiresolution transform does, as discussed at the end of Section 11. 

~ 
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than 6000 samples each, regardless of the frame size. Each 

block's samples are represented by an individual arithmetic 

code word, by applying the conditional arithmetic coding 

techniques discussed in Section IV-B to each block of samples 

independently, as though the code block boundaries were 

frame boundaries. By limiting the number of samples assigned 

to each code block, we limit the maximum decoding time for 

each block, which is an ideal situation for parallel hardware 

or software realizations of the compression scheme. Note that 

block-based quantization and coding schemes such as TSVQ 

induce a natural code block structure, if used instead of scalar 

quantization with arithmetic coding. 

In our proposed organization, each of the substreams of 

Fig. 1 contains the code bits corresponding to an integral 

number of quantization layers from each subband code block, 

so that the first zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI) substreams in frame slot s collectively 

represent the first n $ ( s )  quantization layers of code block zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p in every frame of frame slot s.16 Our task, then, is to 

describe a rate limiting algorithm, whose function is to select 

suitable values, n$(s) ,  in each frame slot, s, such that the 

total number of bits required for these quantization layers, 

together with auxiliary syntactic constructs, does not exceed 

C81 RE (FIFR).  To make this statement more precise, let 

@(s) denote the total number of code bits and auxiliary 

header bits required at the decoder in order to unambiguously 

decode the first n quantization layers of code block ,f? in every 

frame of frame slot s .  Our objective is to select n$(s)  values 

for every frame slot, s, code block, 0, and substream, $, such 

that 

The selection of the n$ (s) values is additionally constrained 

in the following two respects: 1) n $ ( s )  must be at least as 

large as R $ - ~ ( S ) ;  and 2) n$(s)  may not exceed n$(s  - 1) 

for any code block whose subband samples are interframe 

coded in the first frame of frame slot s .  This latter requirement 

arises from the fact that the first rL quantization layers of 

an interframe coded block, 0, are decodable only if at least 
n quantization layers of code block ,8 are available in the 

previous frame, as described in Section IV-B. The requirement 

that n$(s)  5 n$(s - 1) for blocks, 0, whose first frame in 

frame slot s is interframe coded, is necessary to ensure that all 

code bits contained in the first 4 substreams of frame slot s 
may be decoded, provided at least 4 substreams were received 

in frame slot s-1. This means that all code bits remaining after 

constant bit rate substream scaling must be decodable. On the 

other hand, when constant distortion scaling is employed the 

number of substreams, $'(Do), available in frame slot s may 

be larger than the number $'-l(D) available in frame slot 
s - 1, in which case some of the available code bits in frame 

I6Note that we do not allow the number of quantization layers associated 
with any code block p to vary from frame to frame within a frame slot. This 
is primarily to minimize the syntactic overhead associated with our scalable 
data streams. 
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slot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs may not be dec0dab1e.I~ The two constraints above may 

be summarized as follows: 

(19) 
n + b )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 2n+&), P v+, P,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs 

n$(s )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI .,"(.), v+, P ,  s (20) 

where 

n$ ( s  - 1) , if interframe coded 
in first frame of slot s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

00, otherwise. 

The particularly restrictive nature of (20) forces us to resort to 
intraframe coding of subbands from time to time, as mentioned 
in Section IV-B. The distribution of such intraframe coding 
events is indicated in Section VI for particular highly scalable 
compression algorithms. 

Naturally, there are many potential combinations of n$ ( s )  
values satisfying (18)-(20), among which we would prefer 

to make the selection which minimizes distortion in the 

reconstructed video sequence. Useful multiresolution trans- 

forms typically correspond to projections onto orthonormal 

or approximately orthonormal sets of basis vectors, which 

span the space of all video signals." Thus, it is usually a 
simple matter to obtain an accurate estimate, D t ( s ) ,  for the 
independent contribution of each code block, P, to the mean 
squared reconstruction error over frame slot s, when only n 
quantization layers of block p are decoded in each frame of the 

frame slot. In theory, the BE(s), and @(s) values may be 

used to minimize MSE in the reconstructed video sequence 

subject to (18)-(20). Unfortunately, however, the discrete 

parameter space renders exact optimization a computationally 

infeasible task, even for a relatively small number of code 

blocks. In view of this obstacle, we propose the following rate 

limiting algorithm. 

1) Find the largest value of N+ such that 

and set T equal to the left hand side of the above 

inequality, where KN+ is given by 

K N ,  = 5 N+)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2)  Sort the collection of code blocks so that block 

precedes block ,& whenever n$-l(s) = NQ + 1, and 

T $ ~ ( S )  5 N+ or, failing this, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
17As we shall see in Section VI, the nature of the variable hit rate 

traffic generated by constant distortion scaling ensures that the number of 
undecodahle code bits is smaller than one might at first suppose. 

I8This is certainly true for the 3-D transforms employed in [19], [24], and 
[25] and approximately true for the transforms employed by Ohm in [15]. 

3) For each code block, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 = 1, 2, . . ., sorted as above 

P * If P 

T + B&++l(s) - B&+(s). 
Otherwise, set n $ ( s )  = min {N+, u,$(s)}.  

K N + ,  and T + B$L+l(s) - BN,(s) L 
Re F/FR,  set T L $ ( S )  = N+ + 1, and T = 

In each frame slot s,  the proposed algorithm is applied to 

substreams + = 1, 2 ,  . " ,  Q in succession. As we shall see, 

this algorithm is best understood as an attempt to allocate 

every code block exactly the same number of quantization 

layers, N+. The appropriateness of this objective depends 
upon suitable selection of the sets of quantizers associated 
with each subband. Higher priority may be assigned to lower 
frequency subbands, b, for example, simply by assigning them 
finer quantizers, QL. Step 1 of our proposed rate limiting 
algorithm finds the maximum value for N+ such that each 

code block, 0, which is not otherwise constrained by (20), may 

be allocated n$ = N$ quantization layers without violating 

the rate limit, (18). This first step of the algorithm is expressed 

in terms of the set KN+ , of all code blocks which may not be 

allocated more than N$, quantization layers without violating 

(20). That is, KN+ contains those code blocks, /3, which 

may not be allocated more than v,$(s) 5 N+ quantization 
layers without violating interframe coding dependencies. In 
step 1, T is assigned to be the number of bits in frame slot 

s, required to represent U,$(.) quantization layers of all code 

blocks, P E K N ,  and N+ quantization layers of all remaining 

code blocks. 

Because the fixed substream bit rates R+ are not generally 

related to the number of bits generated during layered coding 

of the code block samples, we cannot expect T to be equal 

to, or even very close to the limit, E:==, RE (F /FR) .  In 

order to make better use of available resources, therefore, 

the second and third steps of our proposed rate limiting 

algorithm are responsible for selecting some blocks, p K N ~ ,  
for allocation of an extra quantization layer, i.e., n $ ( s )  = 
N+ + 1. Step 2 establishes an order in which blocks are to 

be considered for allocation of this extra quantization layer. 

It can happen that some code block, D, has already been 

allocated N+ + 1 quantization layers in the previous substream, 

i.e., n$-l(s) = N+ + 1, in which case we must select 

.E(.) = N+ + 1 in order to satisfy (19). This is managed 

by ensuring that such code blocks appear first in the order 
established during step 2. The remaining code blocks, P, 
are organized in order of increasing rate-distortion gradient, 

that the blocks, P, which are allocated an extra quantization 

layer, are to be those which offer the greatest decrease in 

reconstruction MSE, D$+(s) - D t  ++ l(s), relative to the 

number of additional bits, B$++,(s) - B$+ (s), required for 
this extra quantization layer. Finally, in step 3 of our proposed 

rate limiting algorithm, code blocks /3 KN, are examined 
one at a time, in the order established during step 2, to be 

allocated the additional quantization layer, n $ ( s )  = N+ + 1, 

P$++,(s) - D$+ (41/~3$++~(4 - G+(sj1.19  his means 

I9T0 avoid confusion here, note that the rate-distortion gradient is always 
negative. That is, distortion always decreases as the bit rate increases. 
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11, 

R+ (kbps) 

R(-$) (kbps) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
$ 

(kbps) 

R(-$) (kbps) 

1 2 3 4 5 6 7 8 
63.36 63.36 63.36 63.36 63.36 63.36 126.72 126.72 

63.36 126.72 190.08 253.44 316.80 380.16 506.88 633.60 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 
253.44 253.44 253.44 253.44 380.16 380.16 506.88 506.88 506.88 !506.88 760.32 760.32 1013.76 1013.76 

1774.08 2027.52 2280.96 2534.40 2914.56 3294.72 3801.60 4308.48 4815.36 5322.24 6082.56 6842.88 7856.64 8870.40 

so long as the limit Eftl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARt (.F/Fn) is not exceeded. In this 

operation, T keeps track of the total number of bits allocated 

to all code blocks in the frame slot. It is interesting to note 

that in our experimental investigations, the final value of T is 

virtually always within 1% of the limit, E;"=, RE (FIFE).  
In the above discussion, we have made no mention of 

the different roles played by luminance and chrominance 

component code blocks during rate limiting of color video 

signals. In fact, the above algorithm is only suitable for 

monochromatic compressed video. In [26] we describe a 

modification to this rate limiting approach, for full color 

compressed video. Importantly, this modified algorithm does 

not depend on an additive model for the distortion associated 

with the luminance and chrominance components. 

VI. EXPERIMENTAL WORK 

In this section, we present experimental findings to indicate 

the performance of our proposed layered substream abstrac- 

tion, with both constant bit rate and constant distortion scaling 
criteria, when used in conjunction with a suitable highly 

scalable compression scheme. In view of the generality of the 

material presented in Sections 11, 111, and IV, it is appropriate 

that we first offer some specific details of the context in which 

these experimental results are to be understood. To this end, 

Section VI-A discusses the specific parameter choices adopted 

for the layered substream hierarchy itself, while Section VI-B 

outlines the key features of the highly scalable video compres- 

sion algorithms used to generate experimental substreams. The 

actual experimental findings are then presented in Sections VI- 

C and VI-D. 

A. Specific Choices for the Layered Substream Hierarchy 

The parameter choices outlined in this section are use- 

ful both as a framework within which to understand the 

experimental results of Sections VI-C and VI-D and as a 

specific context within which to appreciate the more abstract 

discussion of distortion tag generation in Section 111. For 

convenience, we select distortion target values from the set 

{-1, -2, . . . , -q} of negated substream numbers, i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdi = 
- i ,  i = 1, 2, . . .  , p = !U, and we define the standard average 

rate function, R(D), to be 

-D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
*=l 

This definition has the interesting consequence that an average 

bit rate of R(D) may be obtained either by constant distortion 

scaling, in which all but the first $'(D) substreams are 

discarded in each frame slot, s,  or by constant rate scaling, 

in which all but the first zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-D substreams are discarded in 

every frame slot. In the latter case, of course, the average and 

instantaneous bit rates coincide. Thus, exactly the same set 

of average bit rates is available for both constant distortion 

scaling and constant rate scaling. Note that the standard 

average rate function, R(.), defined in (21), is also useful 

for expressing the constant bit rate associated with the first 
4 substreams of our layered hierarchy, i.e., R(-$). This dual 
role of the rate function R(.) is exploited in the notation of 

Table I, which indicates the substream bit rates, R+, and the 

associated cumulative substream bit rates, R( -$), adopted for 

our experimental investigations. The standard rate function, 

R(.), defined in (21), has two other important consequences. 

First, because the minimum average bit rate, R(dl), is identical 

to the minimum instantaneous bit rate, R I ,  the set of potential 

distortion tag values and the set of distortion targets are 

one and the same. That is, the extra distortion tag value, 

do, is superfluous, as explained in Section 11. The second 

consequence of (21) is that the parameters, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$p, and $:, of 

(11) and (12), satisfy $p = $: = - i ,  V i .  This simplifies (15) 
and hence construction of the fixed part, M ,  of the distortion 

tagging map, as described in Section 111-B. 

For simplicity, we consider only a simplistic V-distortion 

measure, which is based around MSE. Recall that the V- 

distortion measure forms the starting point in distortion tag 

generation, as discussed in Section 111. The multiresolution 
transform described in Section VI-B effectively projects the 

source video sequence onto a nearly orthonormal set of ba- 

sis vectors, which span the space of all video sequences. 

Consequently, a good approximation, V;", to the MSE of 

any color component, e, over frame slot s, for the video 

sequence reconstructed from substreams 1, 2, . . . , $, may 

readily be obtained by summing MSE contributions from 

individual subband samples. These MSE contributions may 

be determined during compression with little computational 

overhead. The only remaining task is to form a single distortion 

value, V$, from the three color component distortions, V;", 

VG'", and VG'". To that end, we, somewhat arbitrarily, adopt 

the formulation 

v s  + - ~ V S , Y  + + ( V , " > " + v , " q  

which reflects a view that the chrominance components should 

have less impact on subjective distortion than the luminance 

component. This MSE based V-distortion measure is partic- 

ularly useful for numerically demonstrating the performance 
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of constant distortion substream scaling, even if it does not 

closely reflect actual subjective distortion. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASpecijc Choices for Highly Scalable Compression 

For the investigations here, we adopt five examples from 

the class of highly scalable compression algorithms described 

in [25]. These algorithms all employ a separable 3-D multires- 

olution transform, with four levels of the spatial transform2’ 

illustrated in Fig. 4 and L levels of the 1-D transform in Fig. 3 
applied temporally to each spatial subband; the parameter 

L takes on values of 1, 2, and 3 in our various example 

compression algorithms, as discussed shortly. The simple two 

tap filters of (17) are adopted for the temporal direction 

so that our temporal transform is an L-level Haar wavelet 

transform. Recall from Section IV-A that our multiresolution 

transform is then block-based in time, with a block size of 

2L frames. For spatial subband filters, we adopt the nine tap 

NPR subband filters of Adelson et al. [l], with symmetric 

extension [20] applied at the frame boundaries to avoid sample 

rate expansion. These filters are selected because they lead to 

a nearly orthonormal set of transform basis vectors, which 

is a useful property when working with the MSE distortion 

metric, as proposed in Sections V and VI-A. The 3-D mul- 

tiresolution transform is supplemented by the invertible pan 

compensating predistortion operator discussed in Section IV- 

A to improve exploitation of temporal redundancy in scenes 

exhibiting global translational motion. 

From the layered quantization and coding approaches 

touched upon in Section IV-B, we adopt the embedded scalar 

quantizers illustrated in Fig. 6, together with the conditional 

arithmetic coding contexts described in [25]. Interframe coding 

is applied to the subbands of low temporal frequency, while 

the subbands of high temporal frequency are only intraframe 

coded. This is appropriate, in view of the low interframe 

temporal redundancy typically exhibited by high temporal 

frequency subbands. Noting that our experimental comparisons 

in Sections VI-C and VI-D are to be based on MSE, or 

its derivative, PSNR,21 the optimal approach to quantizer 

parameter selection, within each color component, is to use 

exactly the same set of quantizers for every subbandZ2 [28, sec. 

11.21. To be precise, all luminance subbands b have a base 

quantization step size of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 512, while all chrominance 

subbands b have a base quantization step size of 6: = 400. 

This ratio of luminance to chrominance quantization precision 

is found empirically to offer approximately the same relative 

luminance and chrominance distortions as those experienced 

with the MPEG- 1 compression standard. Quantization step 

sizes in the remaining quantization layers are given by 

twice the corresponding step size, i.e., U: = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas:, Vri ,  b. The 
6; p n g a  y n, b, while the quantizer dead zones are set to 

20Actually, we apply all four levels of spatial decomposition to the 
luminance component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the video signal, but only three levels to the 
two chrominance components. This is motivated by the fact that the video 
sequences with which we work already have their chrominance components 
subsampled by a factor of two in the horizontal and vertical directions. 

2 1 ~ ~ ~ ~  = i o  iog,, 2552/MSE. 

22This comment is based on the fact that our subband filters are normalized 

so that the subband transformation basis vectors are very nearly orthonormal. 

arithmetic coding probability tables discussed in Section IV-B 

are obtained by training the compression scheme using the 

three I S 0  standard test sequences, “pingpong,” “football,” and 

“flower garden,” at SIF525 r e s o l ~ t i o n . ~ ~  

As mentioned already, we consider five examples from the 

class of compression schemes outlined above; these have the 

parameters shown in Table 11. The individual algorithms in this 

table are distinguished on the basis of the number of levels of 

temporal subband decomposition, L, the number of frames, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F, in each frame slot and the intraframe coding interval, Z, 
for subbands of low temporal frequency, as shown in the 

first three columns of Table 11. Although the low temporal 

frequency subbands are generally interframe coded, the need 

to occasionally intersperse frames which are purely intraframe 

coded has already been established in Section V. We adopt 

the following policy. Within each frame slot, all but the first 

frame of each low temporal frequency subband are coded 

using interframe techniques to exploit temporal redundancy; 

the first frame is also interframe coded, except in every Zth 

frame slot, where intraframe coding alone is employed. Larger 

values of Z allow higher compression efficiency during periods 

of reasonably constant scene activity, but can excessively 

constrain the bit rate limiting algorithm of Section V when 

scene activity is highly variable. To understand this, con- 

sider the disruptive effect of a scene change during frame 

slot s ,  and assume that a fixed number, $I, substreams is 
available for decompression in each frame slot, i.e., constant 

bit rate scaling. Because the scene change in frame slot s 

reduces compression efficiency, we expect that the number of 

quantization layers, n$ ( s ) ,  associated with each code block, 

/3, in the first + substreams of frame slot s should be less 

than the corresponding number of layers, n$(s  - l), in the 

previous frame slot. For those code blocks, /3, associated 

with low temporal frequency subbands, the number of layers, 

n$ ( s  + 1) , n$ ( s  + 2 ) ,  . . ., in subsequent frame slots may not 

increase above the relatively low value, n $ ( s ) ,  forced by the 

scene change in frame slot s,  until block ,8 is next intraframe 

coded. This is a consequence of the layer allocation constraint 

(20). Thus, smaller values for Z allow reconstructed video 

quality to recover more quickly from the disruptive effects of 

the scene change, whereas larger values for Z allow for more 

efficient compression during reasonably continuous levels of 

scene activity. The intraframe coding intervals appearing in 

the last four rows of Table I1 are found to offer a useful 

compromise for scenes with moderately varying levels of 

activity, such as the standard I S 0  test sequence, “pingpong.” 

The compression algorithm corresponding to the first row of 

Table I1 is exceptional in that it involves neither temporal 

subband decomposition nor interframe progressive coding. 

This purely intraframe compression algorithm provides us with 

a useful gauge of the degree to which the remaining four 
video compression algorithms are able to exploit temporal 
redundancy. 

The fourth column in Table I1 indicates the inherent end-to- 

end delay, derived at the end of Section 11, based on a video 

23That is, 30 progressively scanned 352 x 240 pixel frames per sec- 
ond, with chrominance components subsampled by two in the vertical and 
horizontal directions 
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TABLE I1 
EXAMPLES FROM OUR CLASS OF SCALABLE COMPRESSION ALGORITHMS. THE 

THIRD COLUMN INDICATES THE INTRAFRAME CODING INTERVAL FOR SUBBANDS 

OF LOW TEMPORAL FREQUENCY, EXPRESSED zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIN TERMS OF FRAME SLOTS 

medium 

frame rate of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFR = 30 f/s, while the fifth column suggests a 

classification based on this delay. The last column in Table I1 
indicates memory requirements, expressed in terms of the 

number of frame buffers required during compression or de- 

compression. These memory requirements may be understood 

from the fact that each algorithm requires L + 1 frame buffers 

to implement the multiresolution transform, as mentioned in 

Section IV; the last four algorithms in Table I1 require an 

additional frame buffer to store subband samples from a 

previous frame, which are used in forming the conditioning 

contexts, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ! ~ [ k ] ,  required for interframe coding. Note that 

we do not consider the relatively small amount of memory 

required for temporary storage of compressed data; nor do 

we consider any storage required to determine camera pan 

parameters, as described in [24]. 

C. Investigation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Constant Rate Scaling 

In this section, we investigate the performance of the five 

compression algorithms listed in Table I1 in the context of 

constant bit rate (CBR) scaling, via the simple substream 

discarding approach discussed in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. This part of our 

investigation is important because it indicates the perfor- 

mance of particular compression algorithms when subjected 

to the constraints imposed by the proposed layered substream 

abstraction. These constraints are manifested in (19) and 

(20). We begin by investigating the opportunity to exchange 

compression performance for system memory requirements 

when end-to-end delay is not of great concern. To this end, 

we consider the algorithms listed in the first, fifth, and fourth 

rows of Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, which require 1, 2, and 5 frame buffers, re- 

spectively. The rate-distortion curves of Fig. 7 indicate overall 

luminance PSNlR values, associated with the SIF525 res- 

olution “pingpong” sequence, when reconstructed from the 

compressed data streams generated by these three algorithms, 

after CBR substream scaling. Fig. 7 is particularly interesting 

because it indicates the degree to which our interframe pro- 

gressive coding scheme is able to exploit temporal redundancy. 

The compression algorithm corresponding to the last row of 

Table I1 exploits temporal redundancy by interframe coding 

alone, having L = 0. It is interesting that the compression 

performance of this algorithm appears to be approximately 

intermediate between that of pure intraframe compression, 

corresponding to the first row of Table I1 and that of the 

algorithm listed in the fourth row of Table 11, which employs 

both interframe coding and L = 3 levels of temporal subband 
decomposition to exploit temporal redundancy. 
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Fig. 7. Luminance PSNR of “pingpong” sequence, reconstructed after CBR 
substream scaling, using the first, fourth, and fifth algorithms of Table 11. 
Curves identified by memory requirements, expressed in terms of frame 
buffers. 
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Fig. 8. Luminance PSNR of “pingpong” sequence, reconstructed after CBR 
substream scaling, using the first four algorithms of Table 11. Curves identified 

by end-to-end delay classification. Specific MPEG- 1 PSNR values also shown, 
for reference. 

The algorithms listed in the first four rows of Table I1 are 

useful for investigating the opportunity to exchange compres- 

sion performance for end-to-end delay. The rate-distortion 

curves of Fig. 8 indicate overall luminance PSNR values, 

associated with the “pingpong” sequence, when reconstructed 

from the compressed data streams generated by these four 

algorithms, after CBR substream scaling. The curves of this 

figure clearly indicate a law of diminishing returns as delay is 

exchanged for compression within the framework established 

by our class of scalable compression algorithms and the pro- 

posed layered substream abstraction. Fig. 8 also indicates the 

luminance PSNR values obtained at three fixed bit rates with 
an implementation of the nonscalable MPEG- 1 compression 

standard.24 For reference, the inherent delay associated with 

this compression algorithm is equal to five frame periods,25 

which falls between the inherent delays of the low and medium 

delay compression algorithms of Table 11. As seen in Fig. 8, 

the MPEG-I PSNR figures also fall between those of the 

24 The software MPEG-1 implementation, provided by Bellcore, has the 
following parameters: 15 frame COP; 2 B-frames per I- or P-frame; half 
pixel motion compensation; and a rate control buffer capacity of three frame 
periods. 

25Two frame periods, because two B-frames intersperse every pair of I- or 
P-frames, plus three frame periods from the rate control buffer. 
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Video Sequence Component 0.5 Mbps 1.0 Mbps 
MPEG Low Medium MPEG Low Medium 

(dB) (dB) (dB) (dB) (dB) (dB) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
‘ pingpong ’ Y 28.39 -1.57 $0.04 31.15 -0.59 +0.56 
256 frames U 36.11 -0.79 -0.23 38.19 -0.69 -0.14 

zoom, pan, still V 37.20 -0.17 +0.07 39.16 -0.13 -0.25 

‘football’ Y 28.62 +0.24 +0.44 31.46 $0.37 +0.53 
160 frames U 36.22 +1.86 t1.73 38.28 t1.22 +1.26 
panning v 33.34 +2.22 t2.08 35.92 +1.58 +1.58 

‘flower garden’ Y 22.02 -2.94 -2.09 25.43 -3.68 -2.94 
128 frames U 30.95 -0.80 -0.27 32.92 -1.92 -1.46 
translating v 27.87 -0.76 -0.47 30.58 -2.48 -2.09 

TABLE I11 
COMPARISON OF MPEG-1 IMPLEMENTATION FROM BELLCORE, WITH LOW AND MEDIUM DELAY ALGORITHMS OF TABLE 11. PSNR VALUES FOR MPEG-1 APPEAR IN 

‘‘MPEG” COLUMNS, WHILE, FOR THE REMAINING ALGORITHMS, IMPROVEMENTS IN PSNR OVER MPEG-1 APPEAR IN THE “LOW” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND “MEDIUM” COLUMNS 

1.5 Mbps 
MPEG Low Medium 

(dB) (dB) (dB) 
32.80 -0.01 +0.88 
39.34 -0.18 +0.39 
40.17 +0.21 +0.50 

33.26 +0.79 +1.05 
39.34 +1.15 +1.08 

37.32 +1.65 +1.62 

27.16 -3.22 -2.25 
34.12 -2.17 -1.70 
32.25 -2.92 -2.36 

low and medium delay scalable compression algorithms, in 

the case of the “pingpong” sequence. Note that the curves of 

Figs. 7 and 8 are not strictly continuous: they are generated 

by connecting discrete points, corresponding to the available 

bit rates listed in Table I. 

Table I11 compares the compression performances of the 

nonscalable MPEG-1 algorithm and the scalable low and 

medium delay algorithms of Table 11, using all three “ping- 

pong,” “football,” and “flower garden” sequences, considering 

chrominance as well as luminance component PSNR values. 

This table also indicates the form of camera motion present 

in each sequence. Although the scalable compression algo- 

rithms considered here are able to outperform MPEG-1 in 

compressing the “football” and “pingpong” sequences, the 

MPEG-1 algorithm is clearly superior, from the point of view 

of raw compression performance, in the case of the “flower 

garden” sequence. This is readily understood from the fact that 

scene motion in the “flower garden” sequence consists entirely 

of camera translation, which is not well approximated by a 

camera pan model. Nevertheless, the reader is reminded that 

the invertible predistortion concept introduced in Section IV-A 

need not be limited simply to camera pan compensation. This 

restricted case of global translational motion compensation is 
considered here only for simplicity. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. Investigation of Constant Distortion Substream Scaling 

The rate-distortion curves of Figs. 7 and 8 correspond to 

CBR subsets of the layered substream hierarchy. We tum our 

attention now to the variable bit rate (VBR) subsets generated 

by constant distortion substream scaling, as described in 

Section 11. We begin by considering distortion tags, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD;, which 

are generated according to D$, = 7(V$), where the reference 

distortion values, V$, are obtained from the MSE V-distortion 

measure, described in Section VI-A, and the fixed map, 7, is 

generated ahead of time for each particular video sequence, 
as described in Section 111-A. This approach to distortion tag 

generation is suitable only for prerecorded video material. It 

is of particular interest for revealing the performance limits 

associated with constant distortion scaling. This is because the 

adaptive maps, I“, described in Section 111-B, converge to the 

appropriate fixed map, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7,  in the limit as the adaptation time 

constant, B, and the ratio SIB both tend to infinity, where s 

is the frame slot number. Toward the end of this section, we 

investigate the behavior of adaptive maps, I”, with finite time 

constants, B, and finite video sequence support. 

The rate-distortion curves of Figs. 9 and 10 plot the approx- 

imately constant luminance PSNR as a function of average bit 

rate, R ( D ] ,  for distortion targets, D = -1, -2, . . . ,  -21.26 

For each of these mean bit rates, the instantaneous bit rate 

may take on any of the 28 values appearing in Table I. The 

figures indicate compression performance associated with the 

algorithms in rows one and three of Table 11, these being 

representative examples of scalable intraframe compression 

and delay and memory sensitive scalable interframe com- 

pression, respectively. Source material for Fig. 9 is the 256 
frame SlF52.5 resolution “pingpong” sequence. Fig. 10, on the 

other hand, indicates compression performance over a much 

longer video sequence of 2500 frames, taken from the movie 

“Raiders of the Lost Arc.” This sequence is composed of 

three contiguous scenes, digitized from laser disc and restored 

to the original motion picture frame rate of 24 frames per 

second by discarding frames which had been duplicated during 

laser disc recording. The resolution in this case is 320 x 
240 pixels, with chrominance components subsampled by two, 

both horizontally and vertically. Scene content for the “Raiders 

of the Lost Arc” sequence varies in activity from a wild street 

fight to conversational excerpts. Figs. 9 and 10 both indicate 

that scalable interframe compression requires approximately 

0.4 to 0.6 times the average number of bits required by 

scalable intraframe compression, to compress the respective 

sequences with the same, roughly constant value of MSE 

distortion. This observation holds over the most interesting 

range of luminance PSNR values, of about 30-40 dB; the 

lower end of this range corresponds to noticeable, but arguably 

tolerable distortion, while the upper end corresponds to near 

visually perfect reconstruction. Convergence of the intraframe 

and interframe compression curves in Fig. 10, at very high 

PSNR, is largely due to digitization and laser disc recording 

noise levels, which are on the order of 40 dB PSNR.27 

26These first 21 of the 28 valid distortion targets, indicated by Table I, 
are sufficient to reveal the most interesting region of the rate-distortion 
characteristic. 

27Noise power is estimated from the MSE between digitized copies of 
those frames, which had been repeated in the original laser disc recording for 
compatibility with NTSC’s 30 Hz frame rate. 
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Fig. 9. 
identified by end-to-end delay classification. 

Luminance PSNR of “pingpong” sequence, reconstructed after VBR substream scaling, using the first and third algorithms of Table 11. Curves 
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Fig. 10. Same as Fig. 9, but for “Raiders of the Lost Arc” sequence. 

For further insight into the effectiveness of constant dis- 

tortion scaling, Fig. 1 1 provides frame-by-frame luminance 

PSNR curves for the “pingpong” sequence, reconstructed 

from both CBR and VBR scaled substream hierarchies, at 

an average rate of R(-14) = 1.52064 Mb/s. The same 

scalable intraframe and interframe compression algorithms, 

used to generate Fig. 9, are investigated here. It is clear that 

the “constant” distortion VBR scaling approach significantly 

reduces fluctuations in the PSNR from frame to frame. Re- 
maining variations are mainly attributable to the discretization 

inherent to our substream scaling approach: both instantaneous 

bit rates and distortion tag values belong to discrete !U- 
element sets. The overall subjective appeal associated with 

VBR scaling is also found to be significantly higher than 

that associated with CBR scaling at the same average bit 

rate. Subjective improvements are particularly noteworthy 

for interframe compression during the zooming part of the 
“pingpong” sequence, this motion being poorly described by 

our camera pan model. Fig. 12 indicates the frame-by-frame 

instantaneous bit rates corresponding to the VBR curves in 

Fig. 11. Fig. 12 clearly reveals the heightened bit rate require- 

ments associated with interframe compression during camera 

zoom and scene changes. Instantaneous bit rate distributions 

for the much longer “Raiders of the Lost Arc” video sequence, 

are revealed in the histograms of Fig. 13(a) and (b). These 

histograms correspond to average bit rates of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA’( -7) = 506.88 

kb/s for interframe compression and R(-11) = 1013.76 

kb/s for intraframe compression, respectively, at which both 

algorithms give roughly similar, “low” levels of distortion. 

The histograms indicate that VBR scaling of a realistic video 

sequence can lead to widely distributed instantaneous bit rates. 

As discussed in Section V, our algorithm for packaging code 

block quantization layers into substreams guarantees that all 

code bits remaining after the application of CBR scaling may 

be used in the decoding process. On the other hand, when 

constant distortion scaling is employed, it can happen that 

more quantization layers are available for some interframe 

coded code blocks in frame slot s, than were available in frame 

slot s - 1. Due to the interframe dependencies associated with 
generating the conditioning contexts for progressive interframe 

coding, these additional quantization layers cannot be decoded, 

in which case the associated code bits should be regarded as 

wasted transmission bandwidth. Of course, the compression 

algorithms corresponding to the first and last rows of Table I1 
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Fig. 11. 
first and third algorithms of Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. Average bit rate is 1.5 Mbh. Curves identified by end-to-end delay classification and scaling criterion. 

Frame-by-frame luminance PSNR for “pingpong” sequence, reconstructed from CBR and VBR scaled substream hierarchies generated using the 

Rate (Mbps) 
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Fig. 12. 
the first and third algorithms of Table 11. Average bit rate is 1.5 Mb/s. Curves identified by end-to-end delay classification. 

Frame-by-frame instantaneous bit rates, corresponding to VBR scaling of the substream hierarchies generated from the “pingpong” sequence, using 

do not suffer from this bandwidth wastage problem, because 

the first frame of each frame slot is completely intraframe 

coded, i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ = 1, in these algorithms. The remaining three 

algorithms of Table I1 do suffer some bandwidth wastage 

during constant distortion scaling. In particular, Fig. 14 reveals 

the overall percentage of code bits wasted by such unsatisfied 

interframe dependencies, when constant distortion scaling is 

applied to the substreams generated by the medium delay 

scalable compression algorithm of Table 11, for both the “ping- 

pong” and “Raiders of the Lost Arc” video sequences. The low 

levels of wasted transmission bandwidth indicated by Fig. 14 

may be understood from the following argument. Equation 

(20) guarantees that unsatisfied dependencies, resulting in 

undecodable bits in frame slot s, may only exist provided 

the number of available substreams, $”(D) ,  is greater than 

the number of substreams, q!f-’(D), available in the previous 

frame slot. However, $”(D) > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$’-‘(D) suggests that more 

code bits are required in frame slot s than in frame slot 

s - 1, in order to achieve the distortion target, D. The 

event, yY(D)  > $-I(D), occurs principally because more 

substreams are required in frame slot s than in frame slot s - 1 

to prevent a drop in the number of code block quantization 

layers and hence the distortion. For this reason, the number 

of quantization layers allocated to any code block, /3, in the 

first $”(D) substreams of frame slot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, may very well be 

no larger than the number of quantization layers allocated 

to code block /3 in the first QS-’(D) substreams of frame 

slot s - 1, even though $“(D) is larger than $‘-‘(D). As a 

result, interframe dependencies are satisfied more often during 

constant distortion scaling than might at first be expected. 

As mentioned, the results presented above are obtained 

using the fixed map approach of Section 111-A for distortion 

tag generation. Before concluding this section, we offer an 

indication of the performance of the adaptive scheme of 

Section 111-B. This is important because the fixed map ap- 

proach is only suitable for prerecorded video material, whereas 

the adaptive approach is applicable both to prerecorded and 

interactive video. We point out, however, that we only expect 

the adaptive approach to be effective when the adaptation time 

constant, B, is relatively large and the duration of the video 

sequence is much larger than B. This is because the map, 

I“, must adapt slowly if constant distortion scaling is to be 



~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

TAUBMAN AND ZAKHOR A COMMON FRAMEWORK FOR HIGHLY SCALABLE COMPRESSED VIDEO 

~ 

351 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Frequency Wasted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 8 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.12 

0.08 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 .04  

0.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Frequency 

0.12 

0.08 

0.04 

ate  0.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f k b P S )  

1000 1500 2000 0 500 

(b) 

Fig. 13. Instantaneous bit rate histograms, associated with VBR scaling 
of the substream hierarchies generated from the “Raiders of the Lost Arc” 
sequence. (a) Medium delay algorithm of Table I1 at an average rate of 0.5 
Mb/s; (b) minimum delay algorithm of Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 at an average rate of 1.0 Mh/s. 

meaningful; moreover the adaptive scheme only guarantees 

that the average bit rate over T seconds is within BIT x 
100% of its nominal value, R(D) ,  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2) is the distortion 

target. It is difficult, therefore, to satisfactorily demonstrate the 

performance of the adaptive concepts in Section 111-B without 

a large quantity of source video material. The longest video 

sequence available to us is the “Raiders of the Lost Arc” 

sequence, which has a duration of 104 s. Unfortunately, 7“ 
tends to adapt too quickly when B is much less than 104 

s. For illustrative purposes, therefore, we select a value of 

B = 40 s. The reference distortion bounds, and V y ,  
are obtained using the approach suggested in Section 111-B, 

except that the “Raiders of the Lost Arc” sequence itself is 

used as training material for want of a more realistic training 

set. That is, is selected so that V$ 2 VTin for 99% 

of the frame slots, s. Similarly, V$ 5 V y  for 99% of the 

frame slots. This ensures that the reference distortion values, 

V$, must occasionally be artificially constrained to lie within 

the bounds 5 V$ 5 VGmaX, as we would expect if the 

bounds were generated from a realistic set of training video 

sequences. Also, the initial fidelity threshold values a,’ are set 

Fig. 14. Percentage of bits wasted due to VBR scaling of the substream 
hierarchies generated from the “pingpong” and “Raiders of the Lost Arc” 
sequences, using the medium delay algorithm of Table 11. 

to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,’ = [ M ( V F x ) + M ( V z i n ) ] / 2 ,  where M is the piecewise 

linear map described in Section III-B.2g 

Fig. 15 indicates the frame-by-frame PSNR values obtained 

for the “Raiders of the Lost Arc” sequence, after both constant 

bit rate scaling and constant distortion scaling, with an adap- 

tation time constant of B = 40 s. The scalable data stream 

is obtained using the medium delay algorithm of Table I1 and 

the nominal average bit rate is R(-7) = 506.88 kbls. As seen, 

constant distortion scaling does offer some smoothing of the 

distortion, especially in the first 1000 frames, where constant 

bit rate scaling exhibits the widest fluctuations in distortion. 

However, the map clearly adapts too quickly to offer good 

long term stabilization of the PSNR or, equivalently, MSE. 

The distortion in Fig. 15 is seen to wander appreciably, e.g., 

1-2 dB, within a period of about 4 s, suggesting that the time 

constant, B, required to hold distortion approximately constant 

over a period of one minute, for example, may need to be as 

large as 10 min. 

As discussed in Section 111-B, 7“ must be adapted in such 

a way as to satisfy the leaky bucket criterion of (7). Fig. 16 
plots the normalized bucket fullness ratio 

over the range 1 6 S 5 2500/3=, for various distortion targets, 
;I) = -4, -7, -11, and -16, corresponding to nominal 

average bit rates of 253.44 kbls, 506.88 kbls, 1013.76 kbls, 

and 2027.52 kbls, as indicated in Table I. According to (7), 
the absolute value of this ratio should always be less than or 

equal to one. As seen from Fig. 16, this is indeed the case. 

Moreover, Fig. 16 indicates that the bounds of =t1 are equally 

tight over a wide range of distortion targets. 
As mentioned in Section 111-B, it can happen that the 

reference distortion values must occasionally be modified in 

order to avoid misordering of the fidelity threshold values, 

28Recall from Section VI-A that yp = $: = - 2  for each distortion target, 
d, = - a .  
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Fig. 15. Frame-by-frame luminance PSNR for "Raiders of the Lost Arc" sequence, reconstructed from CBR and VBR scaled substream hierarchies generated 
using the medium delay algorithm of Table 11. Nominal average bit rate is 506.88 kb/s. Adaptation time constant for adaptive distortion tag map, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI", is B = 40 s. 
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Fig. 16. 
medium delay algorithm of Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. Adaptation time constant for adaptive distortion tag map, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7", is E = 40 s. 

Normalized bucket fullness ratio, corresponding to the first zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS frame slots of the constant distortion scaled substream hierarchy generated using the 

us < CL; < . . . < U:. The fact that this modification is required 

only rarely is confirmed in our experimental investigations. 

In particular, Fig. 17 indicates the percentage of frame slots 

in which one or more reference distortion values must be 

modified in order to prevent threshold misordering, as a 

function of the time constant, B. As predicted in Section 111-B, 

the number of modifications decreases rapidly as B increases. 

In fact, no modifications whatsoever are required for B > 18 

s. Given that B may well be on the order of about 10 min in 

a practical system, Fig. 17 suggests that the need to modify 
reference distortion values may virtually never arise. 

VII. CONCLUSION 

The principle contribution of this paper is the introduction 

of a layered substream abstraction to facilitate simple, generic 

scaling of highly scalable compressed data, with both constant 

bit rate and constant distortion (VBR) scaling criteria. The 

behavior of these scaling policies has been experimentally 

demonstrated within the context of a class of highly scal- 

able video compression schemes, which permit compression 

performance to be traded for delay and/or implementation 

memory requirements. The conclusion of these experiments 

is that compression performance similar to that of MPEG- 
1 should be attainable with similar end-to-end delay, while 

offering a high degree of scalability using simple, generic scal- 

ing mechanisms. The proposed layered substream hierarchies 

provide a particularly useful tool for rate scaling within high 

speed, shared digital networks, where computational resources 

are often relatively limited. Moreover, the generic nature of the 

associated scaling mechanisms renders the proposed layered 

substream abstraction suitable for distribution of a wide variety 
of highly scalable data streams. Exactly the same substream 

abstraction should, for example, be equally appropriate for 

highly scalable compressed audio data streams, which might 

be generated using similar approaches to those described here 
for video. Interesting application possibilities emerge as a 

result of the potential for both constant rate and constant 

distortion based scaling. For example, one might envisage 

a heterogeneous multicast environment, in which compressed 

video is delivered to some clients at constant bit rate, while to 

others with constant distortion, depending on the capabilities of 

their respective distribution paths. It should be noted that our 

work on constant distortion substream scaling has focused on 



TAUBMAN AND ZAKHOR: A COMMON FRAMEWORK FOR HIGHLY SCALABLE COMPRESSED VIDEO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA353 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f % I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
351 I I I I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 17. Percentage of frame slots requiring slight modification to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArefer- 
ence distortion values, in order to prevent misordering of fidelity thresholds 
during adaptive distortion tagging, as a function of the time constant, B. 
Obtained using the medium delay compression algorithm of Table I1 and the 
“Raiders of the Lost Arc” video sequence. 

the MSE distortion measure for demonstrative purposes only. 

More realistic psychovisual distortion measures must clearly 

be investigated for practical applications. 

APPENDIX 

In this appendix, we prove Observations 1 and 3. The 
proof of Observation 2 is essentially identical to that of 

Observation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. 
Observation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: 

Proof: Note that D&(dtl = d j  for some j. According 

to (I), we must have d j  5 d;, i.e., j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 i .  From (4) then, 

V&(dc) 5 t j  5 t i ,  so that $ “ ( d i )  2 min{$lV$ 5 t i } .  On the 

other hand, suppose that V$ 5 t i ,  for some $. Then 23; 5 d i ,  
by (4) which implies that $‘ (d i )  5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIJI, by (1). We conclude 

that $“ (d i )  I min{$,IV$ I t i } .  

Proofi Consider a y x .  B y  assumption, the initial value 
+ [ R ( d ; )  - RI] .  Suppose also that a; < @”,”” + 

Observation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3: 

U: < +, 
[R(di) - RI] for some frame slot s. We have two cases. 

I )  Case 1 (a,! 2 @$r) 
In this case we have 

$’(&) = min {$ I@$ 2 a: j 

2 min{$I@$ 2 @?Tj 2 $%U, 

where we have used (9) and the fact that the maximum 
fidelity, QF, associated with the first $ substreams, is 
a nondeereasing function of $. It follows that 

+“(&) +: 

<.-I E=1 
>: RE - R(&) L RE - R(di) 2 0 

and so, according to (IO), we have 5 ai < 
(pmax +; + [n(di) - RI]. 

Observe that E::‘;“’’ RE - R(d i )  2 RI - R(di) so 

that, according to (lo), we have a:+’ 5 a: + [R(di) - 

2)  Case 2 (U! < @$‘r) 

RI ]  < a$’::,”” + [ R ( d i )  - RI] .  

By induction on s, we see that at < @;? + [R(di) - RI ]  
for all frame slots s 2 1. A similar argument establishes the 

lower bound, ayin. 
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